
Citation: Lai, X.; Wang, Y.; Li, Q.;

Habib, K. Reset Noise Sampling

Feedforward Technique (RNSF) for

Low Noise MEMS Capacitive

Accelerometer. Electronics 2022, 11,

2693. https://doi.org/10.3390/

electronics11172693

Academic Editor: Riccardo

Bernardini

Received: 4 August 2022

Accepted: 24 August 2022

Published: 27 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Reset Noise Sampling Feedforward Technique (RNSF) for Low
Noise MEMS Capacitive Accelerometer
Xinquan Lai 1, Yuheng Wang 1,*, Qinqin Li 2 and Kashif Habib 1

1 School of Electronic Engineering, Xidian University, Xi’an 710071, China
2 School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
* Correspondence: 1702110155@stu.xidian.edu.cn

Abstract: The reset noise sampling feedforward (RNSF) technique is proposed in this paper to
reduce the noise floor of the readout circuit for micro-electromechanically systems (MEMS) capacitive
accelerometer. Because of the technology-imposed size restriction on the sensing element, the sensing
capacitance and the capacitance variation are reduced to the femto-farad level. As a result, the reset
noise from the parasitic capacitance, which is pico-farad level, becomes significant. In this work,
the RNSF technique focuses on the suppression of the parasitic-capacitance-induced noise, thereby
improving the noise performance of MEMS capacitive accelerometer. The simulation results show
that the RNSF technique effectively suppresses the thermal noise from the parasitic capacitance.
Compared with the traditional readout circuit, the noise floor of the readout circuit with the RNSF
technique is reduced by 9 dBV. The presented circuit based on the RNSF technique is fabricated by
a commercial 0.18-µm BCD process and tested with a femto-farad MEMS capacitive accelerometer.
The physical measurement results show that, compared with the readout circuit without the RNSF
technique, the RNSF technique reduces the noise floor of the readout circuit for MEMS capacitive
accelerometer from −72 dBV to −80 dBV. Compared with other similar works, the proposed readout
circuit achieves better FoM

(
FoM = (power× noise f loor)/

√
system bandwidth = 490 µW·µg/Hz

)
among the switched-capacitor readout circuits.

Keywords: capacitive sensor; readout circuit; sensor interface; MEMS accelerometer; parasitic
capacitance; low noise; switched-capacitor; reset noise; feedforward technique

1. Introduction

Micro-electromechanical systems (MEMS) capacitive sensor is widely used in pressure
sensors and accelerometers for health care applications [1–3] and internet of things (IoT)
applications [4]. In these applications, the sensors are powered by a battery, thus high
power efficiency is required to extend battery life [5,6]. As a result, the MEMS capacitive
sensors are designed with open-loop architecture rather than a closed-loop one to achieve
low power consumption. Because the closed-loop structure needs to provide feedback to
the MEMS sensor in electrostatic force, a high voltage, larger than a few volts in most cases,
should be used to generate the electrostatic force to move proof mass. It will lead to larger
power consumption and high cost [7,8]. Compared to the closed-loop architecture, the open-
loop architecture does not need high voltage to drive the MEMS sensor, which consumes
less power at the cost of linearity. In the open-loop architecture, the nonlinearity of the
mechanical sensing element significantly increases with the increase of the capacitance
variation of the sensing element [9,10]. Therefore, the capacitance variation needs to be
limited to the femto-farad level to suppress the nonlinearity to an acceptable level [11,12].
However, the fact that the capacitance variation of the sensing element (femto-farad level)
is much lower than the capacitance of parasitic capacitance of the sensing element (pico-
farad-level) results in significant deterioration of gain error and thermal noise [13–15].
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The chopper stabilization (CHS) technique [16,17] and correlated double sampling
(CDS) technique [18–20] can cancel the offset and 1/f noise of the amplifier, but they cannot
reduce the effect of thermal noise. Current-reuse techniques are important techniques to
enhance the trans-conductance of the amplifier and reduce the noise floor, which includes
the inverter-based amplifier [21,22], inverter stacking amplifier [23], and orthogonal cur-
rent reuse [24]. However, they do not deal with parasitic-capacitance-induced noise. The
thermal noise canceling technique [25] and feedforward noise reduction technique [26]
focuse on the suppression of the amplifier’s noise, they also cannot solve the problem of
thermal noise deterioration caused by parasitic capacitance. The wideband feedback con-
trol can suppress the parasitic-induced noise by a negative feedback loop control, but the
controlling mechanism is complex and consumes a lot of power. The oversampling method
can deal with all the noise both from parasitic capacitance and amplifier. However, it leads
to high power consumption and low power efficiency [27–29]. Modified correlated double
sampling (CDS) can also deal with noise from parasitic capacitance [30–32]. However, it
reduces the bandwidth and driving ability of the pre-amplifier and, therefore, reduces
power efficiency. As a result, these methods are not sufficiently power-efficient. In this
paper, the reset noise sampling feedforward (RNSF) technique is proposed for reducing the
noise from the parasitic capacitance in an open-loop readout circuit for MEMS capacitive
accelerometer. This technique employs the sample noise charge and feedforward cancella-
tion method to suppress the thermal noise. The whole process of noise reduction is based
on a passive switched-capacitor network, which only consists of passive devices, such as
switches and capacitors. No additional power is consumed. Therefore, the technique can
consume less power to achieve large noise performance improvement of MEMS capacitive
accelerometer without sacrificing others’ performance. Compared to the methods men-
tioned above, this technique provides high power efficiency in terms of the figure of merit
(FoM) and flexibility.

