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Abstract: High security has always been the ultimate goal of image encryption, and the closer the
ciphertext image is to the true random number, the higher the security. Aiming at popular chaotic
image encryption methods, particle swarm optimization (PSO) is studied to select the parameters
and initial values of chaotic systems so that the chaotic sequence has higher entropy. Different
from the other PSO-based image encryption methods, the proposed method takes the parameters
and initial values of the chaotic system as particles instead of encrypted images, which makes it
have lower complexity and therefore easier to be applied in real-time scenarios. To validate the
optimization framework, this paper designs a new image encryption scheme. The algorithm mainly
includes key selection, chaotic sequence preprocessing, block scrambling, expansion, confusion,
and diffusion. The key is selected by PSO and brought into the chaotic map, and the generated
chaotic sequence is preprocessed. Based on block theory, a new intrablock and interblock scrambling
method is designed, which is combined with image expansion to encrypt the image. Subsequently,
the confusion and diffusion framework is used as the last step of the encryption process, including
row confusion diffusion and column confusion diffusion, which makes security go a step further.
Several experimental tests manifest that the scenario has good encryption performance and higher
security compared with some popular image encryption methods.

Keywords: image encryption; particle swarm optimization; logistic map

1. Introduction

Over the years, with the improvement of science and technology and the rapid increase
in Internet usage, a great quantity of data has been produced, and data dissemination has
increased significantly on various networks. It can be clearly observed that multimedia
data, especially digital images, have been increasing sharply. However, the authenticity,
integrity and security of these massive amounts of data have become important challenges
for users and institutions that process these data. Techniques such as steganography
and image encryption are feasible methods to solve the security problem of digital image
transmission [1–3]. Among all the technical means to provide image security, the encryption
scheme is a traditional, efficient, and practical method.

A large number of pixels and the high correlation in the image require efficient
encryption algorithms in addition to preliminary technologies such as AES, RSA and
DES [4–6]. Consequently, various encryption scenarios based on diverse methods have
been created, mainly including quantum methods [7,8], cellular automata methods [9,10],
image compressed sensing methods [11,12], DNA sequence methods [13–15], and chaotic
system methods [16,17].
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The properties of chaos theory, such as pseudorandomness and sensitivity to the initial
value [18–20], are consistent with the requirements of cryptography. The initial value sensi-
tivity of the chaotic map corresponds to the key sensitivity required by cryptography. The
mixing properties and topology of chaos are consistent with the diffusion and scrambling
characteristics in the encryption process. Chaos signals are very suitable for designing
image encryption schemes. Many scholars apply chaos theory to the design of encryption
and decryption algorithms [21–25]. Therefore, the field has come a long way since chaotic
signals were used for image encryption in the last century.

When using chaotic systems for encryption, both one and high-dimensional chaotic
systems are available. 1D chaotic maps, such as logistic, sine and tent maps, have sim-
ple chaotic orbits and relatively few parameters [26,27]. Zhou et al. [28] created a model
capable of generating multiple 1D chaotic maps and enforced secure image encryption.
Kumar et al. [29] utilized a 1D logistic map for encryption and used pseudorandom num-
bers in the encryption process to improve the anti-attack ability. Many scholars have
proposed high-dimensional chaotic systems. Hua et al. [30] proposed a 2D chaotic model,
which enhanced the nonlinearity and randomness of 2D chaotic sequences. Wang et al. [31]
created a 2D-SCLMS system with a larger chaotic range for image encryption. Luo et al. [32]
created a novel encryption scenario based on logistic and Baker maps. In addition, various
chaotic systems, such as 2D sine logistic modulation map, nonadjacent coupled map lat-
tices, reverse 2-dimensional chaotic map, and Chen system, have been used for the image
encryption domain [33–37].

A general chaotic image encryption algorithm usually consists of two main parts:
diffusion and confusion. Fridrich proposed a framework of confusion and diffusion for
encryption on the basis of chaos theory in 1998 [38]. Under this framework, many image
encryption algorithms have been proposed [39,40]. Certainly, to better scramble images,
block theory is often used in image encryption methods. Murugan et al. [41] created a
chaotic encryption scenario based on confusion and diffusion of chaotic map blocks. Wang
et al. [42] used block theory and divided it into two sections: interblock scramble and
intrablock scramble. Image expansion is also a process of encryption, which can add ran-
dom numbers to the image, making the image more resistant to selective plaintext attacks.
Zhao et al. [37] also expanded the plaintext image under the framework of confusion and
diffusion and achieved good encryption effect.

