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Abstract: Melanoma is a lethal skin cancer. In its diagnosis, skin lesion segmentation plays a critical
role. However, skin lesions exhibit a wide range of sizes, shapes, colors, and edges. This makes skin
lesion segmentation a challenging task. In this paper, we propose an encoding–decoding network
called Res-CDD-Net to address the aforementioned aspects related to skin lesion segmentation. First,
we adopt ResNeXt50 pre-trained on the ImageNet dataset as the encoding path. This pre-trained
ResNeXt50 can provide rich image features to the whole network to achieve higher segmentation
accuracy. Second, a channel and spatial attention block (CSAB), which integrates both channel and
spatial attention, and a multi-scale capture block (MSCB) are introduced between the encoding
and decoding paths. The CSAB can highlight the lesion area and inhibit irrelevant objects. MSCB
can extract multi-scale information to learn lesion areas of different sizes. Third, we upgrade the
decoding path. Every 3 × 3 square convolution kernel in the decoding path is replaced by a diverse
branch block (DBB), which not only promotes the feature restoration capability, but also improves the
performance and robustness of the network. We evaluate the proposed network on three public skin
lesion datasets, namely ISIC-2017, ISIC-2016, and PH2. The dice coefficient is 6.90% higher than that
of U-Net, whereas the Jaccard index is 10.84% higher than that of U-Net (assessed on the ISIC-2017
dataset). The results show that Res-CDD-Net achieves outstanding performance, higher than the
performance of most state-of-the-art networks. Last but not least, the training of the network is fast,
and good results can be achieved in early stages of training.

Keywords: skin lesion segmentation; encoding–decoding network; attention mechanism; multi-scale
feature fusion; diverse branch block

1. Introduction

Skin cancer is a widespread disease, and a particularly lethal instance of this disease is
melanoma. According to statistics, if melanoma patients are not diagnosed at an early stage,
the survival rate is only 24% [1]. However, if they are diagnosed soon enough, the survival
rate can exceed 95% [2]. Although melanoma usually occurs on the skin surface, the
accuracy of its clinical diagnosis with unaided eyes is only approximately 60% [3], which
means that many potentially curable melanomas are not detected until a terminal stage is
reached. Fortunately, the invention of dermoscopy effectively alleviates the above problems.
Dermoscopy is a non-invasive imaging technique that eliminates surface reflection from the
skin, allowing for deeper visual enhancement. Still, without the guidance of professional
doctors, dermoscopic images provide little help to the diagnosis [4]. In addition, artificially
analyzing whether a skin lesion belongs to melanoma is costly in terms of time and energy,
further leading to misdiagnoses and missed diagnoses.

In the past few years, computer-aided diagnosis (CAD) has brought vitality into the
diagnosis of melanoma. CAD in dermatology involves five fundamental steps: image
acquisition, data processing, lesion segmentation, feature extraction, and lesion recognition.
Each step is essential inside a CAD system. Among them, lesion segmentation is a crucial
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step concerning subsequent treatments because the segmentation results can provide rich
morphological information of the lesion area to reduce the probability of misdiagnosis.
Owing to the variety of sizes and shapes, fuzzy boundaries, unclear textures, hairs, bubbles
occlusion, etc. [5], segmentation results based on traditional methods such as histogram
threshold processing and support vector machine have not been satisfactory. Figure 1
shows several difficult-segment dermoscopic images with external interferences.

(a) (b) (c) (d)

Figure 1. Some dermoscopic images with external interferences: (a) bubble occlusion; (b) low contrast
in the surrounding; (c) hair covering; and (d) low contrast in the center.

In previous years, non-iterative artificial neural networks were popular in the field of
image processing, including medical image processing. Izonin et al. [6] designed a new
learning-based image super-resolution method. In their study, the process of increasing
the resolution of video frames or images from a set according is based on the weight
coefficients of synaptic connections. These coefficients are obtained by the learning neural-
like structure on a pair of images of low and high resolution. Tkachenko et al. [7] proposed
the solutions of a problem of changing image resolution based on the use of computational
intelligence means, which were constructed using the new neuro-paradigm—Geometric
Transformations Model.

Nowadays, convolutional neural networks (CNNs) have become the dominant trend
for skin lesion segmentation. The commonly used CNN has a U-shaped encoder–decoder
structure. In this structure, an encoder is used to extract image features, while a decoder
is often applied to restore extracted features to the original image size and output the
final segmentation results. To achieve more satisfactory skin lesion segmentation, the
researchers have introduced a considerable amount of effective mechanisms that can
enhance the feature learning into the encoder–decoder structure. In 2016, Yu et al. [8] first
segmented skin lesion images with a deep residual network. Inspired by PSPNet [9], Sarker
et al. [10] proposed SLSDeep. They adopted ResNet50 as the encoding path, and a pyramid
pooling module was placed at the bottom to extract multi-scale semantic information.
Tong et al. [11] developed ASCU-Net, a network integrating a triple attention mechanism,
including a new attention gate, a spatial attention module, and a channel attention module.
They were put into the decoding path of U-shaped network. Qu et al. [12] designed
ResDense U-Net by integrating ResNet [13] and DenseNet [14]. Inspired by ACNet [15],
traditional 3 × 3 convolution kernels were all replaced by asymmetric convolution kernels.
Simultaneously, residual modules were introduced at the skip connection to alleviate the
semantic gap between the two feature maps from the encoding and decoding paths. Dai
et al. [16] proposed a novel multi-scale residual encoding–decoding network called Ms
RED. In Ms RED, a multi-scale residual encoding fusion module was employed as the
encoder, and a multi-scale residual decoding fusion module was applied as the decoder to
adaptively fuse multi-scale features.

Previous methods have greatly contributed to skin lesion segmentation. However,
challenges such as irregular shapes, hair covering, and low contrast in the surrounding can
be better tackled. To efficiently acquire more accurate segmentation results, we propose
Res-CDD-Net for skin lesion segmentation. The network is designed based on U-shaped
encoder–decoder structure and we introduce some novel mechanisms to further enhance
the performance and save training time.
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For the encoding path, we adopt ResNeXt50 [17] pre-trained on the ImageNet dataset
to capture more feature information and make the whole network more efficient. For skin
lesion datasets containing a small number of images, pre-loading weights trained on a
general dataset is helpful to improve the segmentation accuracy. The feature extraction
capacity of ResNeXt50 is enhanced compared to ResNet50 [13] (the error rates are reduced
by 2–3% in ImageNet1-K and ImageNet5-K classification tasks). In addition, the topology
of ResNeXt is more consistent with GPU-hardware design principles. This can accelerate
the reasoning speed during training .

