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Abstract: Hand action recognition is an important part of intelligent monitoring, human–computer
interaction, robotics and other fields. Compared with other methods, the hand action recognition
method using skeleton information can ignore the error effects caused by complex background and
movement speed changes, and the computational cost is relatively small. The spatial-temporal graph
convolution networks (ST-GCN) model has excellent performance in the field of skeleton-based
action recognition. In order to solve the problem of the root joint and the further joint not being
closely connected, resulting in a poor hand-action-recognition effect, this paper firstly uses the dilated
convolution to replace the standard convolution in the temporal dimension. This is in order to process
the time series features of the hand action video, which increases the receptive field in the temporal
dimension and enhances the connection between features. Then, by adding non-physical connections,
the connection between the joints of the fingertip and the root of the finger is established, and a
new partition strategy is adopted to strengthen the hand correlation of each joint point information.
This helps to improve the network’s ability to extract the spatial-temporal features of the hand. The
improved model is tested on public datasets and real scenarios. The experimental results show that
compared with the original model, the 14-category top-1 and 28-category top-1 evaluation indicators
of the dataset have been improved by 4.82% and 6.96%. In the real scene, the recognition effect of
the categories with large changes in hand movements is better, and the recognition results of the
categories with similar trends of hand movements are poor, so there is still room for improvement.

Keywords: hand action recognition; ST-GCN; dilated convolution; non-physical connection;
partition strategy

1. Introduction

Hand action recognition is an important research content in the field of computer
vision, and it is also a cross-study subject in many subject fields such as machine vision,
pattern recognition and artificial intelligence. It is widely used in video surveillance,
human–computer interaction, intelligent robot, virtual reality and other fields [1].

Existing hand action recognition methods can be divided into two kinds of mainstream:
image sequence-based methods [2–5] and hand skeleton sequence-based methods [6–8]
according to input type. RGB or RGB-D image sequence is used as input in the image
sequence-based method. Chen et al. [5] proposed a multi-scale attention 3D convolutional
network for gesture recognition, with a multimodal fusion scheme to fuse the features of
RGB and depth data. A 2D or 3D hand skeleton point coordinate sequence is used as an
input in the hand skeleton sequence-based method. As opposed to these two mainstream
methods, Jhaung et al. [9] use radar signals as input and output gesture categories after
model discrimination.

Hand skeleton data is a kind of topological representation of hand joint and bone
structure. It has congenital advantages when facing a complex background, hand scale,
visual angle and motion speed. With the development of depth sensor and hand pose
estimation technology, accurate hand skeleton structure data can be obtained.
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Traditional skeletal structure-based methods, which typically extract motion patterns
from specific skeletal structure sequences using hand-crafted features, perform well on
some specific datasets but have poor generalization. In recent years, with the development
of deep learning methods in other computer vision applications, models such as a convo-
lutional neural network (CNN) [10], a recurrent neural network (RNN) [11] and a graph
convolution network (GCN) [12] have emerged. The skeleton structure of hand action
is composed of a natural time series of joints, and RNN is more suitable for processing
time series data. Therefore, there are many skeleton structure action recognition methods
based on RNN and its improved methods. Chen et al. [13] proposed a motion feature
augmented recurrent neural network that firstly encodes the joints of each finger and then
the joints of the whole hand. When CNN processes the skeleton data sequence, it usually
needs to combine the RNN model. Nunez et al. [14] proposed a method to extract features
of each frame using CNNs and to aggregate the output of CNNs with a LSTM [15]. The
combination of the temporal context information of RNN and the rich spatial information
of CNN can often achieve better results than the single structure model. In the last two
years, many scholars began to apply GCN to the action recognition of skeleton structure.
The hand skeleton sequence is a natural topology graph structure, while the GCN model is
more suitable to describe the spatial and temporal topology information between skeletal
joints, and has more advantages than RNN. ST-GCN [12] (Spatial Temporal Graph Con-
volutional Networks) used human topology to construct the adjacency matrix to describe
human skeleton structure. This was successfully applied to human action recognition. The
literature [16,17] applied ST-GCN to hand action recognition, however only a fixed hand
topology was used. Without considering the connection between the root joint and the
further joints, this may be not the best choice for hand recognition.