An optimization-based encryption scenario is also emerging, which optimizes the
information attributes of the cipher image by choosing a suitable fitness function to obtain
an optimized encryption effect. With the optimization scheme, the correlation coefficient or
information entropy (IE) of the ciphertext image approaches the standard number, thereby
greatly reducing the amount of useful information embodied in the encrypted image. To
achieve the optimal encryption effect, some optimization algorithms, such as PSO, are
usually applied to image encryption scenarios. Sabarinath et al. [43] studied an image
encryption scenario using an improved PSO algorithm. The method involves Arnold
transformation and then uses a key generated from an improved PSO to disrupt the pixel
locations in each block of the encrypted image. Musheer et al. [44] created an encryption
scenario based on PSO and a logistic map. The optimization objective is to minimize the
correlation coefficient of the encrypted image; therefore, the optimal ciphertext image is
searched. Wang et al. [45] studied the image encryption scheme based on multi-objective
PSO and applied DNA coding and 1D logistic map. The objective function of PSO is the
correlation coefficient and information entropy. For the above PSO algorithm for image
encryption, named cipher image-based PSO (CIPSO), the statistical characteristics of the
ciphertext image are used as the optimization objective to acquire the final ciphertext image
in which many rounds of encryption are performed. However, because the PSO is used
in every cipher image, encryption algorithms are inevitably iterated many times which
makes the algorithm unsuitable for real-time requirements, especially under large data
image encryption conditions.
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Different from the above CIPSO image encryption ideas, a novel framework is pro-
posed to use the population-based particle swarm optimization algorithm in the paper.
Because the chaotic performances of chaotic systems only depend on their initial values
and systematic parameters, if we acquire the optimized parameters and initial values for
one chaotic map, it can be applied to chaotic encryption for any image. In addition, to
decrease the complexity of applying the PSO algorithm, in the proposed framework, for
the logistic chaotic system, only the information entropy of the sequences generated by
the chaotic map is taken as the variable of the optimal objective function. The encryption
steps in this paper include chaotic sequence preprocessing, expansion, block scrambling,
confusion and diffusion. Our proposed encryption algorithm does not require multiple
encryption processes, so it is faster than the CIPSO methods. This allows the chaotic system
to have better properties in encrypting images and producing encryption results.

The innovations of the paper are as follows: (1) The optimization framework solves
the dependence of chaotic systems on initial values and parameters. The framework
can be applied in any chaotic system except the 2D logistic chaotic system. (2) A novel
encryption method is proposed, especially the intra block scrambling process, which is a
novel scrambling method.

This paper also has certain shortcomings. For example, the correlation between the
encryption scheme and the plaintext image is not close, and it cannot achieve a good ability
to resist differential attacks. This requires us to strengthen the algorithm’s ability to resist
differential attacks in future research.

The contents of the remaining sections are arranged as follows. Section 2 introduces
the related work used in the encryption process, including the chaotic system, image
scrambling methods and image expansion method. Section 3 designs the PSO scheme and
the process of finding the optimized solution. Section 4 demonstrates the novel encryption
scenario. Section 5 describes the corresponding decryption process. Section 6 presents the
simulation results and security analysis of the encryption scenario, which can prove the
usability of the newly proposed algorithm. Section 7 gives the discussion results of the
paper. Section 8 is the conclusion.

2. Related Work

In this section, we briefly introduce the chaotic map and related encryption methods
that will be used in the new encryption scheme.

2.1. Chaotic Map

A 2D logistic map [42] is utilized as an example to show the PSO-based optimized
framework, iteratively generate chaotic sequences, and encrypt the image. Its expression is{

xn+1 = µ1(xn − x2
n) + λ1y2

n
yn+1 = µ2(yn − y2

n) + λ2(x2
n + xnyn)

(1)

In Equation (1), xn, yn ∈ (0, 1), the four system parameters are µ1, µ2, λ1, λ2 respectively.
When µ1 ∈ (2.75, 3.4], µ2 ∈ (2.75, 3.45], λ1 ∈ (0.15, 0.21] and λ2 ∈ (0.13, 0.15], the map
is in chaos, and the chaotic sequences are conducive to image encryption to achieve
better results.