The rest of the paper is organized as follows. Section 2 provides the noise analysis of
the traditional readout circuit of MEMS capacitive accelerometer. In Section 3, the principles
of the RNSF technique and the noise performance of the readout circuit with the RNSF
technique are described in detail. Besides, the comparison of RNSF and CDS is illustrated.
In Sections 4 and 5, the simulation results and physical measurement results are presented.
The conclusions are then drawn in Section 6.

2. Noise Performance of Traditional Readout Circuit

For the open-loop readout circuit with significant input parasitic capacitance, the
overall noise performance of the readout circuit and the trade-off between noise and power
is determined by a front-end switched-capacitor capacitance-to-voltage converter (SC-
CVC) rather than a back-end analog-to-digital converter (ADC). In this section, the sensor
structure and SC-CVC noise performance are analyzed in detail.

2.1. Sensor Structure

Figure 1 shows one sensing element in a typical open-loop MEMS capacitive accelerom-
eter. The mechanical sensor consists of a moving proof mass suspended on springs over a
substrate and a set of fixed electrodes. Applying external acceleration to the MEMS system
leads to the deflection of the proof-mass from its center position, resulting in a differential
capacitance change. The sensing capacitances CS1 and CS2 are the parallel-plate capacitors
formed by the stator plates (unmovable plates connected to the sensing electrodes A and B)
and the rotor plates (movable plates on the proof mass connected to the driving electrode R
via spring), which are expressed below,

CS1 = C0
1−∆d/d0

≈ C0

(
1 + ∆d

d0

)
= C0 + ∆C, CS2 = C0

1+∆d/d0
≈ C0

(
1− ∆d

d0

)
= C0 − ∆C

∆CS = CS1 − CS2 = 2C0
d0

∆d
(

1
1−(∆d/d0)

2

)
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where C0 is the rest capacitance of the sensing capacitor, d0 is the rest distance between a pair
of rotor plates and stator plates which form the sensing capacitor, ∆d is the displacement
which is in linear proportion to the acceleration signal. Equation (1) shows the capacitance
variation of the differential parallel-plate capacitor (∆CS) is a strongly nonlinear (reciprocal)
function of displacement ∆d, which is undesirable for acceleration measurement. The
normalized nonlinearity δ of differential capacitance variation ∆CS is,

δ =

∣∣∣∣∣1− 1

1− (∆d/d0)
2

∣∣∣∣∣ = (∆d/d0)
2

1− (∆d/d0)
2 (2)
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Figure 1. Sensing element of a typical MEMS capacitive accelerometer.