Between the encoding and decoding paths, we use a channel and spatial attention
block (CSAB) and a multi-scale capture block (MSCB). The CSAB combines channel and
spatial attention to enhance the lesion area and compress irrelevant features from hairs and
bubbles while maintaining a small overhead. In addition, the CSAB makes the network
more sensitive to the edge of the lesion. The boundary with weak contrast can be recognized
more accurately. The MSCB captures the image features in a multi-scale way to extract the
global and local information of skin lesions. Instead of using atrous convolution to increase
the receptive field, we adopt hierarchical residual-like connections within a single residual
block. Multi-scale features flows at a granular level and the range of receptive fields will
be increased through the residual block. In this way, the MSCB solves the problem of
information loss in the atrous convolution. We also introduce soft pooling as a branch
of MSCB. Soft pooling combines the advantages of max pooling and average pooling.
Compared with traditional average pooling branch in widely used ASPP, the softpooling
branch can retain more semantic information. The serial placement of the two modules can
effectively extract features of skin lesions with different sizes, shapes, edges, and colors.

We optimize the decoding path with diverse branch blocks (DBBs) [18] to enhance the
feature restoration capacity. Many previous studies focused on improving the encoding
path, skip connections, and the bottom of the network. Only a few improvements were
made to the decoding path. In our study, we replace every traditional 3 × 3 convolution
by a DBB. Inspired by the Inception [19] module, a DBB contains four branches, including
average pooling and multi-scale convolution. Each branch contains different receptive
fields and computational complexity, which can greatly enrich the feature space of the
whole decoding path.

Compared with state-of-the-art medical image segmentation networks and skin lesion
segmentation methods, Res-CDD-Net achieves superior performance on ISIC-2016 [20],
ISIC-2017 [21], and PH2 [22] skin lesion datasets. Moreover, its training is much faster than
other approaches. Only 2 h are approximately required on ISIC-2017. Overall, the main
contributions of this study can be summarized as follows:

(1) We propose a U-shaped network combined attention and multi-scale mechanisms
to enhance the skin lesion segmentation accuracy. These two modules overcome the
challenges in dermoscopic imaging.

(2) The decoding path of the network is optimized by DBBs to make the network
robust and effective.

(3) A new loss function is adopted to alleviate the affect of the uneven proportion
between positive and negative samples.

(4) Comprehensive experiments show that our network achieves outstanding perfor-
mance and fast training process compared with state-of-art methods.

The remainder of the paper is structured as follows:
Section 2 reviews previous studies related to the methods we adopted. Section 3

provides detailed information about the proposed Res-CDD-Net. Section 4 focuses on
the experiments with Res-CDD-Net by comparing this network with other state-of-the-art
methods. Section 5 is devoted to discussion, and Section 6 concludes the paper.
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2. Related Works
2.1. Medical Image Segmentation Using Convolutional Neural Networks

With the development of artificial intelligence, convolutional neural networks have
been gradually applied for medical image segmentation. In 2015, Ronneberger et al. [23]
proposed U-Net, a novel end-to-end semantic segmentation network. U-Net is a U-shaped
symmetric encoding–decoding network. It employs skip connections to fuse high-level
and low-level semantic features. Gu et al. [24] proposed CE-Net. In this network, a dense
atrous convolution block and a residual multi-kernel pooling block were inserted between
the encoding and decoding paths to effectively utilize spatial information. CE-Net achieves
95.5% accuracy in retinal vessel segmentation and 99.0% accuracy in lung segmentation.
Xiang et al. [25] proposed BiO-Net. They creatively added a reverse connection from
the decoding path to the encoding path at each layer of U-Net, so that the data flows in
a circular way to improve the performance without introducing additional parameters.
Compared with U-Net, BiO-Net achieves 2% and 19.2% IoU improvements using MoNuSeg
and TNBC dataset, respectively. Aiming at fusing semantically dissimilar features between
the encoder and decoder feature maps, Zunair et al. [26] proposed Sharp U-Net, which
includes a sharpening filter layer at the skip connection. A sharpening kernel filter is a
depth-wise convolution that produces a sharpened intermediate feature map of the same
size as the encoder map. Experiments on six medical image datasets, including Lung
Segmentation, Data Science Bowl 2018, ISIC-2018 [27], COVID-19 CT Segmentation, ISBI-
2012, and CVC-ClinicDB, show that Sharp U-Net performs better than U-Net without
additional learnable parameters. Zhou et al. [28] proposed UNet++. They used a series
of nested and dense skip paths to connect the encoder and decoder sub-networks based
on the U-Net framework, which further reduced the semantic relationship between the
encoder and decoder and achieves better performance in liver segmentation tasks.

2.2. Attention Mechanism

In deep learning, an attention mechanism implies that high weights are allocated to
integral pieces of information whereas low weights are allocated to irrelevant pieces of
information. The weights can be adjusted in different situations. As a result, attention
mechanisms exhibit high scalability and robustness [29].

In the field of medical image segmentation, Oktay et al. [30] proposed Attention
U-Net. A new attentional gate (AG) network for medical image processing that can
automatically learn structures of different shapes and sizes, suppress irrelevant features,
and highlight useful features. In multi-class CT abdominal segmentation, Attention U-Net
achieves at most 4% improvement in Dice coefficient compared with U-Net. Li et al. [31]
designed attention gate units (AGUs). An AGU with bottleneck structure can fuse high-
level semantic features to low-level and mid-level features to achieve accurate pixel-wise
predictions. However, the AGU is designed based on FCN rather than U-Net. This limits
its application and results in modest performance improvement. Woo et al. [32] proposed
the convolutional block attention module (CBAM). Given an intermediate feature map,
the CBAM deduces two independent dimensions of channel and space sequentially. Then,
the attention map is multiplied pixel-wise with the input feature map for adaptive feature
refinement. Nevertheless, the CBAM does not necessarily improve the performance. It
should make a comprehensive consideration according to the dataset, the network structure
and other factors.

