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Abstract: Video captioning aims to generate a grammatical and accurate sentence to describe a video.
Recent methods have mainly tackled this problem by considering multiple modalities, yet they have
neglected the difference in modalities and the importance of shrinking the gap between video and
text. This paper proposes a multi-task video-captioning method with a Stepwise Multimodal Encoder.
The encoder can flexibly digest multiple modalities by assigning a proper encoding depth for each
modality. We also exploit both video-to-text (V2T) and text-to-video (T2V) flows by adding an
auxiliary task of video–text semantic matching. We successfully achieve state-of-the-art performance
on two widely known datasets: MSVD and MSR-VTT: (1) with the MSVD dataset, our method
achieves an 18% improvement in CIDEr; (2) with the MSR-VTT dataset, our method achieves a 6%
improvement in CIDEr.

Keywords: multimodal fusion; video captioning; multi-task learning; computer vision; transformer;
artificial intelligence

1. Introduction

Video captioning aims to describe video content with natural language. It is a valuable
and challenging direction of both natural-language processing and computer vision. The
task studied in this paper refers to generating a caption for a short video, which is different
from a dense video-captioning task, as it generates more sentences for a longer video
and localizes events additionally [1–3]. The advancement of video captioning can assist
visually impaired people to use a social networking service [4], watch a movie [5], or travel
independently by implementing the algorithm on smart devices as in [6–8]. Moreover, the
study of video captioning can also promote various sub-tasks of video understanding (e.g.,
video retrieval [9] and visual question answering [10]).

To generate flawless captions, the model first needs to embed high-level semantic
feature of videos (e.g., objects, the relationships between the objects, the motions of the
objects and the connections of different clips). Then, it turns the features of the video
space into a language space. Finally, it outputs grammatical and accurate captions. Hence,
intuitively, video captioning can be seen as two stages: first understanding video and then
describing video.

Currently, most dominant methods adopt the encoder–decoder sequence-to-sequence
(Seq2Seq) framework inspired by machine translation. This classical framework uses the
2D Convolutional Neural Network (2D-CNN), the 3D Convolutional Neural Network
(3D-CNN) or the latest Vision Transformers (ViT) [11] as the encoder, and uses Recurrent
Neural Networks (RNNs) or Transformers [12] as the decoder. Researchers usually use
off-the-shelf CNNs that perform well on large datasets as encoders, such as ResNet [13] and
IncepResNetV2 [14]. In addition, 3D-CNN [15–17], RNN with attention mechanism [16–18]
and self-attention [1,18–20] are often used to tackle video’s problem of temporal dynamics.

Despite these improvements, considering the multi-modality in video and the mul-
timodal nature of human perception, how to exploit that rich information has become a
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focus of much attention. Video is not only images with a temporal dimension, but also a
combination of motion information, audio information, overlaid text, speech information,
etc. [21]. Existing methods still suffer from sufficiently using these. In this paper, we
propose a Stepwise Multimodal Encoder (SME), which can flexibly and stepwise fuse
various modalities by sharing one encoder within all modalities and encoding each with a
different depth.

Moreover, video captioning is a cross-modal task. Thus, we believe it is essential to
shrink the gap between video and text, which is often neglected by existing methods. In
this paper, we use a Vision–Language Pretrained (VLP) model during the feature-extraction
stage instead of a traditional Image-Classification Pretrained (ICP) model. Meanwhile,
as shown in Figure 1, we also devise an auxiliary task that performs semantic matching
between video and text. We exploit both the traditional video-to-text (V2T) flow (red box in
Figure 1) and the text-to-video (T2V) flow (blue box in Figure 1). By sharing the parameters
of the video encoder and optimizing the video–text semantic match loss, it can enhance the
model’s generalization.

Video
Encoder
Video

Encoder

LmatchVideo-Text Semantic 
Match Loss
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Encoder

Text 
Encoder

LdecDecoder Loss

DecoderDecoder
a cartoon character

is talking ...

a cartoon character

is talking ...
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Figure 1. Use of two flows in our method. Traditional video-to-text (V2T) flow: the video encoder
encodes the multimodal feature, and the decoder outputs the caption to obtain decoder loss; Text-to-
video (T2V) flow: the text encoder encodes the ground-truth caption, and then the model calculates
Video–Text Semantic Match Loss.

In summary, this work first extracts features of multiple modalities from the video
using pretrained models, then performs feature fusion through a novel video encoder
proposed in this paper, and finally decodes the fused feature to natural sentences. In
addition, the encoder is also trained by an auxiliary task of semantic matching. The
exploitation of multi-modality improves the accuracy of the output captions, and the multi-
task learning enhances the generalization of the model. The main contributions of this
work are summarized as follows:

• We propose a Stepwise Multimodal Encoder (SME), which can extend to multiple
modalities and can adjust according to various modalities;

• We apply multi-task learning to further shrink the gap between the video modality
and text modality;

• The experiment shows that our method outperforms several state-of-the-art methods
on both widely used datasets: the MSVD dataset [22] and the MSR-VTT dataset [23].

