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Abstract: In multiplexed sequencing, the identification of DNA sequencing barcodes can effectively
reduce the probability of sample misassignment. However, the great quantity of sequence data re-
quires a high-throughput identification method. Therefore, based on a barcode identification scheme
combining cyclic shifting with dynamic programming (DP), this paper proposes, implements and
tests a hardware accelerator that can accelerate barcode identification. In the accelerator, considering
that the computational complexity of the DP algorithm can be expressed as the multiplication of the
lengths of both involved sequences, we design a systolic array structure with simplified processing
element (PE) and a parallel circuit architecture to identify the insertion and deletion errors based on
the traceback. The accelerator is implemented on a field-programmable gate array (FPGA), and its
performance is compared with that of software implemented on a general-purpose computer. The
experimental results indicate that, compared with the software implementation, the accelerator can
achieve speedups of two orders of magnitude for longer barcodes.
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1. Introduction

Next-generation sequencing (NGS) technologies can generate up to one billion reads
of DNA sequence per slide, which continuously increase at a rapid pace [1,2]. Multiplexed
nanopore sequencing has become an essential strategy to effectively utilize the rising
sequencing capacity of NGS technologies [3]. In the multiplexing strategy, specific sample
tags, also termed barcodes [4,5], are added to DNA fragments from multiple samples
and used to separate sequencing reads belonging to different samples after sequencing.
However, DNA barcodes are often corrupted by insertions, deletions, and substitutions
during DNA synthesis and sequencing, resulting in sample index misassignments [6].
Therefore, some barcode construction and identification methods with different error
correction capacity have been proposed in the past.

Conventional construction and identification methods for DNA barcodes are based on
Hamming distance [7,8], Levenshtein distance [9,10], watermark code [11], etc. Recently,
in [12], a scheme that combines a pseudorandom sequence with a cyclic block code was
proposed to construct barcodes while the cyclic shifting and DP algorithm were used to
identify barcodes. This scheme had the advantages of a low complexity and high robustness.
However, if we still rely on software tools to realize these approaches, it will fail to meet the
high-throughput sequencing requirement due to the fact that more and more sequencing
reads need to be sorted and separated [13–15]. Compared to central processing units
(CPUs), FPGAs provide a higher bit-level data parallelism and can customize hardware
according to the requirements, which leads to a higher computing speed [16,17]. Therefore,
taking the scheme proposed in [12] as an example, this paper designs and implements an
FPGA-based hardware accelerator.

The cyclic shifting and DP algorithm are the important components of the accelerator.
The cyclic shifting can be realized by a shift register in hardware. As a commonly used
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algorithm for sequence alignment, the DP algorithm has the computational complexity of
the square of the length of the sequences, so it is crucial to accelerate the algorithm [18].
Recently, an FPGA used to realize a linear systolic array (LSA) to accelerate sequence
alignment attracted extensive attention, and a series of studies were conducted. The
general structures of the LSA were introduced in [19–22], but there were some deficiencies
in these works. On one hand, the iterative equation of the sequence alignment algorithm
was directly mapped to the PE. On the other hand, the above works did not describe the
implementation of the identification of insertions and deletions in detail.

In this paper, a hardware accelerator for a barcode identification algorithm with a high
robustness and low complexity is implemented and evaluated. Aiming at the quadratic
complexity of the DP algorithm in the identification scheme, we propose an optimization
strategy to improve the mapping efficiency of the PE by simplifying the mapping circuit of
the iterative equations. Meanwhile, according to the traceback algorithm, a parallel circuit
is designed to simultaneously mark and correct insertion and deletion errors on barcodes.
The function simulation and performance verification platform are designed and built, and
the comparison between a CPU platform and an FPGA acceleration platform is completed.
The hardware results indicate that the accelerator has a significantly higher identification
speed of sequencing barcodes than the software version of the same algorithm running on
the general-purpose computer.

2. Background

This section reviews the related works, including the barcode identification scheme
proposed in [12] and the DP algorithm for identifying an insertion/deletion (indel).

