
Citation: Zhao, D.; Tian, X. A

Multiscale Fusion Lightweight

Image-Splicing Tamper-Detection

Model. Electronics 2022, 11, 2621.

https://doi.org/10.3390/

electronics11162621

Academic Editors: Leandros

Maglaras, Helge Janicke

and Mohamed Amine Ferrag

Received: 26 July 2022

Accepted: 19 August 2022

Published: 21 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Multiscale Fusion Lightweight Image-Splicing
Tamper-Detection Model
Dan Zhao 1,2,3 and Xuedong Tian 1,2,3,*

1 School of Cyber Security and Computer, Hebei University, Baoding 071002, China
2 Hebei Machine Vision Engineering Research Center, Hebei University, Baoding 071002, China
3 Institute of Intelligent Image and Document Information Processing, Hebei University, Baoding 071002, China
* Correspondence: xuedong_tian@126.com

Abstract: The easy availability and usability of photo-editing tools have increased the number of
forgery attacks, primarily splicing attacks, thereby increasing cybercrimes. Because of an existing
image-splicing tamper-detection algorithm based on deep learning with high model complexity
and weak robustness, a multiscale fusion lightweight model for image-splicing tamper detection
is proposed. For the above problems and to improve MobileNetV2, the structural block of the
classification part of the original network structure was removed, the stride of the sixth largest
structural block of the network was changed to 1, the dilated convolution was used instead of
downsampling, and the features extracted from the second and third large structural blocks in the
network were downsampled with maximal pooling; then, the constraint on the backbone network
was increased by jumping connections. Combined with the pyramid pooling module, the acquired
feature layers were divided into regions of different sizes for average pooling; then, all feature layers
were fused. The experimental results show that it had a low number of parameters and required
a small amount of computation, achieving 91.0% and 96.4% precision on CASIA and COLUMB,
respectively, and 83.2% and 88.1% F-measure on CASIA and COLUMB, respectively.

Keywords: image-splicing tamper detection; multiscale fusion; lightweight network; MobileNetV2;
pyramid pooling module

1. Introduction

With the emergence of various image-editing programs, compositing images has
become increasingly simple [1]. When this is used for fake news, fake propaganda, or fake
evidence, it can have a bad effect. Therefore, it is urgent to identify and combat malicious
image forgery.

Digital image-tampering methods generally include operations such as copying, splic-
ing, and removing images. Image splicing refers to stitching a part of an image onto another
image [2], so that the human eye cannot distinguish between true and false images, as
shown in Figure 1.
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Figure 1. Example of image splicing tampering. (a) Original image; (b) splicing image; (c) ground 
truth. 

Image-tampering detection methods can be divided into traditional feature-extrac-
tion-based detection methods and deep-learning-based detection methods. 

Most of the traditional tampering detection algorithms focus on the statistical infor-
mation and physical characteristics of the image itself, and use image feature extraction 
methods to detect the tampered regions. These features are manually selected, so they are 
also called manual feature extraction methods. These include looking for statistical anom-
alies related to color filter arrays (CFAs) [3–6], double JPEG compression [7–9], sensor 
noise [10,11], and the distribution inconsistencies of light sources [12,13]. Most of the tra-
ditional tampering detection technologies are premised on the existence of forgery and 
were only designed for a certain attribute of an image. The way of manually determining 
features leads to a final detection rate that is not very high and poor robustness. 