2. Related Work
2.1. Video Captioning

With the rapid development in deep learning, models with encoder–decoder frame-
works have become the mainstream in video-captioning tasks. Some works use an end-
to-end approach [24], while the majority leverage pretrained models. Among them,
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ResNet [13], InceptionResnetV2 [14], C3D [25] and I3D [26] are widely implemented as
video feature extractors.

For the encoder, early work [27] applied mean pooling on feature vectors over a
temporal dimension to avoid inconsistent length, while the temporal dynamic was ignored.
Later, ref. [28] solved the problem using the Long Short-Term Memory (LSTM) network
as encoder. As an improvement to this, ref. [29] leveraged the backward flow from the
decoder’s output to the encoder’s input by using a reconstructor. In addition, ref. [30]
leveraged an autoencoder to enhance the encoder. To embed richer temporal dynamics,
ref. [31] applied hierarchical short Fourier transform and ref. [32] applied a hierarchical
variant of LSTM. To learn more about the relationship between objects in the video, ref. [15]
applied the graph convolutional network.

For the decoder, refs. [27,28] used LSTM as the decoder, and ref. [29,33] further
improved it by applying an attention mechanism. To generate more accurate words,
ref. [31] leveraged an object detector to build a vocabulary from which the decoder can
select words. In another way, ref. [15] designed a teacher-recommended learning method
that leveraged pretrained language models (e.g., BERT). The above methods generated
captions autoregressively, which prompted the exposure-bias issue, while ref. [18] devised
a bidirectional encoding structure to mitigate that. With the popularity of the Transformer,
some works [1,2,19,20,24] used this to replace the traditional LSTM decoder.

2.2. Multimodal Learning of Video

Videos have multi-modality, and thus an advancing model should make full use of
them, just as in human perception. Currently, many methods adopt multimodal learning
in video-captioning tasks, where visual and motion features are most commonly used.
Refs. [2,28,34] perform multimodal fusion at a later stage. Although they are flexible to
accommodate multi-modality, each modality needs to be encoded and decoded separately,
which brings more parameters and fewer opportunities for modal fusion. Refs. [1,20]
perform multimodal fusion at an earlier stage, but lose the flexibility to accommodate more
than two modalities. In addition, ref. [19] is a compromise in relation to the previous
methods. For methods using object features [15,31,35], they prefer to design a separate
module for the object feature.

2.3. Multi-Task Learning

Multi-task learning is a widely used paradigm that enhances a model’s generalization
ability by sharing parameters across multiple related tasks. Specifically in the video-
captioning task, ref. [36] applies entailment generation and unsupervised video prediction
tasks, refs. [30,37] apply a joint embedding task, and [38] applies an attribute-prediction
task. In addition, in [39], the video-captioning task is one of the five fine-tuned tasks.

Current methods still do not make full use of multi-modality. Moreover, we believe
the model’s generalization should be given more attention due to the limitations of the
dataset and the specificity of the task. In this paper, we propose a method that maintains
both multimodal flexibility and the full opportunity for modal fusion. Furthermore, as for
the improvement in generalization, we apply the Transformer’s decoder with SCE-loss [40]
and additionally add an auxiliary task. The task we apply is similar to [30,37], in which we
further leverage a pretrained model instead of training from scratch. The loss we apply
theoretically works similar to [15] but without a huge external model.

3. Proposed Methods

Figure 2 shows the modules that make up our model. First, multiple features are
extracted from an untrimmed video, and then these features are concatenated and decorated
to form a video representation. Next, the video representation is sent to the SME to encode
and acquire a discriminative multimodal feature. This feature is then exploited in two tasks:
a Video-Captioning Decoder, and Video–Text Semantic Matching. In the former task, the
caption generator takes the video feature and outputs a caption autoregressively. In the
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latter task, a text encoder derives the feature representing the whole sentence, which will
be used to calculate a semantic match loss with the feature representing the entire video.
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Figure 2. Overview of our multi-task multimodal method. Three modalities are used as an example
in this figure. GT is short for Ground Truth. Our design contains four modules: Video Representation,
Encoder, Video-Captioning Decoder and Video–Text Semantic Matching. Among them, the first two
modules are shared by both tasks, which correspond to the last two modules each. (

⊕
refers to

element-wise addition).

It is worth noting that our method is theoretically applicable to any N modalities, but
we use three modalities as an example in the following description. We further elaborate
on each module in the following sections.