2.1. Sequencing Barcode Identification Method

In multiplexed sequencing, DNA barcodes are added to each DNA fragment as
special sample tags. After sequencing, sequencing reads belonging to different samples are
separated by identifying barcodes. However, the insertions, deletions, and substitutions
may occur randomly on barcodes due to the defects in DNA synthesis and sequencing,
as shown in Figure 1. NGS technologies itself have error rates of 10−3∼10−4 [10]. For
nanopore sequencing, the sequencing reads are quite long. Correspondingly, its sequencing
error rate is very high (15.1%), of which indels are the main error type (10%) and the rest
consists of substitutions (5.1%) [23]. These errors confuse the source of samples, which in
turn reduces the accuracy of sequencing. Therefore, DNA barcodes need to be designed
to resist insertion, deletion, and substitution errors, which is important for improving the
sequencing accuracy of NGS.
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ins.
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Barcode DNA context
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del.
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Figure 1. Insertion/deletion/substitution errors on DNA sequencing barcodes.

Aiming at various types of errors introduced during multiplexed nanopore sequenc-
ing, a new DNA barcode construction scheme was proposed in [12], which combined a
pseudorandom sequence with a cyclic block code and converted them into bases by bit
pairs. Here, the pseudorandom sequence acted as a hidden component of sequencing bar-
codes to identify indels and the cyclic block code was used against the substitution errors.
For the barcode generated by the above construction scheme, an identification method
using cyclic shifting and DP was proposed. The specific process of decoding barcodes in
this scheme is summarized in Figure 2. We took the constructed barcode “GATGCTA” as
an example, and it was assumed that a base “C” was inserted into the second position
of the barcode and the base “C” at the fifth position of the barcode was deleted during
sequencing.
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Figure 2. Sequencing barcode identification scheme based on cyclic shifting and DP algorithm [12].
(Reprinted with permission from ref. [12]. Copyright 2022 Springer Nature.)

The decoding process of the corrupted barcode is described below. Specifically, we
read the corrupted barcode r and the known pseudorandom sequence p from the text files
as the input of the identification scheme. First, the corrupted barcode r is demapped into the
corrupted sequence s and the corrupted codeword d. Subsequently, we found that when
s and d are cyclically shifted to the left i = 2 times, the inserted base is moved to the end.
When we cyclically shift the pseudorandom sequence p to the left j = 1 time and use DP to
compare the p(1) and s(2), it can identify the positions of an indel and modify the codeword
d(2). Then, the modified codeword d(1)

c is sent to the decoder for decoding. Finally, the
decoded codeword ĉ(1) is cyclically reverse-shifted to obtain the final result ĉ, which was
output to a text file. Using the information bits of the codeword ĉ, the sequencing reads
are assigned to their respective samples. The above method is summarized in Algorithm 1.
(Adapted with permission from ref. [12]. Copyright 2022 Springer Nature.)

Algorithm 1 Barcode identification algorithm in [12]

Input: the corrupted barcode r and the predetermined pseudorandom sequence p
Output: the decoded codeword ĉ

1: Demap barcode r = (r0, r1, ..., rn−1) to sequence s = (s0, s1, ..., sn−1) and code d =
(d0, d1, ..., dn−1);

2: for i = 0; i < n; i++ do
3: Shift cyclically s and d to the left i times, denoted as s(i) and d(i);
4: for j = 0; j ≤ l; j++ do
5: Shift cyclically p to the left j times, denoted as p(j)

6: Identify indel positions in sequence s(i) using DP
7: Modify d(i) with marked positions, obtaining the modified codeword d(j)

c

8: Send d(i) to cyclic code decoder for decoding, obtaining the codeword ĉ(j)

9: Calculate the syndrome S(j) for ĉ(j)

10: if S(j) = 0 then
11: Select ĉ(j) as the final decoded result
12: Shift cyclically ĉ(j) to the right j times to obtain ĉ
13: Goto final
14: end if
15: end for
16: end for
17: final
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2.2. DP Algorithm for Identifying Indel

The essence of the DP algorithm is to find an optimal path from the target sequence
to the reference sequence and judge the position of an indel through this path. The basic
process of identifying indels using DP algorithms can be described as follows. First, we
build a two-dimensional matrix. Next, we use an iterative equation to calculate the value
of the edit distance between the two sequences and store it in the matrix. Then, we use the
backtracking algorithm to find an optimal path in the two-dimensional matrix. Finally, we
use the optimal path to determine the position of indels in the target sequence.

In the barcode identification scheme, the DP algorithm is exploited to calculate the
edit distance and obtain the optimum alignment for the sequences s and p. Based on the
optimum alignment, the positions of insertions and deletions can be determined [24]. It
can be seen that the edit distance calculation and the optimum path backtracking are the
key links that affect the complexity of the DP algorithm [25].