According to Equation (2), in order to limit the high-order nonlinear approximation
error to an acceptable level (e.g., δ < 0.1%), the maximum displacement ratio ∆d/d0 should
be less than 3.2%. For an acceptable MEMS die cost (e.g., 0.5 × 0.5 mm device fabricated by
MEMS technology with an aspect ratio of 2/15 µm, i.e., the minimum distance between
the finger structures is 2 µm and the maximum thickness of the finger structures is 15 µm),
the sensor’s rest capacitance C0 is about 250 fF [33,34], the maximum capacitance variation
∆CS will not exceed 8 fF to achieve 0.1% nonlinearity.

2.2. Noise Performance of Switched-Capacitor Capacitance-to-Voltage Converter

The simplified front-end single-end open-loop readout circuit of the femto-farad
MEMS capacitive accelerometer is a switched-capacitor capacitance-to-voltage converter,
as shown in Figure 2 [28].
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The CP0 is the parasitic capacitance between the sensing electrodes and the ground.
It is introduced by MEMS sensor’s package, bonding pads, and electrostatic discharge
protection (ESD) of IC chip. The CP1 is the parasitic capacitance introduced by the input
transistors of the pre-amplifier A1. The static capacitance C0 of the sensing element is also
modeled as the parasitic capacitance, as it does not contribute to any signal charge. The
basic operation of SC-CVC is the sensing capacitance CS is excited by reference voltage VR,
the common-mode charge is absorbed by the capacitor CCM, and only the differential signal
charge flows into the integrating capacitor CI to produce an output voltage of SC-CVC.

Vout =
∆CS
CI

VR = ∆CSGCV , GCV =
VR
CI

(3)

where GCV is sensitive/gain of the SC-CVC with a unit of V/F. The capacitors COSA and
CH are used to settle out gain error, offset, and 1/f noise.

The main noise source in the SC-CVC can be divided into two types. One is type-A
noise due to reset noise sampled by the capacitors during phase Φ1 and amplified during
phase Φ2. Type-A noise in the output voltage is [27],

V2
NA =

kT(CCM + CP0 + CP1 + C0 + CI)

C2
I

+
kT

COSA

1
β1

2

β1 =
CI

CP0 + CP1 + C0 + CI + CCM

(4)

where β1 is the feedback coefficient from VO to VIN . The first term of Equation (4) represents
charge-type noise from capacitances CP0, CP1, C0, and CI . The second term of Equation (4)
represents voltage-type noise from capacitor COSA.

The other one is type-B noise due to the amplifier A1 during phase Φ2 when capacitor
CH severing as load capacitor. Type-B noise in the output voltage is [31],

V2
NB =

1
β1β2

kT
CH

αγ, β2 =
COSA

CP1 + COSA
(5)

where β2 is the feedback coefficient from VIN to VA, α is a constant depending on the
structure of the input stage of amplifier A1 with a typical value between 1.0 and 2.0, γ is a
constant depending on the process with a typical value of 0.6.

The total equivalent input noise C2
IN in the sensing capacitor is,

C2
IN =

(
V2

NA + V2
NB

)
/G2

CV (6)

The typical transient output noise waveform of SC-CVC is shown in Figure 3. The
discrete-time random fluctuation between each period is type-A noise. The continuous-time
random fluctuation in each period is type-B noise.

For the femto-farad-level MEMS capacitive accelerometer, the type-A noise induced
by parasitic capacitance is larger than the type-B noise, then it becomes the dominant noise
source. Combining Equations (4) and (5), the condition for type-A noise dominance can
be acquired,

V2
NA > V2

NB

CI
CH

<
CP0 + CP1 + 2C0 + COSA

COSAαγ

(7)

Equation (7) gives the threshold value of ratio CI/CH when type-A noise achieves
dominance. Typically, the value of capacitance CP0 is in the order of a few pico-farads.
It is introduced by the MEMS device (600 fF), electrostatic discharge protector (1.2 pF),
and bonding pad (200 fF). The value of capacitance CH and COSA is also in the order of
pico-farad, which provide the large loop gain to compensate for the finite gain error of the
amplifier. The integrating capacitance CI should match the capacitance variation ∆CS to
ensure enough gain of the SC-CVC. Therefore, the value of capacitance CI is in the order of