2.2. Block Scrambling

This paper applies block theory to scramble images, which aims to make the lower
correlation between adjacent pixels and strong robustness resist statistical attacks. This
consists of two portions. Specifically, intrablock scrambling traverses the pixel matrix in
squares to reduce the correlation between pixels; interblock scrambling performs block
exchange according to the chaotic sequence. To improve performance, the number of image
blocks designed is 16.
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2.2.1. Interblock Scrambling

Sixteen subblocks of equal size are divided by the image in the experiment. One of
the chaotic sequences determines the interblock scrambling method. Then, the chaotic
sequence is converted to a positive integer sequence, and interblock scrambling is applied
to the image blocks according to the rules of ordering. An example of a 3 × 3 matrix is
presented in Figure 1.
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2.2.2. Intrablock Scrambling

Intrablock scrambling realizes the messing of pixels in each block. This scrambling
method traverses each pixel from the inside to the outside by drawing a square. First, the
pixel values are extracted starting in the middle of the image subblock, and after one round
of drawing, the number of rows and columns are reduced by one. Then, a new round of
square drawing is started until the end of each pixel value of the traversal subblock. Each
obtained pixel value is sequentially stored in a 1D sequence and finally converted into a 2D
pixel block matrix of the same size as the subblock. For example, this paper uses a 4 × 4
matrix to explain the method in Figure 2.
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2.3. Image Expansion

Image expansion adds random numbers to the image matrix to ensure that different
ciphertext images can be obtained by encrypting the image twice under the same key value,
which increases the algorithm’s resistance to selective plaintext attacks. Specifically, this is
explained as follows:

(1) Generate two random matrices R0 and R1, where the sizes of R0 and R1 are
4 × (N + 4) and M × 4, respectively.
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(2) Add the first two columns of R1 to the leftmost side of the original image and add
the last two columns of R1 to the rightmost part of the original image.

(3) The first two lines of R0 are added to the top line of the changed image, and the
last two lines of R0 are added to the bottom line of the changed image.

Therefore, the image expansion is completed, and the expanded image size is (M + 4)
× (N + 4). Take the matrix 4 × 4 as an example in Figure 3.
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3. PSO-Based Parameter Selection for the Chaotic Map
3.1. PSO

PSO was created by Eberhart and Kennedy in 1995 [46,47]. PSO is a population-based
optimization technique that is an optimization algorithm for population intelligence in the
field of computer intelligence [48]. Suppose a flock of birds forage randomly in a large field.
How then to explain, no birds know where the food is in the field, but they only know the
distance from the food. One of the most effective ways to find food is to hang out with the
birds that are closest to the food site. PSO has the advantages of intuitive process, simplicity
and easy realization. It is applied in many fields, for example, function optimization, signal
processing, neural networks and so on. The specific operation of the algorithm is described.

The PSO algorithm first needs to initialize a group of particles R = {x1, x2, . . . , xN} in
the feasible solution space s, where the number of particles is assumed to be N and the
objective function f is established. Each particle corresponds to an objective function f (xi)
and iterates by updating the velocity vi(t) and position xi(t) of the particle. During the
iteration, the individual extremum Pbest and the group extremum Gbest of the particle are
recorded to find the particle that can make the objective function f (x) reach the best.

Particles have only two attributes: velocity vi(t) and position xi(t). vi(t) represents the
speed of movement and xi(t) represents the direction of movement. The expressions for the
update iteration of particle velocity vi(t) and position xi(t) are

vi(t + 1) = ωvi(t) + c1r1(Pbesti(t)− xi(t)) + c2r2(Gbesti(t)− xi(t))
xi(t + 1) = xi(t) + vi(t + 1)

(2)
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where ω is the inertia weight. r1, r2 ∈ [0, 1] are random vectors. c1 and c2 are constants.
Normally, there are certain restrictions on the velocity and position used for iterative updates,
such as velocity and position within the interval [Vmin, Vmax], [Xmin, Xmax], respectively.

3.2. The Newly Proposed Parameter Selection of the Chaotic Map Algorithm

The PSO scheme is used to find the optimized parameter values of the 2D logistic map.
Therefore, we must determine the optimization objective of PSO algorithm.

IE is an efficient quota to appraise the randomness of sequences, which is expected
to produce a better image encryption effect when the chaotic sequence used in image en-
cryption has a higher IE. Therefore, IE is an appropriate objective function for optimization
problems. The optimization scheme is introduced in detail below.

The gray value of the image is generally an integer between [0, 255], and the chaotic
sequences are used for image confusion and diffusion after preprocessing. To finally make
the pixels of the obtained cipher image still in the range of [0, 255], the chaotic sequences
{xn}, {yn} generated by Equation (1) are transformed into sequences of integers in the interval
[0, 255] according to Equation (3).

x1
n = f loor(xn × 255)

y1
n = f loor(yn × 255)

(3)

Entropy is a quantification method of the average amount of information possessed
by the information source, which can be used to assess the degree of disorder of the map.
For the information source, the expression is Equation (4).