It is worth noting that Transformer has been widely used in medical image segmenta-
tion since 2021. The self-attention module in Tranformer captures long-range dependency,
while convolution only gathers information from neighborhood pixels. TransUNet [33],
Swin-Unet [34], and UTNet [35] are all state-of-the-art medical image segmentation net-
works based on Transformer. However, Transformer requires many hours of training on
large datasets to accomplish satisfactory results. The small scale of medical image datasets
brings difficulties for the application of Transformer in medical imaging.
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In conclusion, embedding the appropriate attention module in the appropriate position
of the network for skin lesion segmentation can reduce the impact of irrelevant pieces of
information, such as hairs and bubbles, to obtain more accurate segmentation results.

2.3. Multi-Scale Feature Fusion

In the process of feature extraction, shallow layers contain small receptive fields to
represent geometric details, and deep layers contain large receptive fields to represent
semantic information. To make full use of image features extracted from both deep and
shallow networks, a common solution is multi-scale feature fusion.

In semantic segmentation, parallel multi-branch structures are usually adopted to
fuse receptive fields of different scales. Zhao et al. [9] proposed the spatial pyramid
pooling module. For feature maps generated from the encoding path, four different-size
pooling kernels are adopted for average pooling. Then, their channels are all reduced
to 1. Finally, they are upsampled to the same size as that before average pooling and
concatenated with the initial feature map in the channel dimension. Chen et al. [36]
introduced ASPP in DeepLab v2. This module was adopted to expand the receptive field
through dilation convolution to adapt the kernel size by adjusting the dilation rate. The
four feature maps convoluted with different dilation rates are summed to realize multi-scale
feature fusion. Chen et al. conducted further research on the basis of their previous studies.
They successively proposed two networks, named DeepLab v3 [37] and DeepLab v3+ [38].
In DeepLab v3, a newly designed ASPP module with multi-scale atrous convolution was
adopted to capture multi-scale features [37]. In DeepLab v3+, the pre-trained Xception
network was adopted as the feature extraction module to increase the network speed
and improve performance [14]. DeepLab v3+ achieves an mIoU of 89.0% on the Pascal
VOC dataset.

For skin lesion images, some images contain larger lesion areas, while others contain
smaller lesion areas. Multi-scale feature fusion can assist the network in extracting the
features from lesions of different sizes. Unlike ASPP, the proposed multi-scale feature
fusion module in our network uses a different mechanism to adjust the kernel size. We
discuss this in detail in Section 3.4.

2.4. Branch Fusion in Convolution

Given that convolution is a linear transformation, it satisfies associativity and dis-
tributivity, meaning that multiple convolution operations can be combined into a single
convolution operation. Multi-branch convolution merging belongs to associativity. Serial
convolution merging belongs to distributivity.

Based on the above theories, Ding et al. [15] proposed a novel convolutional structure
named asymmetric convolution kernel. In this structure, results from three parallel branches
including convolutions with kernel sizes 3 × 3, 1 × 3, and 3 × 1 are summed as the output.
The trained parameters can be fused into the form of the original 3 × 3 convolution kernel
without extra inference time.

Ding et al. [18] conducted further studies on the basis of asymmetric convolution
blocks. Given that convolution, batch normalization, and average pooling are linear
transformations, they can be combined. Based on the above properties, Ding et al. [18]
designed the DBB, which is similar to Inception [19,39,40], to expand the feature space of
convolutional blocks. A DBB includes a 1× 1 branch, a 1× 1-K× K branch, a 1 × 1-average
pooling branch, and a K × K branch. The results from the four branches are summed as the
output. This module can be equivalently converted to a K × K convolution. For accuracy,
DBB improves VGG-16 on CIFAR-10 and CIFAR-100 by 0.67% and 1.67%, AlexNet on
ImageNet by 1.96%, MobileNet by 0.99%, and ResNet-18/50 by 1.45%/0.57%, respectively.
The results from ablation experiments show that each branch can improve the performance
of the network.

Note that if we embed DBBs in our network, we will undoubtedly attain more accurate
segmentation results. Given that our network performs pixel-wise classification tasks, we
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can adopt DBBs in the decoding path to improve the feature restoration capability of
the network.

3. Proposed Methods

In this section, we first introduce the overall structure of the proposed Res-CDD-Net,
and then go through the details of each module.

3.1. Overall Structure of the Network

Figure 2 shows the overall structure of Res-CDD-Net. It can be clearly seen that the
network consists of an encoding path, an intermediate path, and a decoding path. We
adopt ResNeXt50 [17] pre-trained on the ImageNet dataset as the encoding path. The
intermediate path is composed of two parts, namely the CSAB, which integrates channel
and spatial attention, and the MSCB, which extracts multi-scale information. Different
from the decoding path of U-Net, all traditional 3 × 3 convolution kernels are replaced by
DBBs [18]. Transpose convolution follows DBB for upsampling. Between the encoding and
decoding paths, skip connections are inserted to transmit data.

Figure 2. Diagram of the proposed network structure.

3.2. Encoding Path

ResNet [13] effectively solves the problem of gradient disappearance or gradient
explosion in a deep neural network by introducing a residual structure. Inspired by
GoogLenet [19], Xie et al. [15] introduced the Inception block into ResNet to generate
ResNeXt. Different from Inception v4 [38], there are no manual-design intricate details
such as the Inception architecture in ResNeXt. Each of its branches presents an identical
topological structure. The rationale of ResNeXt is exploiting group convolution, which
can control the number of groups. Group convolution is a compromise scheme between
ordinary and deeply separable convolutions that leads to a number of channels n (n > 1)
in the feature map generated by each branch.

As shown in Figure 3, each module in ResNet50 is divided into 32 groups of con-
volutional paths. Assuming that the input number of channels is 256, the number of
channels in each group of paths is first reduced to 4 through 1 × 1 convolution. After a
3 × 3 convolution, it is set back to 256 through a 1 × 1 convolution. Finally, the results
obtained from 32 groups are summed. The whole process is equivalent to the convolution
shown in Figure 3b. Interestingly, Pytorch provides ResNeXt weights trained on the Im-
ageNet dataset. ImageNet is currently the largest database for image recognition in the
world. It contains far more images than the skin lesion datasets. Pre-loading the weight
data can make the Dice coefficient and Jaccard index on the validation set 3–4% higher at
the beginning of training.
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(a) (b)

Figure 3. Residual block structure of ResNeXt50: (a) theoretical structure; (b) practical structure.