Assuming that the lengths of two sequences A and B are, respectively, m and n, and the
elements in the sequence are, respectively, denoted as A[i] and B[j] (1 ≤ i ≤ m, 1 ≤ j ≤ n),
the specific process of using DP to realize the indel identification is as follows.

1. Calculate the edit distance D(i, j) between sequence elements A[i] and B[j]; the calcu-
lation equation is

D(i, j) = min


D(i− 1, j) + wd,
D(i, j− 1) + wi,
D(i− 1, j− 1) + wz,

0 ≤ i ≤ m, 0 ≤ j ≤ n. (1)

where wd = wi = 1 and wz = 0 if A[i] = B[j], otherwise wz = 1 [26]. The initial values
of the iterative equation are given by D(i, 0) = i and D(0, j) = j for 0 ≤ i ≤ m and
0 ≤ j ≤ n.

2. Backtrack from D(m, n) to D(0, 0) to find the optimum path Ipath(i,j), which can be
expressed as

Ipath(i, j) =


(i− 1, j), min = D(i− 1, j).
(i, j− 1), min = D(i, j− 1).
(i− 1, j− 1), min = D(i− 1, j− 1).

(2)

3. Use the optimum path Ipath(i,j) to get the vector Imark(i,j) that marks the indel posi-
tions, as follows

Imark(i, j) =


1, Ipath(i, j) = (i− 1, j)(deletion).
2, Ipath(i, j) = (i, j− 1)(insertion).
3, Ipath(i, j) = (i− 1, j− 1)(mis/match).

(3)

4. Based on the marker vector Imark(i,j), the insertion and deletion errors on the cor-
rupted sequence can be corrected.

Observing the above iterative equation for calculating edit distance, we can see that
the time and space complexity of the DP algorithm are both O(mn). The general method to
reduce the time complexity of the algorithm is to establish the LSA structure [27,28]. Since
the performance of the LSA mainly depends on the number of PEs and the clock frequency
of the PE [29], a simplified design of the PE can improve the performance of the LSA to a
certain extent.

3. Barcode Identification Accelerator

Based on the barcode identification method proposed in [12], the overall architecture
of the hardware accelerator designed in this paper is illustrated in Figure 3. The accelerator
consists of several modules, including demapping, cyclic shifting, dynamic programming,
cyclic code decoder, and so on. The input of the accelerator includes an n-bit predetermined
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pseudorandom sequence p and a 2n-bit corrupted barcode r converted from n-nt bases
(strings), and the output is the final result ĉ obtained by cyclically shifting the decoded
codeword ĉ(k) to the right k times.
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Indel-marking module
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Dynamic programming
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d
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Figure 3. Hardware architecture of the sequencing barcode identification accelerator.

The specific process of hardware implementation is explained as follows. The working
state of each module is controlled by a finite state machine.

1. The 2n-bit barcode r = (s0d0, s1d1, ..., sn−1dn−1) is transformed into the sequence
s = (s0, s1, ..., sn−1) and code d = (d0, d1, ..., dn−1) through the demapping module;

2. In the cyclic shifting module, it is assumed that the code d and the sequence s have
been cyclically shifted to the left l times (0 ≤ l < n) to obtain the sequence s(l) and
codeword d (l). Meanwhile, the predetermined sequence p has been cyclically shifted
to the left k times (0 ≤ k ≤ l) to obtain the sequence p(k);

3. The shifted sequences s(l), p(k), and code d (l) are input into the dynamic program-
ming module. Through the processing of this module, the indel identification of
code d (l) is realized by calculating the edit distance of the sequences s and p and
backtracking the optimal path, and we get the modified codeword d(k)

c ;
4. Subsequently, the remaining substitution errors on the codeword d(k)

c are decoded by
the cyclic code decoder. If the decoded codeword ĉ(k) meets the condition, that is, all
syndromes equal to zero, it is cyclically shifted to the right k times as the final output
result. Otherwise, the accelerator returns to the cyclic shifting module.

5. In the cyclic shifting module, if (k + 1) < l, we cyclically shift the sequence p(k) to the
left once, and then perform indel identification. When (k + 1) = l, if (l + 1) < (n− 1),
the sequence s(l) and the codeword d(l) are cyclically shifted to the left once, and then
indel identification is performed; otherwise, the accelerator directly outputs the final
decoding result ĉ.