3.1. Preliminary

Our method applies the Transformer network [12] as the backbone. Therefore, this
section briefly introduces the original Transformer network before we describe our model.
The Transformer is a Seq2Seq model consisting of an encoder and a decoder, among which
self-attention (SA) plays a crucial role. The SA takes query, key and value as input, and to
jointly attend more information, the Multi-Head Attention (MHA) is introduced, which
performs multiple SAs with different projection matrices in parallel. In every encoder
layer, MHA is used once, and in every decoder layer, MHA is used twice. A Feed-Forward
Network is also applied to increase the non-linear fitting capability on both encoder and
decoder. The decoder works autoregressively, which takes the previous results as inputs
of the next step. Finally, the final outputs of the decoder are transformed to probabilities
through a linear network and a SoftMax function.

3.2. Video Representation

This module aims to obtain a video representation that incorporates multi-modality
and preserves temporal dynamics. The final video representation (Ω(0)) is the sum of three
vectors (F , E and T ) as shown in Equation (1), where F is a multimodal feature vector,
E is a modal embedding vector, and T is a temporal encoding vector. Among them, the
multimodal feature vector is derived from the video features extracted by the pretrained
models and contains most information, while the modal embedding vector and temporal
encoding vector serve as supplementary information. By adding E and T , the model can
distinguish between different modalities concatenated together and learn the temporal
order of the features.

Ω(0) = F + E + T . (1)
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3.2.1. Multimodal Feature Vector

The Multimodal feature vector is the most dominant vector. It contains most of the
information in a video and is obtained by concatenating features of different modalities
after projecting to an identical dimension. Take three modalities (visual, motion and
audio) as an example, the original visual (v ∈ RLvi×dvi ), motion (µ ∈ RLmo×dmo ), and audio
(a ∈ RLau×dau ) features are extracted from an untrimmed video by pretrained models,
where L is the variable length of temporal dimension, d is the size of the feature vector, and
vi, mo, au are short for visual, motion, and audio, respectively. Considering that the size of
these features varies, we embed them into a space of the same shape:

V = vW e
vi + be

vi;
M = µW e

mo + be
mo;

A = aW e
au + be

au,
(2)

where W e
vi, W e

mo, W e
au, be

vi, be
mo, be

au are learnable parameters. We additionally extracted the
global video-level features (V global , Mglobal , Aglobal) of each modality by taking the average
over the temporal dimension on V , M, A:

V global = Average(V);
Mglobal = Average(M);
Aglobal = Average(A),

(3)

Then we concatenate these features over the temporal dimension to form a concate-
nated multimodal feature F :

F = [V , V global , M, Mglobal , A, Aglobal ], (4)

F ∈ R(Lvi+Lmo+Lau+3)×dmodel , (5)

where (Lvi + Lmo + Lau + 3) is the total length (over temporal dimension) of the multimodal
feature and dmodel is the unified model dimension.

In particular, a VLP model called CLIP [41] is leveraged for visual feature extraction
instead of an ICP model. The VLP is to train the model by minimizing the distance between
the encoded visual features and the encoded language features. Thus, we believe the
VLP models could shrink the gap between video and text and improve our task. Recent
works [42–45] have shown that the visual encoder under VLP outperforms others in a
variety of downstream tasks, and among them, the CLIP excels the most. Therefore, we
take advantage of it and explore the approach to fusing it with other modalities.

3.2.2. Modal Embedding Vector

The modal embedding vector allows the model to distinguish between different modal-
ities in F . We distinguish different modalities by adding different learnable embedding
vectors to different positions in F . In addition, we treat global features specifically by
assigning them to different embedding vectors.

Suppose there are N modalities. We initialize a one-hot vector τ j of length 2N for
the features at each position (j) in F (The shape of τ is (Lvi + Lmo + Lau + 3)× 2N). The
features of the i-th modality correspond to the (2i− 1)-th dimension of this one-hot vector
(τj,2i−1), and the global features of the i-th modality correspond to the 2i-th dimension (τj,2i).
The value of the corresponding dimension is set to 1 and the others to 0. In this paper, we
have three modalities, then the shape of τ is (Lvi + Lmo + Lau + 3)× 6. Therefore, the τ j
of the global feature of the visual modality is [0, 1, 0, 0, 0, 0], and the τ j of the non-global
features of the audio modality is [0, 0, 0, 0, 1, 0]. After obtaining τ, we calculate the product
of τ and a learnable embedding matrix W emb to obtain the modal embedding vector E :
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E = τ ×W emb = [E1, . . . , E1︸ ︷︷ ︸
Lvi

, E2, E3, . . . , E3︸ ︷︷ ︸
Lmo

, E4, E5, . . . , E5︸ ︷︷ ︸
Lau

, E6], (6)

E ∈ R(Lvi+Lmo+Lau+3)×dmodel , (7)

where W emb ∈ R6×dmodel , Lvi, Lmo, Lau represent the length of visual, motion, and audio
features, respectively (excluding global features), and the shape of E is same as F . As
shown in Equation (6), E can be divided into several parts, where Ek denotes the k-th
embedding.

