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Abstract: To address the shortcomings of existing methods such as low recognition accuracy and poor
anti-interference performance under low signal-to-noise ratios, this paper proposes the RFSE-ResNeXt
(Residual-fusion squeeze–excitation aggregated residual for networks, RFSE-ResNeXt) network. In
this paper, we improve the residual structure of the network based on the ResNeXt network and then
introduce the compressed excitation structure to improve the generalization ability of the network.
The improvement of the residual structure of the network leads to a good improvement in the overall
recognition accuracy of the network; meanwhile, the compressed excitation structure improves the
confusion phenomenon when the network faces complex signals with low signal-to-noise ratios. The
experimental results show that the proposed network improves the recognition accuracy by 4% on
average at a very low SNR of -10dB and reduces the misclassification of AM-DSB into CPFSK by
about 27%.

Keywords: automatic modulation recognition; RFSE-ResNeXt; residual fusion; squeeze excitation

1. Introduction

In the field of radio communication, modulation identification techniques for commu-
nication signals have been studied and updated by many scholars, and they are of vital
importance for areas such as civil and military competition [1]. Currently, there are two
main types of modulation identification techniques: modulation identification based on
decision theory and modulation identification based on feature engineering [2]. The former
test statistics are complicated to compute and require some a priori information but simple
discriminative rules; the latter feature extraction is simple and easy to compute but the
discriminative rules are complicated. However, both methods currently suffer from high
manual involvement, shallow extraction of signal features, and easy confusion of different
signals [3]. Moreover, with the increase in signal type complexity and the development
of computer technology, deep learning has been shining in this field of signal modulation
recognition [4–7].

Deep learning has superior recognition accuracy compared to statistical learning and
hypothesis testing methods and a better ability to learn directly from high-dimensional raw
input data compared to machine learning. These advantages make deep learning a popular
research direction for signal recognition techniques. In the literature [8], the authors are the
first to apply the convolutional neural network model (CNN) to radio signal classification
and provide a simulation dataset RML2016.10a generated based on the GNU Radio environ-
ment, on which our subsequent investigations will also be based. The literature [9], on the
other hand, investigates the deep structure of modulation recognition, and an improve-
ment in effectiveness is obtained. The advantages of airborne deep-learning-based radio
signal classification over conventional algorithms are discussed in the paper [10]. Further,
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the literature [7] trained different neural networks such as a baseline neural network and a
residual neural network and obtained relatively high recognition rates.

The new neural network frameworks proposed afterward are pursuing reliability
along with lower error rates and wider data processing [11]. Since the phenomenon
of gradient disappearance and gradient explosion limits the improvement of the depth
of ordinary neural networks, the phenomenon of deep network degradation persists
although BatchNorm has been developed to deal with this problem [12]. It was not until the
residual structure was proposed, i.e., ResNet [13], that the degradation problem was solved.
However, to reduce the error rate of neural networks, the traditional methods chosen to
increase the network width and depth lead to an increase in the number of hyperparameters,
which increases the design difficulty and computational effort of neural networks. To solve
this problem, an optimized version of the neural network ResNeXt [14] based on ResNet
was proposed.ResNeXt adopts a residual structure and uses group convolution [15] instead
of the three-layer convolution structure of ResNet, which can improve the accuracy of
the neural network while reducing the number of hyperparameters and decreasing the
parameter complexity. However, it is still not effective in the face of more complex low
signal-to-noise signals.

The group convolution strategy used in the ResNeXt network itself improves the
recognition accuracy but weakens the generalization ability, and the confusion phenomenon
is more serious at low signal-to-noise ratios. Moreover, other existing recognition methods
in radio modulation signal recognition also often have poor anti-interference performance,
and the signal is easy to confuse the problem. In this regard, in this paper the RFSE-ResNeXt
(Residual-fusion squeeze–excitation aggregated residual for networks, RFSE-ResNeXt)
network is established. By improving the residual structure of the network, the extracted
deep and shallow features are fused, and the compressed excitation structure is introduced
to improve the key feature weights so that the recognition accuracy of the network can be
improved when facing complex signals with low signal-to-noise ratios.