Considering that the computational complexity of the DP algorithm in this paper is
O(n2), with the increase of the number of cyclic shifts, the overall operation efficiency of
the barcode identification algorithm will be seriously affected. Therefore, the hardware
acceleration of the dynamic programming module is described in detail in this paper.
Specifically, the hardware circuit of this module includes three submodules: (a) an edit-
distance calculation module; (b) an insertion-and-deletion-errors-marking module, called
indel-marking module; and (c) an insertion-and-deletion-errors-correction module, called
indel-correction module.

3.1. Dynamic Programming Module

This section details the hardware acceleration of the dynamic programming mod-
ule, mainly including an LSA structure with the simplified PE and a parallel circuit for
identifying insertion and deletion errors.
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3.1.1. Edit-Distance Calculation Module

To realize hardware acceleration of the DP algorithm, an LSA structure was constructed
to implement the parallel computation of the edit distance between the predetermined
sequence p(k) and the corrupted sequence s(l). All of the edit distance values D(i, j) can
be stored in a two-dimensional array of size (n + 1)(n + 1). Figure 4 describes the LSA
structure constructed in this paper. The number of PE in the LSA is determined by the
length n of the pseudorandom sequence p. The n + 1 PEs are placed horizontally, and each
PE is responsible for calculating a column of elements in the two-dimensional array.
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Sout Sout Sout

p
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[n 1]p
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Figure 4. LSA structure for parallel calculation of edit distances.

PE0 is responsible for the calculation of the first column element in the two-dimensional
array, and its accumulation operation can be implemented with a simple accumulator. In
the first clock cycle, an initial value is assigned to the Dbu f port of each PE, which comes
from the corresponding first row element in the two-dimensional array. The start and end
signals of two adjacent PEs are always separated by one clock cycle. In each clock cycle, all
PEs calculate the edit distance in parallel. After 2n clock cycles, the minimum edit distance
D(n, n) is output by PEn.

The architecture of the PEs except PE0 is illustrated in Figure 5. In previous works,
researchers directly mapped the iterative equation to PE [19,20]. Such a PE is shown in
Figure 5a. Obviously, the directly mapped PE contains three addition operations and two
comparison operations. On this basis, we propose a simplified PE architecture, as depicted
in Figure 5b. The design of this architecture is also based on Formula (1), but the mapping
circuit of the equation is simplified. Specifically, we adjust the execution order of the
comparison operation and the addition operation, thereby reducing the number of adders
in the circuit when directly mapping the iterative equation and improving the mapping
efficiency of the PE. The redesigned PE architecture first performs the comparison operation
between D(i− 1, j) and D(i, j− 1), then performs the comparison operation between Yout
and Xout, and finally outputs the minimum value D(i, j).
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Figure 5b describes the PEj responsible for calculating the editing distance of the
elements in the jth column. Two sequences are simultaneously sent to PEj for alignment,
and all the needed data for the PEj come from itself and other PEs in the systolic array. The
details are as follows:

• PE1 sequentially receives s(l)[i] in every clock cycle and sends it to PE2 in the next
clock cycle. Similarly, PEj receives the 1-bit s(l)[i] from PEj−1 and outputs it to PEj+1
in the following clock cycle;

• The elements in every column correspond to one bit, respectively, in the sequence
p(k). In other words, as far as PEj is concerned, the corresponding bit in the sequence
(i.e., p(k)[j]) is constant, and it is only read at the beginning of the process;

• At the tth clock cycle, the input D(i− 1, j) of PEj is the output result of the same PEj in
the (t− 1)th clock cycle. Moreover, the input D(i, j− 1) and D(i− 1, j− 1) of PEj are
the output results of the PEj−1 in the (t− 1)th and (t− 2)th clock cycles, respectively;

• The calculated result D(i, j) is not only the input of PEj+1, but also stored in a random
access memory (RAM) with a width of K bits and depth of (n + 1)(n + 1), where n is
the sequence’s length, and it satisfies 2K ≥ n.

3.1.2. Indel-Marking Module

According to the intermediate calculation results stored in RAM, the indel-marking
module searches the optimum path by traceback and marks the position where the indel
appears on the sequence s(l). Contrary to the process of calculating the edit distance, the
traceback needs to find the optimal path starting from the lower right corner element of
the two-dimensional array. The execution time of this module is related to the length n
of the pseudorandom sequence and the number N of indel errors. Since each search for
a traceback point takes one clock cycle, the number of clocks required to find the entire
traceback path is T = n + N.