Electronics 2022, 11, 2693 5 of 17

tens of femto-farads. Based on the values above, the condition for type-A noise dominance
is easily satisfied. The variation of equivalent input noise with ratio CI/CH is shown in
Figure 4. According to Equation (6), the type-B equivalent input noise decreases with
decreasing of the ratio CI/CH , while type-A equivalent input noise keeps constant. As a
result, the total equivalent input noise is dominated by type-B noise with high ratio CI/CH
(corresponding to pico-farad-level MEMS capacitive sensor) and dominated by type-A noise
with low ratio CI/CH (corresponding to the femto-farad-level MEMS capacitive sensor).
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In summary, the noise floor of the femto-farad-level MEMS capacitive readout circuit
is dominated by the parasitic-capacitance-induced noise not by the operational amplifier
(op-amp) noise.

3. Reset Noise Sampling Feedforward (RNSF) Technique

As analyzed in Section 2, to improve the noise performance of the femto-farad-level
MEMS capacitive readout circuit, suppressing type-A noise is more effective than sup-
pressing type-B noise. Therefore, this work proposes a reset noise sampling feedforward
(RNSF) technique that forces the suppression of the noise from the parasitic capacitance in
an open-loop readout structure for the MEMS capacitive accelerometer.

3.1. Circuit Implementation

The CVC employing RNSF technique does not change the topology structure, as the
schematic and time diagram shown in Figure 5a. The main amplifier A1 used in CVC is a
fully differential two-stage amplifier, which is shown in Figure 5b. The switched-capacitor
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common-mode feedback (SC-CMFB) is used to control the output common-mode voltage
without sacrificing extra power consumption. The generator of the non-overlapping clock
is shown in Figure 5c. It is capable of generating three-phase non-overlapping clocks. Each
clock has its own independent rising edge delay and falling edge delay. This generator
can also produce nested clocks by cascading, and these clocks are used to drive the key
switches, which reduce the effect of charge injection and clock feedthrough.
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technique for a differential MEMS capacitive accelerometer. (a) Schematic and timing diagram. (b) Fully
differential two-stage amplifier with SC-CMFB. (c) Three-phase non-overlapping clock generator.
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3.2. Principle

The RNSF technique works in three steps to settle out the type-A noise, as the single-
end model shown in Figures 6–8.
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In step-1, the capacitors CS1, COSA, CP0, CCM, and CP1 in the circuit are reset, as shown
in Figure 6. In this step, these capacitors are also charged with thermal noise. Notice that
capacitor CNI , which stores the output voltage of last period VO(n− 1), is not reset. The
total noise charge sampled by these capacitors is
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Q2
NC = KT(CCM + CP0 + CP1 + CS1 + CI) = KTCP_total (8)

In step-2, the reset switch Srs is open, then the sample noise on the parasitic capacitance
CP_total is frozen. The noise integration capacitor CNI is connected to execute a “noise fake
integration” without driving the sensing capacitors CS1. During “noise fake integration”,
only the thermal noise charges flow into CNI while the signal charge does not, since the
sensor capacitors are not driven, as shown in Figure 7. This operation separates the noise
charge from the signal charge, as the capacitor CNI “pulls out” the noise charges from all
the capacitances (CS1, COSA, CP0, and CP1) simultaneously. These noise charges are stored
by the capacitor CNC. Furthermore, this operation avoids the introduction of gain error.
A slewing of output ∆VO will introduce a virtual ground error ∆VO/A1 across the input
terminals of amplifier A1. The virtual ground error is then amplified by a coefficient of 1/β,
which is significant due to parasitic capacitance according to Equation (3). This results in
a significant gain error. Thus, the slewing of output ∆VO should be minimized to avoid
gain error in CVC. During step-1 and step-2 of RNSF operation, as capacitor CNI holds the
output voltage of last period VO(n− 1), the slewing of output is minimized, and so is the
gain error.