3.3. Channel and Spatial Attention Block

As shown in Figure 4a, we introduce the CSAB inspired by Woo et al. [32] and
Mou et al. [41]. Note that placing this block at each level of the encoding path increases
the computation cost and provides a limited performance. CSAB is placed between the
encoding and decoding paths rather than in the encoding path. It can be clearly seen that
CSAB has a residual structure. First, the input feature map is sent into the channel attention
block. The size of output is restored to the same as the input. Then, the result is sent into
the spatial attention block. The output conducts pixel-wise addition with the original input
feature map to obtain the final result. The above process can be summarized as follows:

F′ = Oc(F) (1)

F′′ = Os
(

F′
)
+ F′ (2)

where F ∈ RC×H×W is the input feature map (C is the number of channels, H is the height,
and W is the width); Oc is channel attention operation; Os is spatial attention operation; the
operator + represents element-wise addition; F′ is the intermediate output; and F′′ is the
final output.

The structure of the channel attention block (CAB) is shown in Figure 4b. CAB aims
to make the network pay attention to integral features and suppress unnecessary features
such as hairs, measuring scales, blood vessels, and air bubbles. For each channel of the
input feature map, CAB performs global maximum pooling and global average pooling,
respectively, to obtain two vectors of shape RC×1×1. Then, both vectors are sent into the
multi-layer perceptron (MLP) with shared weights to reduce the number of parameters.
The MLP contains only one hidden layer whose weight vector shape is RC/r×1×1 (where r
represents the reduction ratio, which we set to 16). The MLP can be implemented through
two fully connected layers, resulting in two processed channel attention vectors. Finally,
pixel-wise addition between the two vectors and the sigmoid activation function processing
is carried out. The feature map size is restored to the same size as that of the input feature
map. The above process can be summarized as follows:

Oc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))
(3)

where F is the input feature map; σ represents the sigmoid activation function; Fc
avg and

Fc
max represent the feature maps following global average pooling and global max pooling
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in the channel dimension, respectively; and W0 ∈ RC/r×C and W1 ∈ RC×C/r are the weights
of the MLP.

The spatial attention block (SAB) is the supplement of the CAB. Its structure is shown
in Figure 4c. Different from the CAB, the SAB can capture long range dependencies to gain
a global contextual view and selectively aggregate context information according to the
spatial attention map to achieve a more accurate segmentation performance for skin lesion
boundaries. The SAB is more sensitive to the edges of lesions that are similar in color to the
surrounding skin. Meanwhile, the curvilinear structure features of edges can be extracted
effectively. For the input feature map F ∈ RC×H×W , a 3× 1 and a 1× 3 convolutions
are performed to generate two new feature maps Qy ∈ RC×H×W , and Kx ∈ RC×H×W ,
respectively, where C is the number of channels, H is the height, W is the width, and Qy
and Kx represent the features of the curvilinear structures captured in the vertical and
horizontal directions. These two new feature maps are then reshaped to RC×N , where
N = H ×W is the number of features. In consequence, the intra-class spatial association
can be obtained by applying a softmax layer on the matrix multiplication of the transpose
of Q and K, as:

S(x,y) =
exp(QT

y · Kx)

∑N
x′=1 exp(QT

y · Kx′)
(4)

where S(x,y) denotes the yth position’s impact on the xth position.
Meanwhile, another new feature V ∈ RC×H×W is obtained by applying a 1× 1 con-

volution on the input features, and it is reshaped to RC×N , which is then used to perform
a matrix multiplication with S(x,y) to obtain the attention enhanced features. Finally, it is
reshaped to RC×H×W , and we perform channel-wise addition with the input over each
pixel to construct the output of SAB.

(a)

(b)

(c)

Figure 4. Channel and spatial attention block: (a) overall structure; (b) channel attention block; and
(c) spatial attention block.

3.4. Multi-Scale Capture Block

In dermoscopic images, the proportion of the skin lesion area in each image is different.
Some lesions are large while others are small. Owing to the complexity and variability
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of skin lesions, using only 3 × 3 convolution kernels cannot capture multi-scale features,
but does capture local and invalid features, which are detrimental for accurate skin lesion
prediction. Moreover, it must be emphasized that large dilation rates in ASPP are far from
suitable for dermoscopy images because using large dilation rates will extract excessive
useless information as well as discard useful information. A number of unclear edges
and missing segmentation areas will appear. So, we propose the MSCB illuminated by
DeepLab v3 [37] and Res2Net [42]. The MSCB allows for more detailed multi-scale features
extraction without introducing a large number of parameters. The structure of the MSCB is
shown in Figure 5. A 1 × 1 convolution, a bottleneck block, and a global soft pooling are
carried out in parallel to capture multi-scale information.

The bottleneck block has a hierarchical residual-like style structure. The input feature
map is evenly split into 4 feature map subsets denoted by xi, where i ∈ {1, 2, 3, 4}. Each
feature subset xi has the same spatial size, but 1/4 number of channels compared with
the input feature map. Except for x1, each xi has a corresponding convolution, denoted
by Ki(), and yi is the output of Ki(). Ki() is the sum of three convolution operations with
1 × 3, 3 × 1, and 3 × 3 kernels, respectively. Compared with a single 3 × 3 kernel, the
new operation extracts richer details. Besides, image flipping is a necessary step when we
perform data enhancement. Horizontal kernels like 1 × 3 are more robust to up–down
flipping, and vertical kernels of 3 × 1 are more robust to left–right flipping. The feature
subset xi is added with the output of Ki−1(), and then fed into Ki(). At last, y1 to y4 are
concatenated together. Every yi can be written as follows:


y1 = x1

y2 = K2(x2 + y1)

y3 = K3(x3 + y2)

y4 = K4(x4 + y3)

(5)

Traditional average pooling in ASPP decreases the effect of all activations in the
pooling kernel. Meanwhile, max pooling selects the single highest activation in the pooling
kernel. The above two pooling operations lead to mass information loss. As a different
pooling method, soft pooling can retain more information in the reduced activation maps.
Soft pooling is a more balanced approach than simply selecting the average or maximum.
In soft pooling, all activations contribute to the final output while higher activations are
more dominant compared to lower ones. In kernel region R(|R| = 2× 2), each activation
ai with index i is applied a weight that is calculated as the ratio of the natural exponent of
that activation with respect to the sum of the natural exponents of all activations within
neighborhood R. The output value of ã is produced through a standard summation of all
weighted activations within the kernel neighborhood R. The above can be summarized
as follows:

ã = ∑
i∈R

eai

∑j∈R eaj
× ai (6)

Subsequently, the results obtained by three groups of operations are concatenated
together, followed by a 1 × 1 convolution to reduce the dimensions. After global soft
pooling, the size of the feature map is compressed to 1× 1. Before concatenation, the feature
map after global soft pooling will be restored to the original size through upsampling.
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Figure 5. Multi-scale capture block.