The hardware architecture of the indel-marking module is shown in Figure 6, and the
implementation of this architecture is divided into the following three steps. First, starting
from the RAM[n][n] and taking the RAM[i][j] as the reference element, the minimum
value of the three elements is selected in the order from the upper left(RAM[i− 1][j− 1]),
left(RAM[i− 1][j]), to top(RAM[i][j− 1]). Then, the insertion, deletion, and substitution or
correct transmission are detected according to the current position where the minimum
value is located. Finally, the element with the minimum value is taken as the next reference
cell, and the previous two steps are repeated until the traversal reaches RAM[0][0].
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Figure 6. The hardware architecture of the indel-marking module.
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Specifically, the rules of the second step are described as follows.

• If D(i, j− 1) is the minimum, it means that an insertion error appears in the sequence
s(l) at the position i− 1 to i. In this case, the shift register sfr1 writes 2-bit data “01” in
the upper direction;

• If D(i− 1, j) is the minimum, it indicates that a deletion error appears in the sequence
s(l) at the position i− 1 to i. In this case, the shift register sfr1 writes 2-bit data “10” in
the upper direction;

• If D(i− 1, j− 1) is the minimum, it means that the data are transmitted correctly or
there is a substitution error in the sequence s(l) at position i− 1. In this case, the shift
register sfr1 writes 2-bit data “11” in the upper direction.

The traceback process finishes after T clock cycles. At this time, the shift register sfr1
stores 2T-bit data. These data contain the position information of insertions and deletions.

3.1.3. Indel-Correction Module

The indel-correction module corrects the insertion and deletion errors on the corrupted
codeword d(l) according to the error locations provided by the indel-marking module.
Therefore, the indel-marking module and the indel-correction module can be implemented
in parallel on hardware. Figure 7 describes the hardware implementation architecture
of the indel-correction module. The locations of the insertion and deletion errors on the
sequence s(l) are stored in the shift register sfr1, and the corrupted codeword d(l) is stored
in the shift register sfr2.
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1 

(Deletion)

(Insertion)

(Mis/Match)

2

d
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reg
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Figure 7. The hardware architecture of the indel-correction module.

At the same clock pulse, if the output data of the sfr1 are “11”, sfr2 will shift out one
bit of the data and these data will be written to the high position of the shift register sfr3. If
the output data element of the sfr1 are “10”, sfr2 will stay still, and random data (i.e., “0” or
“1”) will be written into the sfr3. If the output data of sfr1 are “01”, sfr2 will shift out one bit
of the data to an additional register and sfr3 will stay still. After T clock cycles, the piece of
data stored in sfr3 is the corrected codeword d(k)

c .
For the dynamic programming module, the total number of clock cycles required to

calculate edit distance, mark indels, and correct indels is 2n + T. Compared with the serial
computation amount of n2 + 2T in the software implementation, the computing time is
greatly shortened.

3.2. Cyclic Code Decoder

The cyclic code decoder is another key error correction module in the accelerator.
Due to the use of cyclic block codes in barcodes, the remaining substitution errors can be
corrected. In this paper, the Bose–Chaudhuri–Hocquenghem (BCH) codes consistent with
the software program were chosen as the coding scheme. BCH codes have been proven to
be excellent error-correcting codes with relatively strong error-correcting capability, which
are simple to encode and decode [30]. Figure 8 shows the overall architecture of a BCH
decoder, which mainly includes three blocks, namely, the syndrome calculation block, the
key equation solver(KES) block and the Chien search block.
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Figure 8. The architecture of the BCH decoder.

In the accelerator, the BCH decoder is responsible for correcting the remaining substi-
tution errors on the codeword d(k)

c . In the meantime, the syndrome output by the syndrome
calculation block can be used to judge whether the codeword is correct. If all the syndromes
are zero, the judgment condition is satisfied and the codeword is error-free; otherwise, it
is not satisfied. The most important and complicated part of the BCH decoder is the KES
block. It requires a lot of hardware resources to calculate the error locator polynomial. In
this paper, the inversionless Berlekamp–Massey (IBM) algorithm [31] was adopted as the
iterative decoding algorithm because it had a relatively low hardware implementation
complexity. Meanwhile, its execution speed and device utilization can be improved by
parallel processing methods. Thus, this paper adopted and implemented a BCH decoder
with a high-speed parallel architecture [32].

4. Results

This section focuses on the implementation results of the accelerator. We comprehen-
sively evaluate the accelerator’s function and performance from three aspects: robustness,
resource utilization, and acceleration effect.