H(s) = −
M

∑
i=0

p(si) log2 p(si) (4)

where M is the number of signals. Herein, M = 255. si ∈ s, p is the probability. The IE of a
true random source is 8 [49].

The 2D logistic map generates two sequences, each of which has its corresponding
entropy, in this case two objective functions. To facilitate the calculation, a simple method
is introduced to establish an overall objective function f (x) [50], which is represented as

f (x) = α f1(x) + β f2(x) (5)

where α and β are constants that represent the weights of the two subobjective functions
f 1(x) and f 2(x). The two subobjective functions in this paper are equally important for the
overall objective function, namely, α = β = 0.5.

The specific expression of the overall objective function is shown in Equation (6).

f (x) = α1[
M

∑
i=0

p1(si) log2
1

p1(si)
] + α2[

M

∑
i=0

p2(si) log2
1

p2(si)
] (6)

where α1 and α2 are constants representing the weights of the two parts. α1 = α2 = 0.5.
In the PSO algorithm, the initial particle population and the initial velocity are chosen

randomly. Because the 2D logistic map has two initial values x0 and y0 and four initial
parameters µ1, µ2, λ1, and λ2, the dimensionality of each particle is six dimensions, among
x0 ∈ (0, 1), y0 ∈ (0, 1), µ1 ∈ (2.75, 3.4], µ2 ∈ (2.75, 3.45], λ1 ∈ (0.15, 0.21] and λ2 ∈ (0.13, 0.15].
The velocity and position of each particle are iterated, and the particle corresponding to the
overall objective function generated is the optimized initial values and parameters sought.
The initial particle swarm and initial velocity are randomly selected, so the optimized
initial values and parameters generated by the PSO algorithm are different each time in
Algorithm 1.
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Algorithm 1 PSO framework

Input: 2D Logistic map, initial values x0, y0, initial parameters µ1, µ2, λ1, λ2, initial dimensions, number of particles, velocity,
position, and iterations t, and maximum iterations T.
Output: optimized particle
1: for each iteration
2: for each particle
3: for each dimension
4: Iterative 2D Logistic map according to Equation (1)
5: Calculate the entropy of the sequence {xn} according to Equations (3) and (4)
6: Calculate the entropy of the sequence {yn} according to Equations (3) and (4)
7: Calculate the overall objective function f (x) according to Equation (6)
8: if f (x) > Gbest_val
9: The particle corresponding to the overall objective function is the current optimized particle
10: end
11: if t < T
12: Update the speed vi according to Equation (2)
13: Update the position xi according to Equation (2)
14: if xi exceeds the value range of the chaotic system
15: xi = xi−1
16: end
17: end
18: Repeat steps 4 through 17 until the iteration is complete
19: The global optimum is the optimized particle
20: end
21: end
22: end

Note: The process of particle swarm iteration (steps 14–16) limits the range of particles,
i.e., the range of motion of particles cannot exceed the parameter range required by the
chaotic map.

4. Image Encryption

The image encryption process mainly includes key selection, chaotic sequence prepro-
cessing, block scrambling, expansion, confusion and diffusion. The detailed explanation is:
PSO is utilized to select the optimized key for encryption. Chaotic sequence preprocessing
makes the sequence more random. Block scrambling is divided into intra block and inter
block scrambling, which reduces the correlation and provides better protection against
statistical attacks. The expansion step adds random numbers to the original image so
that each encryption obtains a different ciphertext image, which can better resist selective
plaintext attacks. Confusion and diffusion complicate the relationship between ciphertext
and keys, making it difficult for an adversary to decrypt from a ciphertext image, which
further enhances the resistance of the scenario. The encryption flowchart drawn according
to the above description is shown in Figure 4.
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4.1. Key Selection

The optimized values x0, y0, µ1, µ2, λ1 and λ2 generated by the PSO algorithm are
used as the keys for the 2D logistic map. To avoid transient effects, the first two hundred
points are discarded, and Equation (1) is used to generate two chaotic sequences {xn}, {yn},
which are of length MN.

4.2. Chaotic Sequence Preprocessing

The two chaotic sequences {xn}, {yn} are preprocessed according to Equation (7).

x1(i) = 10q · xn(i)− round(10q · xn(i)) + 0.5
y1(i) = 10q · yn(i)− round(10q · yn(i)) + 0.5

(7)

where x1(i) and y1(i) are chaotic sequences {xn}, {yn} preprocessed sequences, where q = 8.