3.5. Decoding Module

In the study by Ding et al. [18], all the traditional K × K convolution kernels in the
backbone network are equivalently replaced by DBBs in the training stage. After training,
branch fusion is carried out to fuse the trained parameters into the parameters of traditional
K × K convolution kernels equivalently. Therefore, the calculation time is the same as that
resulting from using the K × K convolution kernel during the test phase. We set the value
of K to 3 in this study. Different from Ding et al. [18], we do not carry out branch fusion of
parameters in the test phase. The first reason is that the size of the skin lesion dataset is
small. The second reason is that the DBB is only employed in the decoding path.

Finally, we redesign the decoding path. Its structure is shown in Figure 6. First, the
upsampled feature map and the feature map transmitted from skip connection are obtained
by pixel-wise addition. Then, the feature map is fed into the DBB. The result is upsampled
by transposed convolution. As shown in Figure 7, there are 4 branches in a DBB. The
first branch is a 1 × 1 convolution, the second branch is a 1 × 1 convolution followed by
a 3 × 3 convolution, the third branch is a 1 × 1 convolution followed by a 3 × 3 average
pooling, and the fourth branch is a 3× 3 convolution. Note that each convolution or pooling
operation is followed by batch normalization. Finally, the results of the four branches are
summed. The output is obtained through the ReLU activation function.

Figure 6. Structure of the decoding.

Figure 7. Structure of the diverse branch block.
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3.6. Loss Function

The cross-entropy loss function is commonly used in semantic segmentation. However,
in skin lesion segmentation, the lesion area is much smaller than the normal area, resulting
in an extremely uneven proportion of positive and negative samples. If we only adopt the
cross-entropy loss function during training, the segmentation results will be unsatisfactory.
In this study, we design a new loss function combining dice loss and binary cross-entropy
loss to solve the above problems. The new loss function can effectively alleviate the
unbalance between positive and negative samples as follows:

Loss = BCELoss + αDiceLoss (7)

where BCELoss represents the binary cross-entropy loss function; DiceLoss represents the
dice loss function; and α is an adjustable weight coefficient, set to 0.5 in this study.

The binary cross-entropy loss function is expressed as follows:

BCELoss = −[ylogŷ + (1− y)log(1− ŷ)] (8)

where y represents the actual proportion of positive samples (the proportion of lesion area
in the ground-truth image), 1− y represents the actual proportion of negative samples (the
proportion of non-lesion area in the ground-truth image), and ŷ and 1− ŷ represent the
proportion of positive and negative samples in the segmentation result.

The dice loss function is described as follows:

DiceLoss = 1− DiceCoe f f icient = 1− 2|X ∩Y|
|X|+ |Y| (9)

where X represents a positive sample region (lesion area in ground truth) and Y represents
a negative sample region (lesion area in the segmentation result).

3.7. Evaluation Indexes

For fully measuring the network performance, we adopt five evaluation indexes
officially provided by ISIC, namely accuracy (AC), sensitivity (SE), specificity (SP), Dice
coefficient (DC), and Jaccard index (JC). Their calculation formulas are as follows:

AC =
TP + TN

TP + TN + FP + FN
(10)

SE =
TP

TP + FN
(11)

SP =
TN

TN + FP
(12)

DC =
2× TP

2× TP + FN + FP
(13)

JC =
TP

TP + FP + FN
(14)

where TP represents true positive pixels (lesion area), TN represents true negative pixels
(background area), FP represents false positive pixels (misjudged areas of lesion), and FN
represents false negative pixels (misjudged background areas). Accuracy is the evaluation of
the overall pixel-wise segmentation performance [43]. Sensitivity indicates the proportion
of skin lesion pixels that are correctly segmented [43]. Specificity is defined as the proportion
of correctly segmented non-lesion pixels [28]. The Dice coefficient is defined as the double
overlapping area of the segmentation result and ground truth divided by the sum of the
segmentation result and ground truth. The Jaccard index is the ratio of intersection and
union between the segmentation result and ground truth.
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4. Experiments and Results
4.1. Dataset and Dataset Preprocessing

In this study, we made use of three skin lesion datasets, namely ISIC-2016 [20], ISIC-
2017 [21], and PH2 [22].

International Skin Imaging Collaboration (ISIC) is currently the world’s largest skin
lesion image dataset, providing professionally annotated digital skin lesion images to
facilitate the development of CAD for melanoma and other skin diseases [21]. The PH2 [22]
dataset was jointly collected by Hospital Pedro Hispano in Matosinhos, Portugal, and the
Dermatological Services department of the University of Porto [22].

The ISIC-2016 [20] dataset is officially divided into 900 images for training and 379 im-
ages for testing, with a resolution ranging from 576 × 768 to 2848 × 4288 pixels. The
ISIC-2017 [21] dataset is divided into 2000 images for training, 150 images for validation,
and 600 images for testing, with a resolution ranging from 540 × 722 to 4499 × 6748 pix-
els. The PH2 [22] dataset consists of 200 images with a resolution of 576 × 768 pixels. It
includes 80 common nevi, 80 atypical nevi, and 40 melanomas. The raw images of the three
datasets are all 8-bit RGB dermoscopic images. The corresponding ground-truth images
are single-channel grayscale images. Table 1 lists our partition of experimental datasets.
Note that the relatively new ISIC-2018 [27] dataset was not adopted. Because this dataset
incorporates only a few extra images with respect to the ISIC-2017 [21] dataset and the
ground truth of its testing set has not been released yet.

Table 1. Our partition of experiment datasets.

Datasets Training Set Validation Set Testing Set Total

ISIC-2017 [21] 2000 150 600 2750
ISIC-2016 [20] 700 200 379 1279

PH2 [22] - - 200 200

Owing to the different image sizes, sending them directly into the network for training
would demand a lot of computing resources, resulting in low training efficiency. Therefore,
the size of all pictures was uniformly adjusted to 192 × 256 in this study. In addition, to
strengthen the robustness of the network, data enhancement with a probability of 0.5 was
conducted on the training set, including horizontal and vertical flips, rotation degree from
−45 to 45, brightness set to 0.2, contrast set to 0.2, and hue set to 0.02.