4.1. Performance Verification

To verify the accuracy and robustness of the barcode identification accelerator, the
same noisy channel model was adopted in hardware. It included two different error
scenarios (random scenario and context scenario) and a simplified channel model of inser-
tion/deletion/substitution (IDS) [33,34].

The two scenarios were generalized as follows. For the random scenario, the same
number of insertion and deletion occurred on the barcode, so the length of the barcode was
unchanged. For the context scenario, the number of insertions or deletions that occurred
on the barcode varied, and the length of the barcode was thus changed [6]. To simulate
various errors introduced on the barcode, the sequencing process was modeled as a noisy
channel model similar to that in communication systems. In this channel, barcodes were
inserted, deleted, and substituted with a certain probability. The channel was described by
three parameters: insertion probability Pi, deletion probability Pd, and substitution probability
Ps. We validated the robustness of the barcode identification scheme by estimating the
identification error rate Pe (i.e., the probability that a corrupted barcode is decoded incorrectly).

The software simulation was realized by using the software program in [12]. This
program includes the generation of a barcode, the setting of the sequencing channel and
the identification of the barcode. In the software program, cyclic codes and predetermined
pseudorandom sequences were combined bit by bit to form sequencing barcodes. After
the generated barcodes passed through the noisy channel, the corrupted barcodes were
obtained. In the sequencing channel, we could choose different error scenarios and set
different mutation probability of barcodes. Taking the corrupted barcodes as input, the
software simulation and hardware implementation of the barcode identification were
performed.

First, we investigated the identification error rate Pe of the hardware implementation
and software simulation for the 15-nt sequencing barcode constructed with BCH(15, 5, 3) in
the two different scenarios. For each scenario, 200 barcodes were randomly selected from
the relevant database for validation. The mutation probability of each base on the barcode
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was Pmut ∈ [0.12, 0.33] (Pi = Pd = Ps), where Pmut = Pi + Pd + Ps. The simulation results
are shown in Figure 9. The experimental results show that the hardware implementation
results are consistent with the software simulation results regardless of the random scenario
or the context scenario. Therefore, it is verified that the accelerators can be applied to two
different error scenarios and achieve the same performance as the software simulation for
different error scenarios.
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15-nt barcode (random/hardware)

Figure 9. Performance verification of software and hardware implementations of sequencing barcodes
under different error scenarios.

Then, to verify the robustness of the hardware accelerators, two types of barcodes
were constructed by BCH codes with the same error correction ability but different lengths.
Specifically, the 31-nt barcodes were constructed with BCH(31,16,3) and the 15-nt barcodes
were constructed with BCH(15,5,3). For each length, 200 barcodes were randomly selected
from the relevant database for hardware and software validation. The simulation exper-
iment was performed under the same error scenario. Figure 10 shows the identification
error rate Pe of the sequencing barcodes implemented by hardware and software in the
random scenario under different mutation probabilities Pmut ∈ [0.1, 0.33] (Pi = Pd = Ps). It
is observed that the hardware accelerators built for barcodes of different lengths can also
achieve the same robustness as that of software simulations under the same error scenario.
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Figure 10. Performance verification of software and hardware implementations of sequencing
barcodes with different lengths under the same error scenario.
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4.2. Hardware Implementation Results

We wrote Verilog codes for accelerators with barcode lengths of 12-nt, 15-nt, and
31-nt. All designs were mapped on a Virtex-6 XC6VLX240T FPGA using the Xilinx ISE
14.7 development suite. This family was only used because of its availability and the fact
that we did not need to change the core code to use different chips. Using larger or newer
FPGAs should enable longer barcode identification and yield better results. The accelerator
took the FPGA chip as the core and realized the communication between a host CPU and
the FPGA through the PCIe. The PCIe interface controller was implemented based on
Xilinx PCIe IP. On the CPU side, corrupted barcodes and pseudorandom sequences were
transferred from the main memory via direct memory access (DMA). On the FPGA side,
two asynchronous FIFOs were used to buffer the input data.