In recent years, convolutional neural networks have achieved great success in the 
field of computer vision. Zhang et al. [14] tried to locate tampered regions with a CNN, 
but the detected regions could only be shown as inaccurate rough regions composed of 
some square white blocks. The authors in [15,16] attempted to use nonoverlapping image 
patches as input to a CNN; however, patches that were too large or too small failed to 
detect the tampered regions. Huh et al. [17] used automatically recorded photo EXIF 
metadata as a monitoring signal to train a model to determine whether the images were 
self-consistent; however, matching localization requires much computation and con-
sumes many resources. Zhou et al. [18] performed feature extraction in the RGB-N dual-
stream CNN framework, and then performed feature fusion, which improved the tamper 
detection accuracy. Wu et al. [19] proposed an end-to-end detection network that defined 
the splice localization problem as a local anomaly-detection problem. Remya and Wilscy 
[20] used a pretrained convolutional neural network to extract deep texture features from 
a rotation-invariant local binary pattern (RI-LBP) map of chroma images, and then trained 
a quadratic support vector machine (SVM), which is a classifier that improves the detec-
tion accuracy of fake images. El-Latif et al. [21] proposed an image-stitching detection al-
gorithm based on deep learning and wavelet transform. Nath et al. [22] proposed a blind 
image-stitching detection technique that uses a deep convolutional residual network 
structure as the backbone, and then uses full connections to classify true and false images 
with high accuracy. Wang et al. [23] proposed an image-splicing tamper-detection method 
based on deep learning and an attention mechanism that could effectively improve the 
accuracy of image-stitching tampering detection and locate the tampered area. Jaiswal et 
al. [24] proposed a noise-inconsistency-based technique to detect and localize false regions 
in images with high detection accuracy, but it complicated the process. In [25], the authors 
proposed an end-to-end fully convolutional neural network containing RGB and DCT 
streams, with each stream considering multiple resolutions to handle various shapes and 
sizes of stitched objects. 

Most of the above deep-learning networks have one thing in common: deep-learning-
based algorithms have strong representation capabilities for complex data, which, to a 
certain extent, disposes of the dependence of traditional methods on hand-designed fea-
tures. However, in the process of improving the accuracy of splicing detection, the com-
plexity of the model and the equipment requirements increase. 

To solve the above problems, this paper proposes a lightweight network, Mobile-
Pspnet, based on MobileNetV2 [26] multiscale spatial information fusion; for JPEG images 

Figure 1. Example of image splicing tampering. (a) Original image; (b) splicing image; (c) ground truth.
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Image-tampering detection methods can be divided into traditional feature-extraction-
based detection methods and deep-learning-based detection methods.

Most of the traditional tampering detection algorithms focus on the statistical infor-
mation and physical characteristics of the image itself, and use image feature extraction
methods to detect the tampered regions. These features are manually selected, so they
are also called manual feature extraction methods. These include looking for statistical
anomalies related to color filter arrays (CFAs) [3–6], double JPEG compression [7–9], sensor
noise [10,11], and the distribution inconsistencies of light sources [12,13]. Most of the
traditional tampering detection technologies are premised on the existence of forgery and
were only designed for a certain attribute of an image. The way of manually determining
features leads to a final detection rate that is not very high and poor robustness.

In recent years, convolutional neural networks have achieved great success in the
field of computer vision. Zhang et al. [14] tried to locate tampered regions with a CNN,
but the detected regions could only be shown as inaccurate rough regions composed of
some square white blocks. The authors in [15,16] attempted to use nonoverlapping image
patches as input to a CNN; however, patches that were too large or too small failed to
detect the tampered regions. Huh et al. [17] used automatically recorded photo EXIF
metadata as a monitoring signal to train a model to determine whether the images were
self-consistent; however, matching localization requires much computation and consumes
many resources. Zhou et al. [18] performed feature extraction in the RGB-N dual-stream
CNN framework, and then performed feature fusion, which improved the tamper detec-
tion accuracy. Wu et al. [19] proposed an end-to-end detection network that defined the
splice localization problem as a local anomaly-detection problem. Remya and Wilscy [20]
used a pretrained convolutional neural network to extract deep texture features from a
rotation-invariant local binary pattern (RI-LBP) map of chroma images, and then trained a
quadratic support vector machine (SVM), which is a classifier that improves the detection
accuracy of fake images. El-Latif et al. [21] proposed an image-stitching detection algorithm
based on deep learning and wavelet transform. Nath et al. [22] proposed a blind image-
stitching detection technique that uses a deep convolutional residual network structure
as the backbone, and then uses full connections to classify true and false images with high
accuracy. Wang et al. [23] proposed an image-splicing tamper-detection method based on
deep learning and an attention mechanism that could effectively improve the accuracy
of image-stitching tampering detection and locate the tampered area. Jaiswal et al. [24]
proposed a noise-inconsistency-based technique to detect and localize false regions in
images with high detection accuracy, but it complicated the process. In [25], the authors
proposed an end-to-end fully convolutional neural network containing RGB and DCT
streams, with each stream considering multiple resolutions to handle various shapes and
sizes of stitched objects.