4.2. Experimental Environment

The experiments were implemented in Pytorch 1.8.1. The Python version was 3.7.5.
The operating system was Ubuntu 20.04. All experiments were run on a computer featuring
an AMD Ryzen 3600 CPU, 16 GB RAM, and an NVIDIA GeForce RTX 3070 with 8 GB
memory. The number of training epochs was set to 150. The initial learning rate was set
to 0.0002. The learning rate fell by half every 20 epochs. We adopted the Adam optimizer
with momentum β1 = 0.5, β2 = 0.999, and the batch size was set to 8.

4.3. Experiment Results

We ran the proposed Res-CDD-Net as well as several mainstream medical image
segmentation networks on the three datasets mentioned above. Then, we displayed the
segmentation results. Most of the experimental configurations of the networks used for
comparison were the same as that used for Res-CDD-Net. Some configurations were finely
tuned according to the network structures. Table 2 shows the details of the configurations
for different networks.
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Table 2. Details of configurations of different networks.

Networks Batch Size Image Size Initial
Learning Rate Optimizer Pretrained Training Epochs

U-Net [23] 6 192 × 256 0.0002 Adam No 150
CE-Net [24] 8 192 × 256 0.0002 Adam In encoder 150
BiO-Net [25] 8 192 × 256 0.0002 Adam No 150
U-Net++ [28] 8 192 × 256 0.0002 Adam No 150

DeepLab v3+ [38] 8 192 × 256 0.0002 Adam In encoder 150
TransUNet [33] 6 224 × 224 0.0002 Adam In encoder 150
Swin-Unet [34] 6 224 × 224 0.0002 Adam Yes 150

UTNet [35] 6 256 × 256 0.0002 Adam No 150
Res-CDD-Net (ours) 8 192 × 256 0.0002 Adam In encoder 150

4.3.1. Comparison on the ISIC-2017 Dataset

We first adopted the ISIC-2017 [21] dataset for training and testing. The ISIC-2017 [21]
dataset contains a relatively large number of images, including many hard-to-segment
ones. Hence, the associated results are the most convincing among the three datasets
considered. Table 3 provides a quantitative comparison of the segmentation performance
between the proposed network and other mainstream networks. Table 4 lists the testing
results of our method and other advanced methods on the ISIC-2017 [21] dataset. Table 5
shows configurations of methods listed in Table 4. Figure 8 shows the visual output of
partial segmentation results. In addition, to intuitively present the convergence process of
both our network and U-Net during training, Figure 9 shows the dice coefficient curves
and Jaccard index curves on the training and validation sets for each epoch. Note that
the proposed network achieves satisfactory results, especially in the two core evaluation
indexes, i.e., the Dice coefficient and the Jaccard index. They are significantly higher than
those of mainstream networks. In particular, the Dice coefficient is 6.90% higher than that
of U-Net and the Jaccard index is 10.84% higher than that of U-Net.

In particular, we used the recent Transformer-based medical image segmentation
network, including TransUNet [33], Swin-Unet [34], and UTNet [35] to the comparison.
The backbones of TransUNet and Swin-Unet were loaded with pre-trained weights on the
ImageNet dataset. Note that the proposed method performs better when it comes to skin
lesion segmentation.

Table 3. Testing results of our Res-CDD-Net and other mainstream networks on the ISIC-2017 dataset.

Networks Year AC SE SP DC JC

U-Net [23] 2015 0.9216 0.7743 0.9656 0.7965 0.6779
CE-Net [24] 2019 0.9403 0.8627 0.9703 0.8550 0.7713
BiO-Net [25] 2020 0.9306 0.9002 0.9384 0.8405 0.7501
U-Net++ [28] 2018 0.9344 0.8509 0.9666 0.8425 0.7563

DeepLab v3+ [38] 2018 0.9389 0.8612 0.9731 0.8556 0.7729
TransUNet [33] 2021 0.9395 0.8877 0.9627 0.8554 0.7716
Swin-Unet [34] 2021 0.9383 0.8621 0.9702 0.8542 0.7706

UTNet [35] 2021 0.9372 0.8587 0.9712 0.8503 0.7695
Res-CDD-Net (ours) 2022 0.9429 0.8813 0.9659 0.8655 0.7863
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Table 4. Testing results of our method and other advanced methods on the ISIC-2017 dataset.

Networks Year AC SE SP DC JC

Yuan et al. [44] 2017 0.934 0.820 0.978 0.849 0.765
Bi et al. [45] 2019 0.9408 0.8620 0.9671 0.8566 0.7773

Abhishek et al. [46] 2020 0.9220 0.8706 0.9516 0.8386 0.7570
Xie et al. [47] 2020 0.938 0.870 0.964 0.862 0.783

Saha et al. [48] 2020 - 0.824 0.981 0.855 0.772
Tong et al. [11] 2021 0.926 0.825 0.965 0.830 0.742
Dai et al. [16] 2022 0.9410 - - 0.8648 0.7855

Ours 2022 0.9429 0.8813 0.9659 0.8655 0.7863

Table 5. Configurations of methods listed in Table 4.

Networks Batch Size Image Size Initial
Learning Rate Optimizer Pretrained Training Epochs

Yuan et al. [44] 18 192 × 256 0.003 Adam - -
Bi et al. [45] 45 224 × 224 0.01 SGD Yes 250

Abhishek et al. [46] 40 128 × 128 0.001 - No -
Xie et al. [47] 8 512 × 512 0.001 Adam - -

Saha et al. [48] 16 224 × 224 0.0001 Adam In encoder 13
Tong et al. [11] 8 Original 0.0002 AdamW - 200
Dai et al. [16] - 224 × 320 0.001 Adam Yes 250

Ours 8 192 × 256 0.0002 Adam In encoder 150

“-” represents not mentioned in the paper.

Figure 8. Segmentation results on the ISIC-2017 dataset: (a) original image; (b) ground truth;
(c) segmentation result; (d) segmentation result of U-Net; (e) segmentation result of BiO-Net.
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(a)

(b)

Figure 9. Training and validation processes on the ISIC-2017 dataset: (a) curves of Dice coefficient;
(b) curves of Jaccard index.