In this paper, based on ST-GCN, we aim to address the problem that the root joint is
not closely connected with the more distant joint. which leads to the poor effect of hand
movement recognition. A total of three improved modules are proposed using a dilated
convolution in the temporal dimension. Adding a non-physical connection and a new
partition strategy, it improves the perception ability of the model to the whole hand.

2. Hand Action Recognition Model Based on NST-GCN

ST-GCN network is the first network model to apply a graph convolution to action
recognition. It no longer uses hand-crafted features, but instead uses a graph convolution
network to extract the features of skeleton sequences. The process of hand action recognition
based on ST-GCN model is as follows: Construct a skeleton spatial-temporal graph from
given joint points, and then the skeleton spatial-temporal graph is input into the ST-
GCN, the classification of hand movements is output after model discrimination. In this
paper, the ST-GCN model is studied on the basis of two-dimensional joint coordinate of
skeleton dataset.

2.1. Spatial–Temporal Graph Construction

In the recognition of hand action, the two-dimensional coordinate of the joint in
the image is often used to construct the skeleton sequence. In the previous hand action
recognition methods, the CNN is often used to extract the features of the hand information,
and then classifiers are used to classify the extracted features. In the ST-GCN model, it is
necessary to construct the skeleton spatial–temporal graph of the joint sequence, which is
based on the following criteria: in the spatial domain, for the hand joint on a single picture,
two adjacent hand joints are connected to form a skeleton in the spatial domain, and two
adjacent frames of the same hand joint are connected to form a skeleton in the temporal
domain. The 22 nodes in the DHG-14/28 dataset [18] are shown in Figure 1. A skeleton
spatial–temporal graph can be constructed by selecting the hand joints in the DHG-14/28
dataset and the hand action sequence in T frames. The skeleton spatial–temporal graph is
shown in Figure 2. The blue dots denote the joints of the hand, the solid lines represent
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the natural physical connections of the hand, and the dotted lines represent the temporal
connections of the same joint on adjacent frames.

Figure 1. Location of key points in DHG-14/28.

Figure 2. Skeleton spatial–temporal graph.

For the spatial–temporal graph of the hand skeleton, the joint of the hand is represented
as the node set V = {vti|t = 1, . . . , T, i = 1, . . . N}. It consists of the hand joints coordinate
information in the skeleton sequence. The edge of the skeleton graph is represented by the
edge set E, which consists of two subsets. The first subset is the skeleton edge formed by
two adjacent joints at same frame, denoted as ES =

{
vtivtj(i, j) ∈ R

}
. The other subset is the

skeleton edge formed by connect the same joints in consecutive frames as EF = {vtiv(t+1)i}.
For any joint i, its trajectory is the connecting line of all EF. The skeleton spatial–temporal
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graph G = (V, E) is the set of all joints and edges and contains all the changes of the joints
in an action sequence.

2.2. Spatial–Temporal Graph Convolution Neural Network Construction

The graph convolution is different from a two-dimensional convolution, and the
discrete feature points need to be extracted. In a traditional convolutional neural network,
an image has a 2D grid structure and its convolution output is a 2D grid. The convolution
operation of an image is similar to that of a normal convolutional neural network. For an
input graph with the kernel size K × K and the number of channels C, the convolution
operation output of the spatial position x can be defined as:

fout(x) =
K

∑
h=1

K

∑
ω=1

fin(p(x, h, w)) ·w(h, w) (1)

where p is the sampling function representing the location x and its neighbors (h, w)
get convoluted, w is the weight function, it provides a weight vector for inner product
operation with the features of the sampled input vectors.