2. ResNeXt Model Structure

Xie et al. [14] proposed the ResNeXt network structure at the 2017 CVPR, which is
optimized based on ResNet. The existing methods usually adopt the strategy of deepening
or widening the neural network in the problem of improving the accuracy of neural
network models. However, increasing the depth makes the training process more difficult
and increases the difficulty of convergence of neural network parameters, while increasing
the width means higher complexity and more computation, and the surge in the number
of parameters often results in overfitting. To address this problem, the residual module is
proposed for ResNet networks, which can effectively avoid the problem of network gradient
disappearance and gradient explosion brought by the deepening of CNN networks.

The new dimensional bases are proposed so that ResNeXt performs better with the
same complexity of the neural network model. The original ResNet has a base number of
2, while ResNeXt increases the base number to 32 by using parallel topology. This makes
ResNeXt more accurate compared to ResNet with a close number of parameters and a
significant improvement in computational efficiency.

Looking at both networks internally, the increase of the ResNeXt dimension implies an
improvement of the fully connected layer, which for ResNet results in a summation of the
weights × outputs. ResNeXt, on the other hand, is slightly different because it has more
parallel topologies internally and thus can be represented by the following Equation (1)

out(a) =
n

∑
i=1

(∂ ∗ C(a)) (1)

where ∂ is the weight of different topologies, C(a) is the output value of a flat identical
topology, and n is the number of identical branches that a module has, i.e., the base of the
model. The use of blocks can show this structure more intuitively. Figure 1 shows the block
structure of ResNet, and Figure 2 shows the block structure of ResNeXt:
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Figure 1. Block of ResNet.

Figure 2. Block of ResNeXt.
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3. RFSE-ResNeXt Model Structure
3.1. Squeeze Excitation Structure

HU et al. proposed the squeeze–excitation (SE) structure from the channel dimension
in 2017 [16]. The core idea of the SE module is to obtain the weights of each feature channel
while the network is being trained and to make the weights of the feature maps that are
favorable to the loss function decrease more, while the weights of the feature maps that
do not contribute or contribute little to the loss function decrease less. Thus, the effect of
boosting useful features and suppressing useless features is achieved. The specific structure
is shown in Figure 3.

Figure 3. Squeeze and excitation structure.

The SE structure is divided into a squeeze step and an excitation step.
In the squeeze step, the original feature map U ∈ RH×W×C (H, W, C represent the

height, width, and number of channels, respectively) is convolved and pooled to obtain a
global average pooling (GAP) with the output dimension of 1 × 1 × C.

In the excitation step, the globally averaged features obtained in the squeeze step are
fed into a two-level full connection (FC), a rectified linear unit (ReLU) [17], and a Sigmoid
function [18] to output a channel weight vector of dimension 1 × 1 × C′ (C′ < C) of the
channel weight vector. where the output layer changes from 1 × 1 × C′ to 1 × 1 × C,
i.e., the weights assigned to the features represented by each channel.

Finally, the output is multiplied by the original feature map U to obtain a feature map
incorporating the channel attention information Z ∈ RH×W×C.

3.2. Residual Fusion Structure

The convolutional network used in this paper is ResNeXt101 [19], and the main body
consists of four residual modules. The structure of the residual modules is shown in
Figure 4. In the input–output convolution layer, a small convolutional kernel of 1 × 1 × 1
is used, and the middle group convolutional structure uses the usual base 32 with a size of
3 × 3 × 3. The advantage of ResNeXt101 is that the group convolution is performed by
stacking blocks of the same topology in one parallel, which improves the accuracy without
increasing the parameter complexity.

Figure 4. Residual module.



Electronics 2022, 11, 2662 5 of 11

The improved residual structure is shown in Figure 5. Where layer1, layer2, layer3,
and layer4 denote the four residual modules in the network, respectively. In the original
network, the deepening of layers will make some detailed features filtered out, resulting in
insufficient utilization of the extracted features. In this paper, the improved residual module
structure of the ResNeXt network makes full use of the feature information extracted from
each layer by fusing the detailed features extracted from the shallow network with the
features extracted from the deep network.

Figure 5. Improved ResNeXt residual structure.

First, the original data input is convolved with a convolution kernel size of 1 × 1,
and the features obtained after convolution are fused with the output of the features
from layer2 as the output of module1. Then, the features output from module1 are con-
volved twice with a kernel size of 1 × 1 and then fused with the features output from
layer4. The effect of mutual fusion of the signal features extracted by the residual module
is achieved.