4.3. Image Scrambling

(1) The 16 subblocks B(i), i = 1,2, . . . ,16 of the same size are divided by the original
image P1, and the last 16 numbers of the sequence x(i) are taken to compose a sequence
D(i). Then, it is transformed into an integer sequence S(i). The obtained integer sequence
S(i) is sorted, and interblock scrambling is achieved according to Equation (8).

S(i) = f loor(mod(D(i)× 1014, 16)) + 1
[s, l] = sort(S)

B1 = B(l)
(8)

(2) Sequences t1 and t2 are composed of 8 sequence values in the middle of sequences
x(i) and y(i), respectively, and the new sequence t is formed according to Equation (9). Each
subblock is disordered ti times by the intrablock scrambling introduced in Section 2.2.2 to
form the new disordered 16 sub-blocks.{

t(2(i− 1) + 1) = f loor(mod(t1× 1014, 3)) + 4
t(2i) = f loor(mod(t2× 1014, 3)) + 4

(9)

(3) The 16 subblocks are merged to form image P2.

4.4. Image Expansion

Two random matrices R0 and R1 are generated, where the sizes of R0 and R1 are 4
× (N + 4) and M × 4, respectively. Expand image P2 according to the method shown in
Section 2.3 to form an expanded image P3.

4.5. Confusion and Diffusion
4.5.1. Confusion and Diffusion of Row

First, calculate the new row index r(i) = ceil (x1(i) × (M + 4)) using x1(i), and then
compare row i with row indexes r(i).

i f r(i) < i, then
r(i) = i

(10)

Second, the parameter k11, k12 is calculated using x1(i).

k11(i) = mod( f loor(x1(i)× 108), 256)
k12(i) = mod( f loor(x1(i)× 109), 256)

(11)
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Third, perform a bitwise XOR operation on the expansion image P3 with parameter
k11, k12.

i f i = r(i), then
P30(i, :) = P3(i, :)⊕ k11(i)

i f i 6= r(i), then
P30(i, :) = P3(i, :)⊕ k11(i)

P30(r(i), :) = P3(r(i), :)⊕ k12(i)

(12)

Fourth, swap the i-th and r(i)-th row of P30 to obtain P31.

temp = P30(i, :)
P30(i, :) = P30(r(i), :)

P30(r(i), :) = temp
P31 = P30

(13)

Fifth, the first and last columns of P31 are calculated to obtain P4.

P4(i, 1) = mod(P31(i, 1) + P31(i, N + 4), 256) (14)

Sixth, the other columns of P31 and P4 are calculated.

P4(i, j) = mod(P31(i, j) + P4(i, j− 1), 256) (15)

4.5.2. Confusion and Diffusion of the Column

The confusion and diffusion of columns are similar to the rows’, except that sequence
y1(i) is used instead of sequence x1(i). The specific calculation procedure is presented in
Algorithm 2.

Algorithm 2 Column confusion and diffusion

Input: Image P4 and preprocessed chaotic sequence y1(i)
Output: Image P5
1: for j = 1 to N + 4
2: q(j) = ceil((N + 4) · y1(j));
3: k21(j) = mod( f loor(108 × y1(j)), 28);
4: k22(j) = mod( f loor(109 × y1(j)), 28);
5: if q(j) < j then
6: q(j) = j;
7: end if
8: if q(j) = j then
9: P4(:, j) = k21(j)⊕ P4(:, j);
10: else if
11: P4(:, j) = k21(j)⊕ P4(:, j);
12: P4(:, q(j)) = k22(j)⊕ P4(:, q(j));
13: end if
14: temp = P4(:, j);
15: P4(:, j) = P4(:, q(j));
16: P4(:, q(j)) = temp;
17: P41 = P4;
18: for i = 1 to M + 4
19: P5(1, j) = mod(P41(1, j) + P41(M + 4, j), 28);
20: P5(i, j) = mod(P5(i− 1, j) + P41(i, j), 28);
21: end for
22: end for

5. Image Decryption

Decryption is the process of decrypting the ciphertext image according to the reverse
step of the encryption process. From the encryption algorithm in Section 4, we get that



Electronics 2022, 11, 2628 10 of 19

the decryption steps are the inverse of confusion and diffusion, expansion, and block
scrambling. The decryption key is the encryption key, so the decrypted image can be
obtained correctly. The decryption flowchart corresponding to the encryption flowchart is
shown in Figure 5.
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Step 1: The two optimized initial values x0 and y0 and four optimized system parame-
ters µ1, µ2, λ1 and λ2 generated by the PSO algorithm are used as the security keys of the
2D logistic map, and the sequence {xn}, {yn} is generated by iterative Equation (1).