Most of the above deep-learning networks have one thing in common: deep-learning-
based algorithms have strong representation capabilities for complex data, which, to
a certain extent, disposes of the dependence of traditional methods on hand-designed
features. However, in the process of improving the accuracy of splicing detection, the
complexity of the model and the equipment requirements increase.

To solve the above problems, this paper proposes a lightweight network, Mobile-
Pspnet, based on MobileNetV2 [26] multiscale spatial information fusion; for JPEG images
that may be spliced, a mask that can locate the parts of the image that may be tampered
with is generated.

2. Related Work
2.1. Depthwise Separable Convolution

Depthwise separable convolution [27] was proposed by Google, and consists of depth-
wise and pointwise convolutions. The feature extraction method of depthwise separable
convolution is different from that of traditional convolution, as shown in Figure 2.
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Figure 2. Contrast diagram of (a) traditional and (b) depthwise separable convolutions.

Suppose the dimensions of the input matrix are NF × DF × DF × CF, the traditional
convolutional kernel size is NK × DK × DK × CK, and the two convolutional kernel sizes
in the depthwise separable convolution are CF × DK × DK × 1, NF × 1 × 1 × CK. The
calculation amounts of traditional and depthwise separable convolutions are shown in
Formulas (1) and (2), respectively.

F1 = DK × DK × CF × NK × DF × DF (1)

F2 = DK × DK × CF × DF × DF + CF × NK × DF × DF (2)

When the size of convolutional kernel DK × DK × CK is 3 × 3 × CK, the computational
complexity of depthwise separable convolution can be significantly reduced to that of
standard convolution 1/8–1/9, as shown in Formula (3).

F2

F1
=

1
D2

K
+

1
NK

∼ 1
D2

K
(3)

2.2. Lightweight MobileNetV2

After the depthwise separable convolution had been proposed, Google proposed
MobileNetV2 [26]. When stride = 1, the architecture of MobileNetV2 is an inverted residual
structure with a linear bottleneck. When stride = 2, because the sizes of input and output
are different, no shortcut structure is added, and the network adopts depthwise (DW)
convolution combined with pointwise (PW) convolution to extract features. The residual



Electronics 2022, 11, 2621 4 of 14

structure that it introduces could significantly reduce the memory footprint required during
inference while enhancing gradient propagation.

2.3. Pyramid Pooling Module

For segmentation tasks, contextual information and multiscale fusion are very effective
for segmentation accuracy. The pyramid pooling structure [28] considers the target features
under multiple receptive fields in parallel. It divides the acquired feature layers into regions
of different sizes, and performs average pooling within each region to aggregate the context
information of different regions to obtain different scales of average feature-layer pooling
areas, thereby improving the ability to obtain global information.

3. Proposed Method

The Mobile-Pspnet network proposed in this paper is shown in Figure 3.
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Mobile-Pspnet is composed of a feature extraction module and a pyramid pooling
module [28]. The improved MobileNetV2 was used as the backbone network to reduce
the number of parameters and operations as much as possible. The relative bottom-level
features extracted by the second and third largest structural blocks were downsampled
in a maximal pooling manner. The number of channels were adjusted and performed
skip connections with the features obtained from the backbone network to enhance the
richness of features, reduce information loss, and send the obtained features to the pyramid
pooling module. Then, it was fused with the features extracted by the feature extraction
module, and the obtained features were lastly classified at the pixel level to obtain pixel-
level positioning.