4.3.2. Comparison on the ISIC-2016 Dataset

Next, we conducted an experiment on the ISIC-2016 [20] dataset. This dataset contains
a small number of images, therefore the training time is shorter and the network converges
faster. There is no validation set in the original ISIC-2016 [20] dataset. Regarding the conver-
gence process, we randomly selected 200 images from the training set as the validation set,
and the remaining 700 images constituted the training set. Table 6 provides a quantitative
comparison of the segmentation performance between the proposed network and other
mainstream networks. Figure 10 shows the visual output of partial segmentation results.
Figure 11 depicts the Dice coefficient curves and Jaccard index curves on the training
and validation sets for each epoch. Note that the evaluation indexes of the networks are
relatively similar because the amount of data images is small. Hence, the network is likely
to overfit. The sensitivity of the proposed network is slightly lower than others, which
means that it performs poorly for images with large lesion areas. However, considering the
five evaluation indexes as a whole, the proposed network still performs better than others.
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Table 6. Testing results of our Res-CDD-Net and other mainstream networks on the ISIC-2016 dataset.

Networks Year AC SE SP DC JC

U-Net [23] 2015 0.9521 0.9436 0.9531 0.8899 0.8138
CE-Net [24] 2019 0.9599 0.9416 0.9536 0.9034 0.8332
BiO-Net [25] 2020 0.9532 0.9336 0.9484 0.8975 0.8241
U-Net++ [28] 2018 0.9517 0.9478 0.9477 0.8884 0.8119

DeepLab v3+ [38] 2018 0.9554 0.9113 0.9709 0.9117 0.8423
TransUNet [33] 2021 0.9582 0.9251 0.9704 0.9106 0.8422
Swin-Unet [34] 2021 0.9563 0.9323 0.9644 0.9130 0.8436

UTNet [35] 2021 0.9571 0.9319 0.9653 0.9151 0.8455
Res-CDD-Net (ours) 2022 0.9656 0.9339 0.9686 0.9289 0.8654

Figure 10. Segmentation results on the ISIC-2016 dataset: (a) original image; (b) ground truth; (c) seg-
mentation result; (d) segmentation result from U-Net; and (e) segmentation result from BiO-Net.

(a)

Figure 11. Cont.
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(b)

Figure 11. Training and validation processes on the ISIC-2016 dataset: (a) curves of Dice coefficient;
(b) curves of Jaccard index.

4.3.3. Comparison on the PH2 Dataset

For the sake of testing the segmentation performance of the trained network on a new
dataset, that is, for verifying the generalization and robustness of the proposed network,
we conducted experiments on the PH2 [22] dataset. This dataset only contains 200 images.
As a result, the training set of ISIC-2017 [21] was adopted for training, and all images
in PH2 [22] were used for testing. Table 7 provides a quantitative comparison of the
segmentation performance between the proposed network and other mainstream networks.
Figure 12 shows the visual output of partial segmentation results. Compared with other
networks, our network takes the lead in four out of five evaluation indexes, meaning that it
exhibits higher pixel-wise segmentation performance. Note from the segmentation results
in Figure 12 that Res-CDD-Net achieves a better segmentation result for large lesions.
U-Net is often unable to segment the entire lesion area. The shape is notably different from
that of the ground-truth image. The above results prove that the modules we successfully
joined improve the performance as well as possess good generalization.

Table 7. Testing results of our Res-CDD-Net and other mainstream networks on the PH2 dataset.

Networks Year AC SE SP DC JC

U-Net [23] 2015 0.9311 0.9446 0.9380 0.8861 0.8022
CE-Net [24] 2019 0.9405 0.9742 0.9266 0.8963 0.8190
BiO-Net [25] 2020 0.9375 0.9707 0.9242 0.8872 0.8051
U-Net++ [28] 2018 0.9316 0.9655 0.9227 0.8804 0.7930

DeepLab v3+ [38] 2018 0.9554 0.9113 0.9709 0.9117 0.8423
TransUNet [33] 2021 0.9463 0.9460 0.9503 0.9153 0.8449
Swin-Unet [34] 2021 0.9428 0.9560 0.9387 0.9075 0.8311

UTNet [35] 2021 0.9424 0.9546 0.9387 0.9066 0.8297
Res-CDD-Net (ours) 2022 0.9593 0.9717 0.9430 0.9262 0.8576
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Figure 12. Segmentation results on the PH2 dataset: (a) original image; (b) ground truth; (c) segmen-
tation result; (d) segmentation result from U-Net; and (e) segmentation result from BiO-Net.

4.3.4. Ablation Experiments

To verify whether each module improves the performance of the network, we con-
ducted ablation experiments on the ISIC-2017 [21] dataset. Table 8 shows the results in
detail; in this table, baseline represents the network without the three modules mentioned
above. The decoding path is a pre-trained ResNeXt50 [13] network. Aiming at the diffi-
culties arising from different shapes, colors, blurred edges, and hair shades, all the newly
added modules improve the performance. When the three modules are introduced into
the network, the Dice coefficient and Jaccard index increase by 2.41% and 2.80%, respec-
tively, with respect to the baseline, indicating that a reasonable combination of the modules
improves the performance to a certain extent.

Subsequently, to verify whether the new loss function improves the segmentation
performance, we conducted comparative experiments. The ISIC-2017 [21] dataset and the
proposed Res-CDD-Net were used for experiments with four different loss functions. In
addition to the new loss function, we also adopted the cross-entropy loss function, Dice loss
function, and the 1:1 sum of the binary cross-entropy loss function and Dice loss function.
Table 9 shows the experimental results. Note that the proposed network performs the best
when the binary cross-entropy loss function is summed with the Dice loss function at a
proportion 1:0.5. This means that the new loss function can effectively alleviate the uneven
proportion of positive and negative samples.

Finally, Tables 10 and 11 show the network complexity comparisons, where FLOPs
represent floating-point operations and Params represent parameter numbers. The training
time was calculated on the ISIC-2017 [21] dataset. Note that the three modules make the
parameter numbers slightly increase while the training time presents no significant increase.
Although the values of FLOPs and Params for Res-CDD-Net are relatively high with respect
to other networks, the training time is the shortest.
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Table 8. Ablation experiment results on the ISIC-2017 dataset.

Networks CSAB MSCB DBB AC SE SP DC JC

Baseline × × × 0.9381 0.8358 0.9767 0.8414 0.7583
Network1 × × X 0.9395 0.8506 0.9724 0.8496 0.7655
Network2 × X × 0.9400 0.8441 0.9744 0.8539 0.7709
Network3 X × × 0.9373 0.8752 0.9572 0.8495 0.7647
Network4 X X × 0.9386 0.8330 0.9740 0.8595 0.7766
Network5 X × X 0.9355 0.8312 0.9798 0.8556 0.7679
Network6 × X X 0.9426 0.8554 0.9749 0.8596 0.7793

Ours X X X 0.9429 0.8813 0.9659 0.8655 0.7863

Table 9. Comparative experiments of loss functions results on the ISIC-2017 dataset.