The convolution operation is performed first to reduce the feature dimensionality
and enable the features to be fused. In this paper, layer-hopping fusion is used instead
of the layer-by-layer feature fusion. Firstly, because ResNeXt101 itself has a considerable
number of parameters, if layer-by-layer fusion is used, the overall computation will be too
large, and the training time will be too long. Secondly, if the layer-by-layer fusion is used,
some redundant information will be fused and overfitting will be unavoidable, which will
instead reduce the recognition accuracy of the network. The two features are fused using
element-wise [20].

3.3. Establishing the RFSE-ResNext Network

In this paper, the residual module in ResNeXt101 [19] is first modified as described
above, and then the squeeze–excitation structure is introduced to obtain the RFSE-ResNeXt
network. Figure 6 shows the core junction RFSE-ResNeXt block of the network. The original
input of the signal is first passed through the modified residual fusion structure to fully
extract the shallow and deep features. The output is then multiplied with the feature
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information processed by the SE structure to enhance the useful features and suppress the
interference features. Each of these convolutional operations consists of convolution, batch
normalization (BN) [21], and ReLU.

Figure 6. Block structure of RFSE-ResNeXt.

The final RFSE-ResNeXt network consists of one convolutional layer, four RFSE-
ResNeXt block structures, two pooling layers, one fully-connected layer, and one Softmax
classifier, and the network structure is shown in Figure 7. The network input layer deter-
mines the input data as IQ bidirectional time-domain signals with each sample data of size
2 × 128. The raw data is first input to the first convolutional layer (consisting of 50 convo-
lutional kernels of size 2 × 8), and after the four RFSE-ResNeXt block structures and the
global average pooling, the final classification is performed using the Softmax classifier.

Figure 7. RFSE-ResNeXt network structure.

4. Analysis of Model Results
4.1. Datasets

In this paper, we use the international common dataset RML2016.10a [22] for the study.
This dataset contains 8 classes of digital modulated signals (BPSK, 8PSK, CPFSK, GFSK,
PAM4, QAM16, QAM64, QPSK) and 3 classes of analog modulated signals (AM-DSB,
AM-SSB, WBFM), a total of 11 different modulated signals.
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The signal-to-noise ratios of the 11 signals are distributed in the range of −20 to 18 dB
with an interval of 2 dB. Each signal consists of two IQ channels with 128 sampling points
at different signal-to-noise ratios. In addition, this dataset adds the influence factors such
as central frequency shift, fading out, and additive Gaussian white noise to various signals
in order to closely match the real environment.

For the comparative analysis of network performance, a total of 221,000 samples from
the RML2016.10a dataset were used, of which 70% were used as the training set and 30% as
the test set. All network models in this paper use theano back end and Keras framework.
The hardware configuration is CPU Intel i7-8750CPU, GPU Nvidia GeForce RTX2080.

4.2. Impact of Residual Fusion Structure on Network Performance

As shown in Figure 8, the improved ResNeXt network structure has a fairly good
recognition accuracy overall. Although there is a slight decrease in accuracy at low signal-to-
noise ratios, there is an improvement in both the middle and high segments. The reason is
that the group convolution strategy of the ResNeXt network itself improves the recognition
accuracy but reduces the generalization performance (i.e., the effect is reduced when facing
complex signals with low signal-to-noise ratio). In contrast, in this paper, the residual
structure of ResNeXt is improved so that the extracted deep and shallow features are
fused with each other. Although this improvement suggests the overall performance of the
network, it has little effect in compensating for the drawback of generalization performance.
Therefore, we introduce a compressed excitation structure on top of the residual fusion
structure to improve the generalization ability of the network.

Figure 8. Performance comparison before and after improvements.

4.3. Impact of Squeeze–Excitation Structure on Network Performance

In order to investigate the effect of the incorporated squeeze–excitation structure on
the classification ability of the network, we will compare the models with and without the
incorporated squeeze–excitation structure by using the parameters of global accuracy and
−20 dB to 0 dB average accuracy of the network model on the test set as the evaluation
criteria. The specific data are shown in Table 1.

Table 1. Effect of adding a squeeze–excitation structure on the model.