Step 2: The random sequence {xn}, {yn} generated by the 2D logistic map can obtain
the preprocessed sequences x1(i) and y1(i) according to Equation (7). Image P4 is acquired
by executing the reverse operation of confusion and diffusion of the column on encrypted
image P5 according to sequence y1(i).

Step 3: Image P3 is acquired by executing the reverse operation of confusion and
diffusion of the row on image P4 according to sequence x1(i).

Step 4: Delete the first two lines and the last two lines of image P3 in turn and then
delete the first two columns and the last two columns to obtain image P2.

Step 5: Image P2 is partitioned into 16 subblocks of the same size. The sequence t is
calculated according to Equation (9), and the inverse of the block-internal scrambling is
executed for each subblock.

Step 6: According to the sequence S(i), the inverse of the interblock operation is
performed on each subblock, and then the 16 subblocks are combined to obtain the plain
image P1.

6. Simulation Results and Performance Analysis

This part gives the simulation experiments and the performance analysis of the scheme.
Grayscale images of different sizes are chosen, mainly “Lena” (L, 256 × 256), “Cameraman”
(C, 256× 256), “7.1.02” (512× 512) and “Boat” (B, 512× 512). The number of PSO iterations
t is 50, and the particle swarm is 50.

6.1. Experimental Environment

In order to simulate the encryption scheme and verify the performance of the algo-
rithm, all experiments are conducted on a PC with AMD Ryzen 2.00 GHz CPU, 8 G RAM,
and 1 TB hard disk with Window 10 Ultimate system. This experiment is operated by
MATLAB R2020a software.

6.2. Simulation Results

To verify the effect of encryption, the simulation experiments are presented in Figure 6.
It presents the plain, ciphertext and corresponding decrypted images of “Lena”, “Camera-
man”, “7.1.02” and “Boat” respectively. All the ciphertext images resemble noise images,
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and no information can be obtained, which demonstrates that the encryption achieves good
results, and all the encrypted images can achieve correct decryption.
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Decrypted images.

6.3. Running Time

To demonstrate the utility of the scenario, the running time is presented in Table 1.
The running time is acceptable, which demonstrates that the scheme is practical.

Table 1. Encryption runtime (Unit: s).

Image Lena Cameraman Boat 7.1.02

Time 0.430096 0.377874 1.219809 1.412237

6.4. Key Space Analysis

The PSO algorithm generates optimized initial values x0 and y0 and parameters µ1,
µ2, λ1 and λ2. Therefore, x0, y0, µ1, µ2, λ1, and λ2 are both keys. It is presumed that the
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calculation accuracy is 10−14, and the total key space 1014×6 = 1084 � 2100; that is, it is
sufficiently large, which offers strong resistance to violent attacks.

6.5. Key Sensitivity Analysis

The more sensitive the scheme is to the key value, the better and more secure the
algorithm is. Figure 7 takes the “Lena” as an example for illustration. When any key
changes by 10−14, the decrypted image resembles noise, which demonstrates that the
scheme is key sensitive.
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To test the sensitivity of the scheme to the key, the unified average change inten-
sity (UACI) and the number of pixel change rate (NPCR) are adopted [51], and their
expressions are

UACI = 1
M×N

M
∑

i=1

N
∑

j=1

|C1(i,j)−C2(i,j)|
255

NPCR = 1
M×N

M
∑

i=1

N
∑

j=1
|Sign(C1(i, j)− C2(i, j))|

(16)

where C1 and C2 are two different ciphertext images.
When the NPCR > NPCR*α, the NPCR passes the test. When the UACI is between

[UACI*−α, UACI*+
α], the UACI passes the test [52]. NPCR and UACI statistical tests on

key sensitivity are shown in Tables 2 and 3.

Table 2. The NPCR statistical test on key sensitivity.

Image NPCR Theoretical NPCR Critical Value

512 × 512
N*0.001 = 99.5717% N*0.01 = 99.5810% N*0.05 = 99.5893%

0.001-level 0.01-level 0.05-level

L 99.6109% Pass Pass Pass

C 99.6095% Pass Pass Pass

B 99.6139% Pass Pass Pass

7.1.02 99.5955% Pass Pass Pass
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Table 3. The UACI statistical test on key sensitivity.