3.1. Improving MobileNetV2

The original MobileNetV2 is suitable for image classification tasks, but not for seg-
mentation tasks. Different from the structure of the original paper, we performed some
changes on the MobileNetV2 structure used for feature extraction. The structural blocks of
the classification part of the original network structure were removed, and the stride of the
sixth largest building block of the network was changed to 1, the expansion coefficient of
the last two largest structural blocks was set to 2, and dilated convolution was used instead
of downsampling, which improved the receptive field while keeping the size of the feature
map unchanged. The modified network parameters are compared in Table 1 below.
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Table 1. Comparison of network parameters before and after modification.

Layer Operation (Before) Operation Stride (Before) Stride

1 Block Block 1 1
2 Block Block 2 2
3 Block Block 2 2
4 Block Block 2 2
5 Block Block 1 1
6 Block dilated block 2 Stride = 1, dilate rate = 2
7 Block dilated block 1 Stride = 1, dilate rate = 2

3.2. Feature Extraction Module

The features extracted from the second and third largest structural blocks in the
improved MobileNetV2 network structure were downsampled with the maximal pooling
method with windows of 4 × 4 and 2 × 2, respectively, and then combined with the features
extracted by the backbone feature extraction network. The features were connected, which
could strengthen the extraction of feature textures and reduce the influence of useless
information. The structure of the specific feature extraction module is shown in Figure 4.
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4. Experimental Results and Discussion

For better feature extraction, improved feature-extraction network MobileNetV2 was
trained on the PASCAL VOC [29] dataset to obtain a pretrained model of the backbone
network for more accurate and faster feature extraction in the training process. To better
train the model, all input images were resized to 384 × 256. The batch size used for
network training was 32. Random quality factor compression, the addition of Gaussian
noise, and image flipping were used for data augmentation. The initial learning rate was
set to 0.001 and was dynamically reduced until it was 0, and the momentum was 0.9. Cross-
entropy [30] was used as the loss function. All experiments were run on a computer with
NVIDIA RTX 2080Ti GPU.

4.1. Dataset Introduction

The CASIA [31] and COLUMB [32] datasets were selected from four major public
datasets for evaluation. Most of the images in CASIA have been compressed, and are
the images obtained by stitching smaller objects to a certain part of the original image.
COLUMB is a historical dataset used for tampering detection, and its stitched regions are
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simple, large, and meaningless regions. The binary label images of CASIA used in this
paper are from a third party [33]. In CASIA, 100 sets of images were randomly selected as
the test set, and the rest were used as the training and validation sets. Since the COLUMB
dataset only provides label images in RGB format, appropriate image processing was
performed on it to obtain binary label images. Similarly, in COLUMB, 44 sets of data were
randomly selected as test sets, and the rest were used as the training and validation sets.
To better train Mobile-Pspnet, the image sizes in both the training and the test sets were
adjusted to 384 × 256. Then, data augmentation was achieved using random Gaussian
noise addition, random quality factor compression, and random flipping, rendering the
entire dataset five times larger. The distribution of datasets based on CASIA and COLUMB
in the experiment is shown in Table 2.

Table 2. Experiments based on CASIA and COLUMB datasets.