Models Global Accuracy (%) −20 dB to 0 dB Average
Accuracy (%)

RF-ResNeXt 59.1 33.2
RFSE-ResNeXt 59.8 34.6

As can be seen from the table, the global accuracy of the model is only slightly
improved after adding the squeeze–excitation structure, but the average accuracy at low
signal-to-noise ratios is significantly improved. The reason is that the squeeze–excitation
module provides an effective solution to the information overload problem that exists in
the ResNeXt model. The SE module makes the weights of the feature maps that contribute
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to the loss function decline larger by obtaining the weights of each feature channel, while
the weights of the feature maps that do not contribute or contribute less to the loss function
decline become smaller. Thus, the accuracy and efficiency of the network are improved by
boosting useful features and suppressing useless features.

4.4. Performance Analysis of Different Networks

The experimental analysis compares the RFSE-ResNeXt network, an optimized CLDNN
network in the literature [7], an improved Resnet network in the literature [23], a CLDNN
network, a vgg-cnn network, and an inception network in this paper. The effectiveness of
various network models for the classification task is shown in Figure 9.

Figure 9. Comparison of the recognition performance of six models (RML2016.10A).

As shown in Figure 9, the model proposed in this paper shows a considerable im-
provement in recognition rate in the −20 dB to −8 dB interval even when compared
with the current newer models and also has a fairly good recognition accuracy at high
signal-to-noise ratios. The rFSE-ResNeXt can achieve this result, and it is important be-
cause rFSE-ResNeXt is the only model among these that has the SE module and advanced
grouped convolutional structure. The former allows the network to use more energy to
focus on the typical features of the signal and achieve better results with the same number
of parameters; the latter allows the network to extract sample features significantly, further
improving the accuracy of the network. Meanwhile, RFSE-ResNeXt further improves the
ability of extracting signal features due to the improved residual network structure, which
makes the deep and shallow features fuse. Because of this, it has quite good performance
in the face of the close-to-reality RML2016.10A dataset used in this paper.

Figures 10 and 11 show the confusion matrix plots of ResNeXt and the network model
in this paper at the signal-to-noise ratio of 0 dB, respectively, which can visually reflect the
recognition effect of the model for the 11 signal modulation methods. Since ResNeXt adopts
the strategy of group convolution, although it greatly improves the ability of extracting
feature information, it does not perform well in the face of signals with low signal-to-noise.
It can be seen that there is a problem of misidentifying some WBFM as AM-DSB at 0 dB,
and confusing some 8PSK and QPSK, which leads to a low recognition rate of 8PSK, WBFM,
and QPSK signals. The overall recognition accuracy of the RFSE-ResNeXt network model
proposed in this paper is improved, especially since the phenomenon of confusing AM-DSB
into WBFM is attenuated.

In the face of a very low signal-to-noise ratio of -10 dB, ResNeX can only identify
almost one modulated signal of QAM64, and all kinds of signals are highly confused
into CPFSK. while the proposed model in this paper has considerable attenuation of the
confusion of AM-DSB, BPSK, BPSK, etc., which improves the overall recognition accuracy.
The reason for this is that the residual fusion structure fully extracts the deep features of
the signals at low signal-to-noise ratios, while the squeeze–excitation structure enables the
network to learn more about the key information for correct classification. Table 2 shows
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the confusion between the network in this paper and the ResNeXt network for CPFSK
signals at a signal-to-noise ratio of −10 dB.

Figure 10. Confusion matrix on SNR = 0 dB (ResNeXt).

Figure 11. Confusion matrix on SNR = 0 dB (RFSE-ResNeXt).

Table 2. CPFSK recognition at SNB = −10 dB.

ResNeXt RFSE-ResNeXt

About 28% AM-DSB misclassification
into CPFSK

About 12% AM-DSB misclassification
into CPFSK

About 56% BPSK misclassification into CPFSK About 27% BPSK misclassification into CPFSK
About 45% of GFSK misclassified into CPFSK About 31% of GFSK misclassified into CPFSK
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5. Conclusions

In this paper, the RFSE-ResNeXt network is established based on the ResNeXt network.
By improving the residual structure of the ResNeXt network, the deep and shallow features
are fused, and the feature information extracted from each level is fully utilized. Then
the squeeze–excitation structure is introduced to improve the generalization ability of
the network so that the recognition accuracy of the network can be improved when the
complex signal-to-noise ratio is low. The experimental results show that when the signal-
to-noise ratio is as low as −8 dB or less, the network has a better adaptation ability to low
signal-to-noise ratios and stronger anti-confusion ability compared with existing methods.
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