Image UACI Theoretical UACI Critical Value

512 × 512

N*−0.001 = 33.3115% N*−0.01 = 33.3445% N*−0.05 = 33.3730%

N*+
0.001 = 33.6156% N*+

0.01 = 33.5826% N*+
0.05 = 33.5541%

0.001-level 0.01-level 0.05-level

L 33.5384% Pass Pass Pass

C 33.4358% Pass Pass Pass

B 33.4196% Pass Pass Pass

7.1.02 33.4063% Pass Pass Pass

6.6. Statistical Attack Analysis
6.6.1. Histogram Analysis

The histogram indicates the pixel value distribution [53]. The more uniform the
histogram of the ciphertext image, the less image information is displayed. Figure 8
presents the histogram of the original and cipher images of “Lena” and “Boat”. The
histograms of the ciphertext images are similarly uniformly distributed, indicating that the
scenario is very good.
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6.6.2. Chi-Square Analysis

Chi-square is a quantitative indicator that can be utilized to appraise the ability of an
algorithm to resist statistical attacks. Its expression is

χ2 =
255

∑
i=0

(υi − υ0)
2

υ0
(17)

where υi is the frequency occupied by i. υ0 = MN/256. The chi-square value of all test
images is enumerated in Table 4. The chi-square of the original image is larger, while the
chi-square of the encrypted image is lower than 293.2478 [54], which indicates that the
scheme can resist statistical attacks.
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Table 4. Chi-square.

Image Lena Cameraman Boat 7.1.02

Chi-square Ciphertext image 206.7957 203.6677 216.3745 238.2732
Plaintext image 30,665.7 110,973.3 383,969.7 5,401,084.9

6.6.3. Correlation Analysis

The correlation between adjacent pixels of the ciphertext image is smaller, and the more
resistant it is to statistical analysis attacks. The correlation coefficients [55] are calculated by
Equation (18).

ρxy =

1
N

N
∑

i=1
(xi−E(x))(yi−E(y))
√

D(x)D(y)

E(x) = 1
N

N
∑

i=1
xi

D(x) = 1
N

N
∑

i=1
(xi − E(x))2

(18)

where x and y express the adjacent pixel values of the image and ρxy represents the correla-
tion coefficient.

In this paper, we select 10,000 pairs of adjacent pixels in the horizontal (H), vertical (V)
and diagonal (D) directions for the original and encrypted images of “Lena”. The plaintext
image is close to the diagonal direction in all three directions, while the points in all direc-
tions of the ciphertext image are randomly distributed throughout the data range in Figure 9,
which demonstrates that the scheme greatly reduces the original image correlation.
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Figure 9. Correlation analysis. (a) The horizontal direction of the plaintext; (b) The horizontal
direction of the ciphertext; (c) The vertical direction of the plaintext; (d) The vertical direction of the
ciphertext; (e) The diagonal direction of the plaintext; (f) The diagonal direction of the ciphertext.
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The correlation coefficients of all original images are close to 1, while the encrypted
images are close to 0 in Table 5, indicating that the scheme is good and can effectively resist
statistical attacks.

Table 5. Correlation coefficient.

Image Direction Original
Image

Encryption Image

Ref. [33] Ref. [37] Ours

Lena
H 0.9777 0.00043 0.0052 0.0017
V 0.9593 0.0048 −0.00011 0.00092
D 0.9502 −0.0040 −0.0022 0.0011

Cameraman
H 0.9591 0.0010 0.0014 0.00047
V 0.9572 −0.0048 0.0027 −0.0055
D 0.9392 0.0080 −0.0004 −0.00004

Boat
H 0.9719 0.0013 0.00032 −0.00011
V 0.9437 0.00014 0.0016 0.0021
D 0.9250 0.0044 −0.0025 −0.0041

7.1.02
H 0.9743 −0.0044 −0.0031 0.0015
V 0.9785 −0.0011 0.0022 0.00026
D 0.9661 0.0012 0.0038 −0.0027

6.6.4. Information Entropy

The IE expresses the degree of random distribution of an image and is often called
Shannon entropy, which is expressed as Equation (4). A higher IE indicates a more random
image pixel distribution. The IE of the test image is presented in Table 6. The IE of the
ciphertext images of the new scenario is closer to 8 and outperforms the values of other
algorithms, which demonstrates that the scenario is better.

Table 6. Information entropy.

Image Ref. [33] Ref. [37] Ours

L 7.9975 7.9977 7.9978
C 7.9976 7.9972 7.9978
B 7.9973 7.9994 7.9994

7.1.02 7.9993 7.9992 7.9994

6.6.5. Local Information Entropy (LIE)

LIE can represent the randomness of local images. To accurately evaluate the random-
ness of the local image in the ciphertext image, the LIE is used.