3.2.3. Temporal Encoding Vector

The temporal encoding vector injects temporal information. The purpose of this is
to allow the model to know which period of the video the input features correspond to,
respectively. Since the vanilla SA is not concerned with the order of the input sequence, we
leverage the same temporal encoding as the Transformer [12].

We determine the temporal feature vector in terms of how the visual features are
sampled for extraction. In this paper, we extract two frames per second as keyframes for
visual features, which means that there will be one visual feature every 0.5 s. Therefore,
the features extracted within [0, 0.5s) will be assigned to position 1 (pos = 1), the features
within [0.5s, 1.0s) will be assigned to position 2 (pos = 2), and so on. Specifically, we assign
pos = 0 to global features. This method can be adapted to different sampling frequencies.

Given position pos and dimension i, we use Equation (8) from [12] to calculate the
value of the temporal encoding vector:{

Tpos,2i = sin(pos/10, 0002i/dmodel );
Tpos,2i+1 = cos(pos/10, 0002i/dmodel ).

(8)

where the temporal encodings have the same dimension dmodel as F and E . Therefore, the
final sequence of temporal encoding takes the form:

T = [T1, . . . , TLvi , T0, T1, . . . , TLmo , T0, T1, . . . , TLau , T0], (9)

T ∈ R(Lvi+Lmo+Lau+3)×dmodel , (10)

where T pos = ∑dmodel
j=0 Tpos,j, and Lvi, Lmo, Lau represent the length of visual, motion, and

audio features, respectively (excluding global features). The shape of T is same as F and E .

3.3. Stepwise Multimodal Encoder

The SME uses the Transformer’s encoder as the backbone. Because the vanilla Trans-
former’s encoder only adopts a single-modality input, and although variants [1,21] in-
troduce multi-modality into it, they have not sufficiently considered the adaptability of
the encoding depth between different modalities. This paper strengthens the model by
assigning an appropriate encoding depth to each modality. Assume that the i-th modality
requires Ni encoder layers and the maximum of Ni is Nmax. Figure 3 illustrates three of our
early ideas:

The late-fusion method (Figure 3a) fuses modalities at the last layer, and each modality
must go through Ni − 1 separate layers before fusion. In this way, different modalities
cannot attend to each other until last.

The inter-fusion method (Figure 3b) allows the fusion in the middle between modalities
that reach the (Nmax − Ni + 1)-th layer. This increases the occasion of modal fusion and
reduces the parameters compared to the late-fusion method.
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TELTEL
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(0)
Ω
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Figure 3. Three modal fusion strategies. TEL is short for Transformer Encoder Layer. The inputs of
the TEL are concatenated at temporal dimension. The features of different modalities correspond to
different colors. We assign one layer for the first modality, two for the second and three for the third
as for example in this figure.

Finally, we devise a full-fusion method (Figure 3c) that further enhances the fusion and
maintains a minimum of parameters. We assign one layer for the first modality, two for
the second and three for the third as example. The first layer combines the information of
all modalities and outputs the encoded feature of the third modality. Likewise, the second
layer takes the original vector of the first two modalities and the encoded feature of the third
modality as inputs. It then outputs the encoded feature of the last two modalities. By this
point, the second modality is encoded with one layer, while the third modality is encoded
with two layers. Since this process is step-like, we name it the Stepwise Multimodal Encoder.
We formally describe our model as follows:

In the previous steps, we have obtained the video representation vector Ω(0). We
represent the different parts of this vector with different subscripts:

Ω(0) =
[ Ω{visual}︷ ︸︸ ︷

Ω0, . . . , ΩLv︸︷︷︸
Ω{global_v}

,

Ω{motion}︷ ︸︸ ︷
ΩLv+1, . . . , ΩLv+Lm+1︸ ︷︷ ︸

Ω{global_m}

,

Ω{audio}︷ ︸︸ ︷
ΩLv+Lm+2, . . . , ΩLv+Lm+La+2︸ ︷︷ ︸

Ω{global_a}

]
. (11)

As shown in Equation (11), the length of Ω(0) is Lv + Lm + La + 3, and we denote the
first Lv + 1 vectors as Ω{visual}, the middle Lm + 1 vectors as Ω{motion}, and the last La + 1 vec-
tors as Ω{audio}. We also denote the global feature vector as Ω{global_v}, Ω{global_m}, Ω{global_a},
whose position corresponds to the position of global features in F.