In step-3, the capacitor CI is connected to execute signal amplifying, and the capacitor
CNC builds the feedforward path to cancel the noise charge. The inverter block represents
the polarity of the stored noise charge that needs to be reversed. It can be achieved by
output signal cross-coupled in a fully differential structure. The sensing capacitors are
driven, and the signal charge flows into capacitor CI to produce output voltage VO(n),
as shown in Figure 8. The stored noise charge is transferred to the virtual ground node
through a feedforward path and neutralizes the noise charge on the parasitic capacitance.
The dominant type-A noise charge is depleted in this step, output voltage in this step can
achieve lower noise. The residual noise charge on parasitic capacitance is

Q2
NC = KT(CCM + CP0 + CP1 + CS1 + CI) = KTCP_total (9)

where the V2
N is the equivalent input noise of the amplifier and the BW is the bandwidth of

the amplifier.

3.3. Noise Performance Analysis

The output noise of the RNSF-CVC is composed of three components. The first
component is the reduced type-A noise. The second component is newly added noise
when the amplifier settles out type-A noise. The third component is type-B noise, which
remains unchanged.

The type-A noise in the capacitors CS1, CS2, CCM, COSA, CP0, and CP1 is pulled out by
the amplifier through the capacitor CNI in phase Φ2 and is canceled by the feedforward
compensation technique through the capacitor CNC in phase Φ3. Thus, the residual type-A
noise V2

NAR1 depends on the gain error of the amplifier, i.e.,

V2
NAR1 = V2

NA

(
1

1 + β3 A1

)2
, β3 =

CNI
CNI + CP_total

(10)

When the amplifier settles out type-A noise in the capacitors, it also introduces a new
component of noise power V2

NAR2 to those capacitors. This noise is actually a sampled
noise of type-B noise in phase Φ2,

V2
NAR2 =

1
β3

kT
CH

αγ (11)

During the whole RNSF process, type-B noise in phase Φ3 is unchanged. Thus, the
total output noise of RNSF readout circuit is,

V2
N_total = V2

NAR1 + V2
NAR2 + V2

NB (12)
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The total equivalent input noise C2
IN in the sensing capacitor is,

C2
IN =

(
V2

NAR1 + V2
NAR2 + V2

NB

)
/G2

CV (13)

Compared with Equations (3) and (4) of the original CVC, Equation (9) indicates
that the RNSF-CVC reduces type-A noise by a factor of (1 + β2 A1)

−2 but increases extra
type-B noise in phase Φ2. Thus, the RNSF technique can improve the noise performance if
type-A noise is dominant. On the contrast, the RNSF technique will deteriorate the noise
performance if type-B noise is dominant.

3.4. Noise Performance Comparison between RNSF and CDS

The various reported correlated double sampling (CDS) techniques can be divided into
three types, as shown in Figure 9. Type-I CDS places the calibration capacitor CCDS in the
front-end, so that the capacitor CCDS can sample the offset and flicker noise of the amplifier
during phase Φ1 and cancel the offset and flicker noise during phase Φ2. However, the
insertion of CCDS at the input terminal of the amplifier will introduce additional thermal
noise. Type-II CDS uses the integration capacitor CI as a calibration capacitor, so that
the capacitor CI can sample and cancel offset and flicker noise of the amplifier without
introducing additional thermal noise. Type-III CDS places the calibration capacitor CCDS
in the back-end. When driven in three phases, capacitor CCDS can sample and cancel not
only the offset and flicker noise from the amplifier, but also sampled thermal noise (type-A
noise) from sensing capacitor CS and parasitic capacitance CP. Thus, type-III CDS is most
similar to the RNSF technique.
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In type-III CDS technique shown in Figure 9b, two sampling phases are used to reduce
type-A noise. During the first sampling phase Φ2, only noise is sampled by capacitor CCDS.
During the second sampling phase Φ3, noise and signal are simultaneously sampled. As
the noise is type-A noise which is correlated in two sampling phases’ Φ2 and Φ3, it can be
canceled. However, capacitor CCDS reduces the bandwidth of the amplifier during phase
Φ2 as it acts as load capacitor and reduces the driving ability of amplifier during phase Φ3
as it increases output impedance of the amplifier.
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Compared with type-III CDS technique, the RNSF technique adopts the noise charge
sample and feedforward cancelation method, which avoids the CDS capacitor acting as
a load capacitor. Therefore, the bandwidth and driving ability of the amplifier are not
sacrificed. Besides, the slewing of output is avoided, and gain error is minimized.