Taking the 12-nt, 15-nt, and 31-nt sequencing barcodes constructed from BCH(12, 4, 2),
BCH(15, 5, 3), and BCH(31, 16, 3) codes as an example, we observed the implementation
results of the three accelerators on the FPGA. Among them, BCH(12, 4, 2) was a shorted
cyclic BCH code, which was generated using BCH(15,7,2). The overall on-chip resource
utilization and maximum clock frequency of the three accelerators are listed in Table 1. It is
seen that each of these three types of accelerators occupies a small amount of logic resources
of the FPGA, and the maximum frequency of the accelerator designed for barcodes of
length 15 can reach 228.7 MHz. However, it is apparent that for larger barcodes, the FPGA
resources consumed by the accelerator increase significantly.

Table 1. The implementation results of the three accelerators.

Barcode Length Registers LUTs Slices fmax/MHz

12-nt 1084 (1%) 2676 (1%) 983 (2%) 226.4
15-nt 1860 (1%) 4583 (3%) 1366 (3%) 228.7
31-nt 7093 (2%) 24,712 (16%) 8171 (21%) 198.6

In addition, we compared the runtime of software and hardware for barcodes identifi-
cation. To obtain the runtime of the pure software implementation, the original software
code was run on a computer configured with an Intel Core i7-10700 microprocessor (eight-
core, sixteen-thread, 4.8 GHz) and main memory with a capacity of 16 GB. The software
solution came from the software program in [12], which compiles and runs directly in
Visual Studio 2019. The hardware execution time was the time from the hardware startup
to the output of the decoded result to the memory. The time required by the CPU and
FPGA to identify barcode sequences of different lengths is listed in Table 2, where the
FPGA clocked at 100 MHz. For each length, 200,000 barcodes with the mutation probability
Pmut ∈ [0.12, 0.33] (Pi = Pd = Ps) were randomly selected from the relevant database for
identification. To improve the accuracy of the results, the identification of each length was
performed three times and the running time was averaged.

Table 2. Comparison of the runtime for different lengths of sequencing barcodes identification based
on CPU and FPGA.

Barcode Length BCH Code CPU FPGA Speedup

12-nt (12,4,2) 4 m 30.3 s 3.9 s 69×
15-nt (15,5,3) 6 m 54.5 s 5.3 s 78×
31-nt (31,16,3) 54 m 16.1 s 17.6 s 183×

It can be observed in Table 2 that the accelerator is approximately 70–180× faster than
the C implementation for representative input sizes, and this performance improvement
increases with the length of the barcode. As a result, for longer barcodes, hardware-
based accelerators outperform the software by two orders of magnitude in terms of the
identification speed.
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It was also important to compare the current implementation with the methods
described in other literature works. In multiplex sequencing, the traditional DNA bar-
code design and identification methods are mostly realized by software. For example,
Costea et al. [35] reported a fully customizable, fast, and accurate software package called
TagGD (Tag Generator and Demultiplexer); Tambe et al. [36] proposed a software tool for
identifying and correcting barcodes in single cell genomics, etc. The above methods were
compared with the work in this paper, as shown in Table 3. Since different platforms use
different processors, algorithms, and datasets, the number of barcode reads that can be
processed per second was used to evaluate the processing speed of different software and
hardware solutions. It should be noted that for a given method, the longer the barcodes
are, the longer the processing time is required. The comparison shows that although the
barcodes identified by our hardware accelerator are the longest, the processing speed of
the barcodes is the fastest.

Table 3. Comparison with other previous approaches.

Approach Processor Type Barcode Length Number of Barcodes Time Processing Speed (reads/s)

Tambe et al. (2019) [36] CPU 12 100,000 6 m 39 s 251
Costea et al. (2013) [35] CPU 18 200,000 27.8 s 7194

Our Work FPGA 31 200,000 17.6 s 11,363

5. Conclusions

In this paper, we presented the design and implementation of an FPGA-based hard-
ware accelerator for a highly robust sequencing barcode identification algorithm. Consider-
ing that the DP algorithm in the identification scheme had the time complexity of O(n2),
a systolic array structure was proposed, which improved the mapping efficiency of a PE
by simplifying the circuit structure when the iterative equation was mapped to the PE.
Moreover, according to the two-dimensional array stored in RAM, a parallel circuit using
traceback to identify insertion and deletion errors was designed. The simulation results on
an FPGA indicated that the accelerators constructed for sequencing barcodes with differ-
ent lengths could achieve a speedup of about 70–180× compared to the general-purpose
computer platform. Our future work will mainly focus on the hardware acceleration of
sequencing barcode identification algorithms based on graphic processing unit (GPU).
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KES Key equation solver
IBM Inversionless Berlekamp–Massey
GPU Graphics processing unit
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