Loss Functions AC SE SP DC JC

BCELoss 0.9407 0.8375 0.9783 0.8526 0.7718
DiceLoss 0.9414 0.8728 0.9666 0.8554 0.7708

BCELoss+DiceLoss 0.9400 0.8720 0.9721 0.8606 0.7797
BCELoss+0.5*DiceLoss 0.9429 0.8813 0.9659 0.8655 0.7863

Table 10. Network complexity analysis of Res-CDD-Net and the baselines.

Networks CSAB MSCB DBB FLOPs Params Training Time

Baseline × × × 31.85 G 90.82 M 1.55 h
Network1 × × X 34.63 G 98.22 M 1.86 h
Network2 × X × 29.40 G 90.56M 1.55 h
Network3 X × × 31.85 G 91.35 M 1.59 h
Network4 X X × 29.40 G 91.09 M 1.59 h
Network5 X × X 34.63 G 98.75 M 1.86 h
Network6 × X X 32.17 G 97.96 M 1.82 h

Ours X X X 32.17 G 98.49 M 2.01 h

Table 11. Network complexity analysis of Res-CDD-Net and other networks.

Networks FLOPs Params Training Time

U-Net [23] 49.10 G 34.53 M 3.26 h
CE-Net [24] 6.70 G 29.00 M 11.21 h
BiO-Net [25] 8.47 G 14.96 M 2.08 h
U-Net++ [28] 26.13 G 9.16 M 3.18 h

DeepLab v3+ [38] 15.50 G 54.51 M 2.65 h
TransUNet [33] 34.88 G 106.10 M 5.57 h
Swin-Unet [34] 5.86 G 27.12 M 2.02 h

UTNet [35] 20.40 G 14.41 M 3.37 h
Res-CDD-Net (ours) 32.17 G 98.49 M 2.01 h

5. Discussion

Rapid and accurate skin lesion segmentation greatly contributes to subsequent treat-
ments of melanoma. Traditional methods cost time and energy. They are heavily reliant
on tuning a large number of parameters. Based on this fact, we designed a U-shaped
encoder–decoder network named Res-CDD-Net. First, the pre-trained ResNeXt50 network
was adopted as the encoding path to provide abundant image features for the network.
Thus, higher evaluation indexes can be achieved at the beginning of training and the
inference of the network can be accelerated. Second, the CSAB was adopted to provide
attention information in both channel and space dimensions to make the features cover
the lesion itself, instead of focusing on irrelevant information such as hairs, bubbles, blood
vessels, and measurement scales. In addition, the SAB in the module is more sensitive
to the blurry edges. It can capture long range dependencies to gain a global contextual



Electronics 2022, 11, 2672 20 of 23

view to help the network achieve accurate segmentation for skin lesion boundaries. Third,
the MSCB was inserted between the encoding and decoding paths to provide multi-scale
semantic information for the network, which is of great help to identify lesions of different
sizes. Unlike using large dilation rates in ASPP, the MSCB has a hierarchical residual-like
structure to finely extract multi-scale information and avoid extracting excessive useless
information. The soft pooling in MSCB can retain more information in the reduced acti-
vation maps. Finally, we optimized the decoding path. Traditional 3 × 3 convolutions in
the decoding path were equivalently substituted by DBBs, which utilize the associative
and distributive laws of convolution. Multi-branch and serial convolutions are thus fused
together to greatly advance the feature space of the decoding path. It also enhances the
robustness of the network.

In terms of the loss function, we introduced a weighted sum between the commonly
adopted binary cross-entropy loss function and the Dice loss function to generate a new
loss function so as to solve the problems resulting from an extremely uneven number of
positive and negative samples. The performance resulting from using the new loss function
is greater than that resulting from using the binary cross-entropy loss function when other
configurations remain unaltered.

Experiments on the ISIC-2016, ISIC-2017, and PH2 authoritative datasets of skin lesion
images present convincing results. Res-CDD-Net exhibits high reliability, high robustness,
and strong adaptability to images with more interference. Its performance exceeds most of
the mainstream open-source networks, such as CE-Net, BiO-Net, and UTNet. Compared
with U-Net, the Dice coefficient is improved by 6.90%, 3.90%, and 4.01% in ISIC-2017, ISIC-
2016, and PH2, respectively. The Jaccard index is improved by 10.84%, 5.16%, and 5.54%
in ISIC-2017, ISIC-2016, and PH2, respectively. Compared with state-of-the-art skin lesion
segmentation approaches reported in recent years, the proposed method is competitive.
Above all, Res-CDD-Net has an easy-to-understand structure and the shortest training
time while achieving remarkable performance. This jointly constitutes its most remarkable
advantage in practical applications.

In future research, we will conduct the following improvement schemes. First, we
will fine-tune hyperparameters, such as dropout rate, to further improve the segmentation
accuracy through experiments. Second, additional pre-processing techniques such as
hair removal and calibration color normalization will be adopted. Third, simple post-
processing methods will be explored. These methods will also help to improve the network
performance.

6. Conclusions

We propose an advanced end-to-end skin lesion segmentation network called Res-
CDD-Net. It combines the pre-trained ResNeXt50 network, CSAB, MSCB, and a decoding
path with DBBs. Experimental results on three authoritative skin lesion datasets (ISIC 2017,
ISIC 2016, and PH2) show that, compared with most open-source state-of-the-art networks,
the proposed network requires less training time to achieve more accurate segmentation
results. The Dice coefficient has reached 86.55%, 92.89%, and 92.62% on ISIC 2017, ISIC
2016, and PH2, respectively. The Jaccard index has reached 78.63%, 86.54%, and 85.76% on
ISIC 2017, ISIC 2016, and PH2, respectively. The training time on the ISIC2017 dataset is
about 2 h, which is significantly lower than the other methods. However, some limitations
of the proposed approach should not be neglected. The network is relatively large and
computationally expensive. In addition, we only focused on the segmentation task of
skin lesion datasets in this study. We can try to apply the proposed approach to other
tasks related to medical imaging, such as lung segmentation, brain tumor segmentation,
retinal blood vessel segmentation, and nerve optic disc segmentation. We believe that the
use of the proposed network for these medical image segmentation tasks, combined with
appropriate pre-processing and post-processing operations, can give rise to more advanced
segmentation methods.
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