The comparison of three types of the CDS technique and CDA technique is summarized
in Table 1. Type-II CDS is listed as reference. The symbol “+”, “O” and “−” represents better
than the reference, the same as the reference and worse than the reference, respectively.

Table 1. Performance comparison of RNSF and CDS technique.

Type-I Type-II Type-III RNSF

Thermal noise - O + +

Gain error O O O +

Flicker noise and
offset reduction O O O O

Bandwidth & driving ability O O - O

Clock phase 2 2 3 3

3.5. Drawbacks of RNSF Technique

Compared to the conventional SC-CVC structure, the sacrifice for the RNSF-CVC is
the increasing of the clock phase by one and the chip area. The increase of clock phase will
lead to the increase of settling error when the sampling frequency does not change. In order
to reduce the settling error, a larger bandwidth of the operational amplifier is required,
which means more power will be consumed. The relationship between the settling error,
bandwidth, and sampling frequency is shown by the following equation:

e−
BW

N× fs ≤ settling error (14)

where BW represents the bandwidth, the N represents the number of clock phase used,
fs represents the sampling frequency. For example, to support a conventional SC-CVC
(two clock phases) operating at 100 kHz sampling frequency with 1% settling error, the
bandwidth should be at least 921 kHz, according to Equation (13). However, RNSF-CVC
(three clock phases) needs a bandwidth of 1.38 MHz under the same condition.

The equivalent circuit model with typical component parameters of CVC is shown in
Figure 10, the bandwidth of the CVC can be expressed as follows:

BW = β1β2
gm

2πCH
(15)

where gm is transconductance of the operational amplifier, the coefficient β1 and β2 is
shown in Section 2.2. The value of the product of coefficient β1β2 is about 0.017. For the
SC-CVC with 921 kHz bandwidth, the gm should be 170 µs which requires a typical supply
current ID of 17 µA. For the RNSF-CVC with 1.38 Mhz bandwidth, the gm should be
255 µs, which requires 25 µA supply current. Although the power consumption of RNSF-
CVC is increased, the effect of noise suppression caused by RNSF-technique is excellent
compared to other noise reduction techniques that consume the same power. Thus, for a
fair comparison, the FoM is used to evaluate the performance of various noise reduction
techniques. This content will be illustrated in Section 5.

Besides, compared to the whole area of the CVC, the increase of chip area introduced
by RNSF technique can be negligible. Because the size of noise integration capacitor CNI ,
noise cancelation capacitor CNC is small, it will not occupy much more area of the chip.
The switches used in CVC are designed by the MOS with the minimum lengths, thus the
size of the switch is small. As a result, the RNSF network will not add more area.
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4. Simulation Results

The CVC based on conventional and RNSF technique is simulated at the transistor level
using the Periodic Steady State Analysis (PSS) tool in a fully differential capacitive readout
circuit. The process is a commercial 0.18-µm BCD process. The important conditions are
CI = 20 fF, CP0 = 2 pF, CP1 = 0.3 pF, COSA = 4 pF, CH = 1 pF, CCM = C0 = 0.3 pF,
CNI = 20 fF, CNC = 20 fF, fS = 100 kHz.