In the case of Figure 3, the video representation vector is encoded by three Trans-
former Encoder Layers (the i-th layer is denoted as TEL(i)). The output of the first layer is
calculated as

Ω(1) = TEL(1)([Ω
(0)
{visual}, Ω

(0)
{motion}, Ω

(0)
{audio}]). (12)

The input of the second layer uses part of the output of the first layer and part of the
original input:

Ω(2) = TEL(2)([Ω
(0)
{visual}, Ω

(0)
{motion}, Ω

(1)
{audio}]), (13)

The third level is similar to the second level as

Ωlast = Ω(3) = TEL(3)([Ω
(0)
{visual}, Ω

(1)
{motion}, Ω

(2)
{audio}]). (14)

This method requires only Nmax layers in total and the modality that needs to be
encoded can attend to all other modalities in every layer. In this example Ωlast is derived
from the procedure described above; however, the encoding depth of each mode can be
freely assigned, and we denote the final output as Ωlast. The assignment of encoding depth
will be the hyperparameter of our method, whose ablation experiments can be found in
Section 5.2.3.
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3.4. Multi-Task Learning
3.4.1. Video-Captioning Decoder

We leverage the decoder of the Transformer as our caption generator’s backbone
(including embedding and positional encoding, denoted by Decoder). The caption generator
takes Ωlast as the input and generates captions autoregressively. Given the one-hot vector
of previously generated words (s<t), the one-hot vector of the current time step (st) is
obtained by:

et = Decoder(Ωlast, s<t), (15)

pt = so f tmax(W pet + bp), (16)

st = argmax(pt), (17)

where W p, bp and the parameters in Decoder are learnable.
Because the MSR-VTT and MSVD datasets contain a large amount of noise [46], and

the same video often has multiple reasonable but different captions for this task, we use the
SCE-loss [40] as our decoder loss to increase the robustness of our model. The traditional
cross-entropy loss for input x and K-class dataset is:

`ce = −
K

∑
k=1

q(k|x) log p(k|x), (18)

where q(k|x) is the ground-truth distribution over labels, and p(k|x) is the probability
distribution of the classifier. The reverse cross-entropy is then calculated as

`rce = −
K

∑
k=1

p(k|x) log q(k|x). (19)

The SCE-loss is defined as

`dec = α`ce + (1− α)`rce, (20)

where α is a hyperparameter that ranges in [0, 1].

3.4.2. Video–Text Semantic Matching

Video–text semantic matching is an auxiliary task that additionally uses a pretrained
text encoder. Considering the difficulty of training this task, we select the text encoder of
CLIP to obtain the features of the ground-truth captions. For the same reason as using
CLIP’s visual encoder, we believe that the text encoder of VLP model is also beneficial in
obtaining text features closer to the video space. We use the official code where the text
encoder is a 12-layer 512-wide 8-head Transformer, and the feature vector is a fixed number
of 512. To adapt to our model, we additionally add a linear projection layer to project this
512-d vector to a dmodel-d vector. Formally, we use ψ to denote the off-the-shelf pretrained
text encoder, s to denote the one-hot vector of the sentence, and the subscript proj to denote
the linear projection layer. We first obtain the vector ŝ that represents the whole sentence as

ŝ = W projψ(s) + bproj. (21)

Then we obtain the vector ω̂ representing the whole video by

ω̂ =
1
3
(Ωlast
{global_v} + Ωlast

{global_m} + Ωlast
{global_a}), (22)

where global_v, global_m and global_a represent the global feature of visual, motion and
audio modality.
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We match the video and text by minimizing the InfoNCE loss [47] in a batch. Sup-
posing the batch size is B, we denote the batch of text feature by Ŝ and the batch of video
feature by Ω̂. The cosine similarity score is calculated by

W score =
Ŝ

Norm(Ŝ)
· Ω̂

Norm(Ω̂)
. (23)

where Norm function calculates the Frobenius norm. We then calculate the losses of
video-to-text and text-to-video:

`v2t = −
B

∑
j=1

log
W score

(i,j)

∑B
i=1 W score

(i,j)

, (24)

`t2v = −
B

∑
i=1

log
W score

(i,j)

∑B
j=1 W score

(i,j)

. (25)

Finally, the video–text semantic match loss is obtained by adding the above two:

`match = `v2t + `t2v. (26)

3.4.3. Object Function

Finally, we set a hyperparameter β to combine the loss of two tasks:

`model = β`dec + (1− β)`match. (27)

4. Experiment Setup
4.1. Datasets

We employ MSVD [22] and MSR-VTT [23] datasets for our experiments. The MSVD
dataset consists of 1970 videos on the YouTube website and 80,827 English captions collected
by the Amazon Mechanical Turk (AMT). Following the standard, we divide the videos
into three parts: 1200 videos for training, 100 videos for validation, and 670 videos for
testing. The MSR-VTT dataset is a more extensive dataset collected by AMT that contains
10,000 videos with 20 captions for every video clip. This dataset is divided into three parts:
6513 videos for training, 497 videos for validation, and 2990 videos for testing. A short
natural sentence can describe every video clip in these two datasets.