Sets Cases Parameters Range Step CASIA COLUMB

Training Set Augmented splicing — — — 20,000 625
Source image — — — 4000 125

Validation Set
Plain splicing — — — 1500 110
Source image — — — 300 11

Testing Set

Plain splicing — — — 100 44
Source image — — — 100 44

JPEG compression Quality factor 50–90 10 500 220
Noise corruption Variance 0.002~0.01 0.002 500 220

4.2. Evaluation Index

The pixelwise authenticity discrimination of tampered images is a binary classification
task that is similar to a segmentation task, that is, marking each pixel in the image as
tampered or real. The evaluation metrics are the number of correctly detected tampered
pixels (TP), the number of correctly detected nontampered pixels, and the number of falsely
detected tampered pixels (FP). Precision, recall, and F-measure were used to evaluate the
pixel-level performance of the proposed tamper detection method. Their definitions are
shown in Formulas (4)–(6).

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F − measure =
2 × Precision × Recall

Precision + Recall
(6)

4.3. Comparative Approach

Three classical feature-extraction-based detection methods, CFA [4], DCT [7], NOI [3];
two semantic-segmentation-based methods: C2R-Net [17] and DFNet [16]; and three CNN-
based methods, FCN [34], RRU [35], and MCNL-Net [36] were used for the comparative
experiments. CFA [4] measures the presence of artifacts in the local horizontal direction
and, on the basis of a new statistical model, derives the tampering probability for each
image patch. DCT [7] is a quantized table of power spectrum estimation based on the
histogram of DCT coefficients, which locates forgery regions by checking for inconsistent
blocking artifacts. NOI [3] detects tampered regions by detecting various noise levels in
the image. Since DFNet [16] uses 64 × 64 image patches as input, the detection effect on
CASIA is general, so it is not shown in the experimental results.
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4.4. Experimental Results
4.4.1. Ablation Experiment

To verify the simplicity and effectiveness of the combined model of MobileNetV2 and
the pyramid pooling module, the backbone networks MobileNetV2 and Mobile-Pspnet
were tested separately on the CASIA dataset, and the intersection over union (IoU) was
selected as the evaluation index, which is defined as the ratio of the intersection and union
of the true label of a certain type of sample and the predicted value, as shown in Formula
(7). The parameters, calculations, and IoU values in the experimental results are shown
in Table 3. The data in the table show that, although Mobile-Pspnet had a slightly higher
number of parameters and computations on the CASIA dataset than MobileNetV2 did,
the IoU value was increased by 6.63%. Therefore, we combined MobileNetV2 with the
pyramid pooling module, which was valid.

IoU =
TP

TP + FP + FN
(7)

Table 3. Performance of two backbone networks.

Methods Para (MB) GFLOPs IoU (%)

MobileNetV2 2.41 1.68 70.12
Ours 2.53 1.72 76.75

4.4.2. Common Splicing-Detection Result

Table 4 shows the performance of the proposed method and selected comparative
methods on benchmark datasets CASIA and COLUMB.

Table 4. Test results of common splicing forgery.

Methods
CASIA COLUMB

Precision Recall F-Measure Precision Recall F-Measure

CFA [4] 0.057 0.846 0.108 0.574 0.469 0.517
DCT [7] 0.349 0.871 0.498 0.365 0.633 0.463
NOI [3] 0.079 0.088 0.083 0.321 0.015 0.028

DF-Net [16] - - - 0.528 0.468 0.496
C2R-Net [17] 0.417 0.424 0.42 0.576 0.097 0.166

FCN [34] 0.509 0.173 0.259 0.859 0.443 0.584
MCNL-Net [36] 0.909 0.828 0.866 0.839 0.715 0.772
RRU-Net [35] 0.848 0.834 0.841 0.961 0.873 0.915

Ours 0.910 0.801 0.832 0.964 0.852 0.881

Table 4 shows that, among the selected comparison algorithms, the proposed algorithm
had precision values of 0.910 and 0.964 on the CASIA and COLUMB datasets, respectively.
Although the recall of Mobile-Pspnet was a little worse than that of DCT, from a subjective
perspective, DCT almost lost effectiveness. Although the recall and F-measure of Mobile-
Pspnet were a little worse than those of RRU, Mobile-Pspnet had higher precision, which
ranked first among all the testing methods.