The typical transient output waveform is shown in Figure 11, where the fine red line
is the output of RNSF-CVC, the thick blue line is the output sampled during phase Φ3. The
RNSF-CVC outputs significant noise in phase Φ2, as “noise fake integration” is executed
in this phase. Then, RNSF-CVC outputs low noise signal in phase Φ3, as type-A noise
charge from all the capacitors is settled out during phase Φ3. If the output is sampled in
phase Φ3, the low noise output can be acquired. The noise power spectral density (PSD) of
the RNSF-CVC and conventional CVC are shown in Figure 12. Due to the effect of RNSF
technique, type-A noise PSD of RNSF is decreased by a factor of (1 + β2 A1), so the blue
dash line is much lower than the red dash line. The total noise PSD of the RNSF-CVC
decreases 9 dBV compared to the conventional CVC.
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The results in Figure 13 show the noise reduction effectiveness of the RNSF technique
varying with the parasitic capacitance CP0. When the value of CP0 is increased from 0 to
5 pF, the equivalent input noise of traditional CVC without RNSF increases by 15 dBfF
from −30 dBfF to −15 dBfF, while that of RNSF-CVC increases by only 10 dBfF from
−38 dBfF to −28 dBfF. The RNSF-CVC not only significantly reduces the noise introduced
by parasitic capacitance, it is also less sensitive to the increasing of parasitic capacitance.
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5. Physical Verification

The RNSF technique is verified in an open-loop structure readout circuit and tested
with a commercial femto-farad MEMS accelerometer [35], as shown in Figure 14b. The
typical parameters of the MEMS accelerometer are summarized in Table 2. The device size
and the capacitive gap are 0.5 × 0.7 mm and 2.2 µm, respectively. The thickness of the
sensing element is 17 µm and the proof mass is 3.5 µg. The resonance frequency of the
sensing element is about 2 kHz. The static capacitance is about 550 fF which is the sensor’s
capacitance without any acceleration applied to it. The sensitivity of the MEMS capacitive
accelerometer is 4 fF/g.

The readout circuit is manufactured with a commercial 0.18-µm CMOS process, which
integrates CMC (common-mode charge controller), CVC, calibration module, references,
clock generator, and output buffers, as the micrograph of the die shown in Figure 14b.
The CMC (common-mode charge controller) is used to absorb the common-mode charges
from sensing capacitances so that only differential charge representing signal flows into the
CVC to produce output voltage. The schematic of active CMC can be found in [36]. The
calibration module is used to cancel the capacitive offset (typically in the order of 10 fF)
introduced by a mismatch of MEMS sensing capacitors and bonding wires. The power
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consumption of the main blocks is 62 µW, where CMC, CVC, reference and clock generator
consumes 20 µW, 30 µW, 10 µW, and 2 µW, respectively. The chip area.
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Table 2. Specifications of the MEMS capacitive accelerometer.

Device size 0.5 mm× 0.7 mm× 17 µm (X and Y axis)

Capacitive gap 2.2 µm

Proof Mass 3.5 µg

Static capacitance 550 fF

Bandwidth 2 kHz

Sensitivity 4 fF/g

To test the noise reduction ability of RNSF technique, a clock selector is added, which
is shown in Figure 15. The clock selector provides two sets of clocks to drive switches S1
and S2 of CVC in Figure 3. When switches S1 and S2 are opened, the SC-CVC acts as a
traditional CVC, as it does not execute “noise fake integration” during phase Φ2 and “noise
charge compensation” during phase Φ3. When switches S1 and S2 are closed, the CVC
obtains noise reduction ability. The output of CVC is connected to the oscilloscope and
spectrum analyzer (APX525) to test the transient noise performance and the noise floor of
the readout circuit.
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Figure 15. The test configuration of the readout IC.

The measurement results of transient noise performance are shown in Figure 16. When
the RNSF technique is disabled, the output random fluctuation of CVC between each period
is about 40 mV (the yellow line). When the RNSF technique is enabled, the output random
fluctuation of CVC between each period is reduced to 25 mV (the red line). It means the
type-A noise is effectively suppressed by RNSF technique. The peak-to-peak noise output
in the period of these two outputs are similar because the RNSF technique cannot deal with
the type-B noise, which is the amplifier’s noise.
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The measurement results of the noise floor are shown in Figure 17. When the RNSF
function is disabled, the output noise power spectral density is −72 dBV/

√
Hz with 1 kHz

bandwidth. When the RNSF function is enabled, the output noise power spectral density
is significantly reduced from −72 dBV/

√
Hz to −80 dBV/

√
Hz. The noise floor of the

CVC is reduced due to the suppression of type-A noise. Therefore, this result verifies the
effectiveness of the RNSF technique.