4.2. Evaluation Metrics

The performances of generated captions are evaluated by four metrics in this paper:
BLEU@4 [48], METEOR [49], ROUGE-L [50], CIDEr [51], which are abbreviated as B@4, M,
R and C, respectively. The B@4 and R metrics calculate the n-gram overlap between the
predicted result and the reference captions, with larger metrics indicating a more complete
fit of the result to the reference captions. The difference is that the former calculates the
accuracy while the latter calculates the recall. In natural language, the same meaning can
be expressed by different words and different syntaxes. Therefore, the M metric considers
synonyms while the C metric focuses more on whether the predicted result contains
key information of the references rather than a complete overlap. We use the standard
evaluation protocol from the Microsoft COCO evaluation server [52]. For all four metrics, a
larger value is better.

4.3. Implementation Details
4.3.1. Environment

Our implementation is based on Python3 and Pytorch1.10. We train our model on four
NVIDIA GTX TITAN X GPU with 12 G memory.
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4.3.2. Pretrained Models

For video feature extraction, we select three pretrained models for visual, motion and
audio modality. The 512-dimension visual features are extracted by CLIP-ViT-B/32 [41],
which is a pretrained model that achieved the best results in all CLIP models. The 1024-
dimension motion features are extracted by I3D [26] with RGB frames and dense optical
flow images, where the optical flow images are extracted by Denseflow [53] using TV-L1
algorithm [54]. This model is widely used to extract motion features in similar tasks[1,2,19].
Specifically for the MSR-VTT dataset, following the details in [21], the 128-dimension audio
features are extracted by VGGish [55] trained on YT8M dataset, which transfers CNN from
vision to audio, and its pretrained models trained on large-scale dataset can effectively
extract audio features. For text feature extraction in a text encoder, we use CLIP-ViT-B/32
model in the CLIP’s official codes.

4.3.3. Preprocess

We extract visual features by sampling the videos at 2 fps, and extract motion features
for every 64 consecutive frames from all video frames without overlap. For text preprocess-
ing in the video-captioning task, we follow the method in BERT [56]: we use [CLS] as the
start token and [SEP] as the end token of a sentence. The case of the sentence is ignored.

4.3.4. Learning Settings

During the training process, all parameters from pretrained models are frozen, and
a dropout with a rate of 0.3 is adopted for regularization. For the Transformer-like archi-
tecture, the model dimension dmodel is set as 768, the hidden state size of the feed-forward
layer is set as 2048, and the number of decoder’s layer is set as 3. We use the Adam
optimizer [57] with a learning rate of 0.0001 and apply a cosine annealing schedule where
the minimum learning rate is 0.00001, and the maximum number of iterations is 10. The
training process stops when it reaches 30 epochs, or the sum of four metrics is not increased
on the validation set for six epochs. The hyperparameter α is set to 0.5 empirically, and β is
set to 0.4 according to the ablation study. During the inference, only the video-captioning
task is processed.

5. Results And Analysis
5.1. Comparison to the State-of-the-Art

Table 1 shows the performances of our proposed model and several state-of-the-art
methods on the MSVD dataset and MSR-VTT dataset. Due to the diversity of modalities, we
list the pretrained model for visual feature extraction of those methods and other modalities
they use. We did not use audio features in the MSVD dataset because it does not contain
audio information.

Table 1. Performance comparisons on MSVD and MSR-VTT benchmarks. The best results and
corresponding features are listed. B@4 is short for Bleu@4, M is short for METEOR, R is short for
ROUGE, and C is short for CIDEr. MT-SME is short for our model’s name—Multi-Task Stepwise
Multimodal Encoder. The maximum value of each column is marked in bold.

Models Modality MSVD MSR-VTT
Visual Others B@4 M R C B@4 M R C

SibNet [30] GoogleNet - 54.2 34.8 71.7 88.2 40.9 27.5 60.2 47.5
OA-BTG [35] ResNet-200 Object 56.9 36.2 - 90.6 41.4 28.2 - 46.9

ORG-TRL [15] InceptionResnetV2 Motion & Object 54.3 36.4 73.9 95.2 43.6 28.8 62.1 50.9
GRU-EVE InceptionResnetV2 Motion & Object 47.9 35 71.5 78.1 38.3 28.4 60.7 48.1
SBD [18] ResNet152 - 47.7 34.3 69.4 81.6 39.2 27.8 59.4 44.5
TVT [19] NasNet Motion & Object - - - - 42.5 28.2 61.1 48.5

TVT NasNet Motion 53.2 35.2 - 86.8 40.1 27.9 59.6 47.7
CLIP4Caption [58] CLIP - - - - - 46.1 30.7 63.7 57.7

MT-SME (ours) CLIP Motion & Audio - - - - 46.9 31.3 64.7 61.2
MT-SME (ours) CLIP Motion 56.5 39.2 76.9 112.7 44.2 30.3 62.6 57.4
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According to the results, our model outperforms most existing methods on both
datasets and all metrics. Compared to some methods using object features, our method has
better results without that. In addition, for the methods using same modalities (i.e., visual,
motion and audio), our method outperforms them especially on CIDEr, where we achieve
a 29.8% increase on the MSVD dataset and a 20.3% increase on the MSR-VTT dataset. For a
fair comparison, we also compare with the most recent method that uses CLIP features,
and our method is still better.