LHk,TB(S) =
k

∑
i=1

H(Si)

k
(19)

In Equation (19), k is randomly selected for the number of subimages after im-
age segmentation. TB randomly selects the number of pixels in the subimage. S ex-
presses the encrypted image. H(Si) expresses the IE of Si. Specifically, we choose k = 30
and TB = 1936. When the confidence interval is 0.001, the LIE belongs to the interval
(7.901901305, 7.903037329) [56]. We take these four images as examples in Table 7. Four
images passed the test, which explains why the randomness of the local image is good.
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Table 7. LIE.

Image Value Outcome

L 7.902669871 Pass
C 7.902592647 Pass
B 7.902378187 Pass

7.1.02 7.902937793 Pass

6.7. Cropping Attack

To evaluate the anti-interference capability of the encryption scenario under a cropping
attack. Cropping attacks of different strengths are used on the encrypted images. A
cropping attack is performed by setting a portion of the pixel block value of the encrypted
image to 0 and decrypting it. The decrypted images under different cropping strengths
are shown in Figure 10. The new encryption scenario can recover the encrypted image to a
certain extent from clipping attacks, which demonstrates that the scenario is robust and
resistant to cropping attacks.
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6.8. Noise Attack

Images are affected by various noises during transmission over the Internet, which
have an impact on decrypted images. To qualitatively test the resistance in noisy environ-
ments, we add different strengths of salt and pepper noise (SPN) to the encrypted images.
The noise strength is set to 0.005, 0.01 and 0.05 in order. The results of the noise resistance
test of the encryption algorithm are presented in Figure 11. Some content of the original
image can still be seen from the decrypted image after adding different strengths of noise
to the ciphertext image. This indicates that the new scenario can resist noise attacks of a
certain strength. Thus, the scenario is secure and resistant to noise attacks.
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6.9. The Influence of the PSO Algorithm on Image Encryption

The objective function of PSO is composed of the information entropy of two chaotic
sequences. To better explain the impact of the optimized initial values and parameters
obtained by PSO on image encryption, we stochastically choose two different sets of initial
values and parameters, denoted as value 1 and value 2. Different indicators of “Lena” are
compared in Table 8. The indicators under the optimized initial values and parameters
are better than others. This shows that a chaotic map is conducive to image encryption to
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achieve better results under the optimized initial values and parameters acquired by the
PSO algorithm.

Table 8. Comparison of different initial values.

Index Value 1 Value 2 Optimized Values

Information entropy 7.9972 7.9974 7.9978

Chi-square 261.8054 243.1583 206.7957

Correlation
coefficient

H −0.0036 0.0099 0.0017
V 0.0080 −0.0018 0.00092
D −0.0096 0.0043 0.0011

7. Discussion

The chaotic image encryption scheme based on PSO algorithm proposed in this paper
can resist various attacks, in addition to demonstrating security and timeliness. However, it
also has certain limitations. Since the optimized initial value and parameters of the chaotic
map are generated by the PSO algorithm, the key has no correlation with the plaintext
image, so that the encryption result will not change greatly due to the change of the pixels in
the plaintext image. This requires us to improve the relevance of the algorithm to plaintext
images in future research.

8. Conclusions

The PSO framework is proposed to seek the optimized initial values and optimized
parameters of chaotic systems and is then used for encryption by a special chaotic map. The
objective function of PSO is composed of the IE of the chaotic sequences. The optimized
initial values and parameters can make the chaotic sequences more similar to the random
sequence, which is beneficial to the encryption to achieve better results. In the process of
encryption, the methods of scrambling, expansion, confusion and diffusion are used in this
paper. In the scrambling process, different block scrambling methods are adopted in this
paper, which immensely decreases the correlation of the ciphertext image and improves
the ability of the image to resist statistical attack analysis. For the confusion and diffusion
framework, this paper adopts operations on rows and columns, respectively, which further
improves the resistance of the scenario. The simulation analysis of the new scenario shows
that the scheme achieves good results in image encryption, especially the maximum IE is
7.9994, which is closer to 8 compared with other scenarios. In addition, the scenario also
has the ability to resist various attacks, and the key sensitivity is extremely high. The UACI
and NPCR of the sensitivity test are only slightly different from the standard value. All
tests demonstrate that the security of the new scenario has been significantly improved.

In the future, we intend to further explore the optimization scenario of image en-
cryption to achieve a better encryption effect. In addition, we should further study the
encryption scheme of images so that encryption may see a greater breakthrough in terms
of security and practicability.
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