Table 5 shows the algorithmic complexity comparison between the proposed method
and several selected classical deep-learning methods. Since both DF-Net and C2R-Net
methods take smaller image patches as input, for the sake of fairness, we did not count the
computation amount of these two methods.
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Table 5. Complexity of different algorithms.

Methods Para (MB) GFLOPs

DF-Net [16] 22.22 -
C2R-Net [17] 54.81 -

FCN [34] 95.01 10.20
MCNL-Net [36] 18.63 7.06
RRU-Net [35] 8.33 4.18

Ours 2.53 1.72

Table 5 shows that the parameter amount of the algorithm in this paper was only
2.53 MB, which was 2.3 times lower than that of the RRU-Net algorithm with the smallest
parameter amount in the comparison algorithm, and the FCN algorithm with the highest
parameter amount was 47 times that of our algorithm. The average parameter amount of
the comparison algorithm was 39.8 MB, which was 15.7 times the number of parameters of
our algorithm. The calculation amount of the algorithm in this paper was the least among
the comparison algorithms, namely, 0.4, 0.24, and 0.16 times the calculation amounts of
RRU-Net, MCNL-Net, and FCN, respectively. So, the model complexity of the Mobile-
Pspnet was small.

In general, compared with the comparison algorithms, the proposed algorithm had
fewer parameters and required less computation when the accuracy is high. From the test
results, it is easy to draw the following conclusions:

• Mobile-Pspnet generally outperformed the traditional image splicing detection methods.
• Compared with the detection methods based on deep-learning comparison methods,

the algorithm in this paper had higher accuracy and lower model complexity.

4.4.3. Comparative Experiment of Anti-Interference Detection

To evaluate the robustness of Mobile-Pspnet, the following studies were conducted on
the CASIA-based test set:

(1) The CASIA test set was compressed with different JPEG quality factors of 50, 60, 70,
80, and 90 for splicing detection. The results of F-measure, precision, and recall are
shown in Figure 5a–c, respectively.

(2) After adding different degrees of noise to the CASIA test set (variances were 0.02,
0.04, 0.06, 0.08, and 0.1), splicing detection was performed. Figure 6a–c show the
F-measure, precision, and recall in the experimental results, respectively.

Under the influence of different quality factor compressions on the test set, the pre-
cision of the Mobile-Pspnet was the highest among the seven other methods. When the
compression quality factor was lower than 90, the recall of Mobile-Pspnet was a little lower
than that of CFA, but was the highest among the other comparison methods. Under the
influence of different degrees of noise added to the test set, the F-measure and precision
of Mobile-Pspnet were the highest among all comparison methods. Figures 5 and 6 show
that the proposed method was under the influence of noise interference or a different
quality factor compression, and the line changes of the three graphs were relatively gentle
compared to those of the comparison methods. We can conclude that the detection effect of
Mobile-Pspnet was relatively stable, and the proposed model had good robustness.
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The partial detection results of the algorithm in this paper on the two public datasets
of CASIA and COLUMB are shown in Figures 7 and 8.
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5. Conclusions

We proposed a multiscale fusion lightweight image-splicing tamper-detection model,
Mobile-Pspnet. This model uses MobilenetV2 as the backbone network after improv-
ing, and then increases the constraints on the backbone network using skip connections,
strengthens the extraction of underlying features, and is combined with the pyramid
pooling module. Multiple receptive fields were considered in parallel to improve the
ability to obtain global information. We performed many comparative experiments with
some classical image-splicing detection methods based on two public datasets. Exper-
imental results show that Mobile-Pspnet outperformed most other detection methods.
Furthermore, the proposed network is a lightweight segmentation network with a small
number of parameters requiring a small amount of computation. In future work, under
the condition of ensuring detection accuracy and low model complexity, the rapidity of
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Mobile-Pspnet will be studied, so that it can be detected in a timely and efficient manner in
video tamper detection.
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