5.2. Ablation Study

The ablation study is mainly performed on the MSR-VTT dataset as it has more
adequate and diverse data. In this section, we show the impact of SME and multi-task
design in our model.

5.2.1. Effect of Multi-Modality

To validate the effectiveness of multi-modality, we report our experiments with dif-
ferent combinations of three selected modalities. In Table 2 and Figure 4, we only apply a
simple Transformer’s encoder as the baseline to control variables. The result shows that
using multiple modalities is better than using any single one. Moreover, the audio feature
performs better than the motion feature when combined with the visual feature, which
might be attributable to the higher similarity between the visual and motion. We achieved
the best results with three modalities; however, this is not much of an improvement over
using two features.

Table 2. Ablation study of modalities on MSR-VTT dataset. The modalities are fused by the baseline
encoder, a simple Transformer’s encoder. The maximum value of each column is marked in bold.

Visual Motion Audio B@4 M R C

X 37.5 28.5 59.8 47.4
X 38.0 27.2 59.2 41.1

X X 44.9 30.0 63.0 53.8
X X 46.9 31.0 64.8 58.6
X X X 45.7 30.9 64.3 60.7
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Figure 4. Ablation study of modalities on MSR-VTT dataset, using the sum of all metrics as overall
metric. A larger value is better.

5.2.2. Effect of SME and Multi-Task Learning

We carried out this ablation study by adding modules on a single-modality and a
three-modality baseline. Because the visual features contain the essential information in
the video-captioning task compared with other features (e.g., motion and audio features),
the single-modality baseline uses only visual features extracted by CLIP [41]. For a more
explicit comparison, we name the single-modality model as the CLIP baseline and the
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three-modality model as the multimodal baseline in Table 3. The baseline models use a
simple Transformer’s encoder, as in Table 2. The same hyper-parameters are used in two
modules, which are obtained from subsequent ablation experiments.

In both single-modal and multimodal cases, multi-tasking brings an improvement. It
improves the SUM metric by 2.7 and 2.0, respectively. By introducing the SME module,
the SUM metric is improved by 29.5 compared to CLIP baseline and 1.1 compared to
multimodal baseline. By applying both modules, the SUM metric is improved by 30.9
compared to CLIP baseline and 2.5 compared to multimodal baseline, which reaches the
state-of-the-art result. Hence, we conclude that simply using the latest CLIP features does
not achieve satisfactory results, and the performance is improved after adding our proposed
modules both separately and together.

Table 3. Compared results without multi-task or stepwise design on the MSR-VTT dataset. SUM
represents the sum of four metrics. The maximum value of each column is marked in bold.

⊙
and

⊗
refer to two baselines.

Models B@4 M R C SUM

CLIP baseline (
⊙

) 37.5 28.5 59.8 47.4 173.2⊙
+ multi-task 38.4 28.8 60.4 48.3 175.9

multimodal baseline (
⊗

) 45.7 30.9 64.3 60.7 201.6⊗
+ stepwise 46.5 31.1 64.6 60.5 202.7⊗

+ multi-task 47.0 30.8 64.7 61.1 203.6⊗
+ stepwise & multi-task 46.9 31.3 64.7 61.2 204.1

5.2.3. The Evaluation of SME

Our stepwise design allows the assignment of different depths for each modality,
which brings some hyper-parameters. Table 4 illustrates the experimental results of various
settings. We carried out the experiment by gradually adding the depth of each modality.
The learnable parameters of the model are related to the maximum depth. Since multiple
metrics are used, each with a different focus as described in Section 4.2, it is not convincing
to focus on any one metric alone. For example, a high C metric but low other metrics
may indicate that the model captures key information but has poor fluency, a high B@4
metric but low other values may indicate that the model is good at learning fixed sentence
patterns (e.g., “a man is . . . ” or “talking about something”), but ignores key information.
Since it has been an unsolved problem to find a metric that could accurately evaluate
language-generating tasks, we simply used the sum of the four metrics to select the best
model. As a result, we found the model performs best when assigning a deeper depth to
motion modality. Additionally, we found that the heavier model tends to have higher B@4
and lower C, which we analyzed because more parameters led to overfitting. The model
with more parameters tends to learn fixed sentence patterns in the dataset rather than key
information.

Table 4. Experimental results of assigning different depths to each modality by SME. V, M, A represent
the layer number of video, motion, and audio, respectively. SUM represents the sum of four metrics.
The maximum value of each column is marked in bold.