Generally, the figure of merit (FoM) is used to evaluate the power efficiency of MEMS
accelerometer,

FoM [W·F/Hz] =
Power× Noise f loor√

Bw
(16)

The FoM emphasizes the current efficiency, i.e., to reduce the noise floor with as little
increment of supply current as possible.
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without the RNSF technique.

The main experimental parameters of this work are listed in Table 3. This work
reduces the noise floor from 627 to 250 ug/

√
Hz due to RNSF operation without sacrificing

more power consumption. Compared to the previous work on OSA readout structure
using a similar sensing element [28], this work achieves 11 dB reduction of noise floor
(from 900 to 250 ug/

√
Hz)). The power consumption is reduced from 248 to 62 µW. This

is because the previous work employs the oversampling technique, which increases the
sampling frequency of CVC. This technique consumes lots of power consumption, which
leads to low power efficiency. As a result, this work improves FoM significantly from
2232 to 490 µW·µg/Hz. Compared to other MEMS capacitive readout circuit, FOM
of this work are better, except for [17,26]. This is because the CMOS-MEMS process
employed in [17] significantly reduces the parasitic capacitances by leaving out bonding
and MEMS packaging. However, the CMOS-MEMS process increases fabrication cost.
Ref. [26] employs a high power-efficient noise reduction technique and achieves better
FoM than this work, but it is implemented with a single-end structure, and the parasitic
capacitance is not significant (100 fF~200 fF). The single-end structure is vulnerable to
environmental interference.

Table 3. Comparison of readout circuit for open-loop MEMS capacitive sensor.

Reference/Paper Zhong [28] Sun [17] Akita [26] Paavola [12] Yucetas [37] This Work

Noise Reduction
Technique

Bandwidth-
Enhanced

OSA

Dual-
Chopper

Feedforward
Noise

Reduction

Correlated
Double

Sampling

Traditional
Oversampling RNSF

Full scale (g) ±8 ±11.5 ±5 ±4 ±1.15 ±8
Nonlinearity @ FS <1% - <1% 0.3% 0.27% <1%
Bandwidth (Hz) 10 k 10 k 50 25 200 1 k

Sampling rate (Hz) 100 k - 100 51.2 k - 50 k
Sensor sens (fF/g) 1.0 - 15 - - 4
IC sens (mV/fF) 90 - - - - 100

Noise floor (µg/
√

Hz) 900 40 290 275 2.0 250
Power (µW) 248 1000 0.25 97.6 3600 62

Supply voltage (V) 1.8 - 1.0 1.2 3.6 1.8
FOM (µW·µg/Hz ) 2232 400 10 5368 509 490

Process 0.18 µm
BCD

CMOS-
MEMS

0.18 µm
CMOS

0.18 µm
CMOS

0.35 µm
CMOS

0.18 µm
BCD

6. Conclusions

The sub-femto-farad level MEMS capacitive accelerometer suffers from the effect
of parasitic-capacitance-induced noise. This problem is solved by the RNSF technique,
which focuses on the suppression of reset noise introduced by the parasitic capacitance.
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The RNSF technique is demonstrated in a fully differential open-loop readout circuit
fabricated in a 0.18 µm CMOS process and tested with a sensing element from a commercial
MEMS accelerometer. Measurement results show that the noise floor of MEMS capacitive
readout circuit with the RNSF technique is reduced by 8 dBV compared to that without
the RNSF technique. The measured noise floor of MEMS capacitive accelerometer with the
RNSF technique is 250 µg/

√
Hz. Compared to the present noise reduction technique, this

technique used in MEMS capacitive accelerometer can achieve lower noise floor with high
power efficiency and low cost. Compared to other similar works, this work shows better
FOM among circuits fabricated with the conventional CMOS process.
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