V M A B@4 M R C SUM Params

1 1 1 45.7 30.9 64.3 60.7 201.6 77.3 M
1 1 2 46.0 30.7 64.5 59.6 200.8 82.9 M
1 1 3 45.8 30.8 64.2 58.8 199.6 88.4 M
1 2 1 46.5 31.1 64.6 60.5 202.7 82.9 M
1 3 1 45.9 30.8 64.3 57.2 198.2 88.4 M
2 1 1 47.1 30.7 64.4 56.9 199.1 82.9 M
2 2 2 47.4 30.8 64.5 58.7 201.4 82.9 M
2 4 2 46.8 30.9 64.5 58.7 200.9 97.3 M
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5.2.4. The Evaluation of Multi-Task Learning

As shown in Figure 5, we investigate the effect of assigning different weights to the
auxiliary task on the results. The larger β is, the more weight the video-captioning task
takes up, and the condition of β = 1 is the result of no multi-task learning. We can observe
that the model performs better when β is set to 0.3 or 0.4.
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Figure 5. Experimental results of the hyperparameter of multi-task. Use the sum of all metrics as the
overall metric. A larger value is better.

5.3. Qualitative Results

Several examples of the MSR-VTT dataset generated by our model are shown in
Figure 6. Our model successfully captures the details of the video, such as the black shirt,
glasses, desk, and Lego man. In addition, our model does not over-describe the video.
For example, the baseline model describes in the top-left video that the man is talking
about a computer while he is just using it. In addition, on the top-right video, the baseline
model describes that the content is about a recent movie, but it is not. It could be seen
as an example of overfitting, while our multi-task design mitigates it. However, when
encountering some confusing videos (e.g., the bottom-right video, which is a still video of
two images of Lego toys), our model accurately identified some elements (i.e., Lego) but
incorrectly added relationships (i.e., talking).

GT: an old man is explaining something 

showing on the screen

Baseline: a man is talking about a 

computer

Ours: a man in a black shirt is talking 

about something

GT: an old man is explaining something 

showing on the screen

Baseline: a man is talking about a 

computer

Ours: a man in a black shirt is talking 

about something

GT: people are sitting at computer 

stations in an office setting

Baseline: a group of people are talking to 

each other

Ours: a group of people are sitting at a 

desk talking

GT: people are sitting at computer 

stations in an office setting

Baseline: a group of people are talking to 

each other

Ours: a group of people are sitting at a 

desk talking

GT: a lego figure is holding a gun

Baseline: a lego man is playing with legos

Ours: a lego man is talking to another 

lego man

GT: a lego figure is holding a gun

Baseline: a lego man is playing with legos

Ours: a lego man is talking to another 

lego man

GT: a man with glasses talks about 

computer science and programming

Baseline: a man in a suit is talking about 

the latest movie

Ours: a man with glasses is talking about 

something

GT: a man with glasses talks about 

computer science and programming

Baseline: a man in a suit is talking about 

the latest movie

Ours: a man with glasses is talking about 

something

Figure 6. Examples of the MSR-VTT dataset. GT is short for ground truth, which we randomly select
for one from candidates. Baseline uses only CLIP features without multi-modality and multi-task,
while ours applies both.

The visualization of attention weights is shown in Figure 7. Our model accurately
describes this music video. The model focused primarily on the visual features, and the
motion features are given more attention when generating two verbs (i.e., singing, dancing).
Additionally, as the verbs are related to audio, the audio features are used when generating
two verbs.
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Visual

Motion

Audio

Figure 7. Visualization of attention weights of the last layer of caption generator. Each row represents
a modality, and each column represents the attention weights of three modalities when generating
a word. SEP is the end symbol. The example video is a music video of a pop song from MSR-
VTT dataset.

6. Conclusions

This paper presents a video-captioning method using a novel Stepwise Multimodal
Encoder (SME) and a multi-task design. In this method, SME exploits the multimodal
nature of the video and considers the difference between various modalities. In addition,
the multi-task design leverages the T2V flow, which mitigates overfitting problems. In
general, this paper improves the quality of the output captions of the model and takes a
step toward actually helping the visually impaired. The experiments show that our method
achieves competitive results on MSVD and MSR-VTT datasets. We also provide an ablation
study to verify each module and qualitative examples to visualize the results.

Although the number of parameters of the model in this paper is not too large, the
number of parameters is still too large for practical use when the parameters of the feature-
extraction model are included. We hope to improve it by using lighter feature extractors or
performing model distillation in the future. We expect this work may further inspire more
future studies for video captioning.
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Abbreviations
The following abbreviations are used in this manuscript:

B@4 4-gram Bleu metric
CNN Convolutional Neural Network
C CIDEr metric
ICP Image-Classification Pretrained
LSTM Long Short-Term Memory network
M METEOR metric
MHA Multi-Head Attention
MT-SME Multi-Task Stepwise Multimodal Encoder
R ROUGE metric
RNN Recurrent Neural Network
SME Stepwise Multimodal Encoder
Seq2Seq Sequence to Sequence
SA Self-Attention
T2V Video to Text
V2T Text to Video
VLP Vision–Language Pretrained
ViT Vision Transformers
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