On the skeleton spatial–temporal graph, the sampling function p represents the graph
convolution on the central pixel x and its adjacent pixels. On the graph, the adjacent
set sampling function of the node vti is B(vti) =

{
vtj
∣∣d(vtj, vti

)
≤ D

}
. Where d

(
vtj, vti

)
denotes the minimum length of any path from vtj to vti. We select D = 1 to represent the
collection of adjacent nodes for all root joints. Therefore, the sampling function p

(
vti, vtj

)
can be defined as follows:

p(vti, vtj) = vtj (2)

The representation of the weight function w is similar to that of the 2D convolution
filter on the skeleton spatial–temporal graph. The weight function of the graph convolution
can be constructed in the way of the 2D convolution, and each position provides a weight
value. B(vti)→ {0, . . . , K− 1} is the corresponding relationship, and the weight function
can be constructed by mapping the nodes of adjacent sets to its subset label. The partitioning
strategy can be used to simplify this mapping change by dividing the adjacent set B(vti) of
joint nodes vti into K subsets. Thus, the constructed weight function w

(
vti, vtj

)
is defined

as follows:
w(vti, vtj) = w′(lti(vtj)) (3)

The sampling function (2) and the weight function (3) are substituted for the func-
tion (1), and the function of the spatial graph convolution is obtained:

fout(vti) = ∑
vtj∈B(vti)

1
Zti(vtj)

fin(p(vti, vtj)) ·w(vti, vtj) (4)

where Zti
(
vtj
)
=
∣∣{vtk

∣∣lti(vtk) = lti
(
vtj
)}
| is a normalized term, it is equal to the cardinality

of the corresponding subset in order to balance the contribution of different subsets to
the output.

By substituting Equations (2) and (3) into Equation (4), the final convolution function
of spatial graph is obtained:

fout(vti) = ∑
vtj∈B(vti)

1
Zti(vtj)

fin(vtj) ·w′(lti(vtj)) (5)

The convolution operation mentioned above is the spatial graph CNN, it does not
include convolution of time dimension. The convolution formula of the spatial graph of
Equation (5) needs to be extended to time dimension. At the same time, the joint temporal
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information between the two frames is included in the adjacent set of joint nodes, so the
concept of neighborhood to include temporally connected joints as:

B(vti) =
{

vqj
∣∣d(vtj, vti) ≤ K,

∣∣q− t
∣∣≤ bΓ/2c

}
(6)

where the parameter Γ is the time kernel.
In the temporal domain, the result LST of mapping the adjacent region of a node vtj

based on the sampling function and the weight function is:

lST(vqj) = lti(vtj) + (q− t + bΓ/2c)× K (7)

where lti
(
vtj
)

is the label map for the single frame case at vti.
This paper adopts the graph convolution proposed by the Kipf and Welling paper [19].

The skeleton graph for a single frame is represented by the adjacency matrix A and the
identity matrix I. The ST-GCN can be implemented with the following formula:

fout = Λ−
1
2 (A + I)Λ−

1
2 finW (8)

where Λii = ∑j
(

Aij + Iij) denotes the degree matrix. Combining spatial–temporal di-
mension information, the input feature map can be expressed as (C, V, T) dimensions.
For partitioning strategies with multiple subsets, such as the new partitioning strategy
described in Section 2.3.2, the adjacency matrix can be decomposed into multiple matrices,
that is, A + I = ∑j Aj, so the degree matrix will also become Λii = ∑k Aik

j . Therefore, the
above formula can be transformed into:

fout = Λj
− 1

2 AjΛj
− 1

2 finWj (9)

In accordance with the new partition strategy, j is set to 3, while weight vectors of
multiple output channels are superimposed to form a weight matrix W.

2.3. NST-GCN Hand Action Recognition Model
2.3.1. Dilated Convolution

The dilated convolution can enlarge the receptive field of the convolution without
increasing the network parameters. Compared with standard convolution, the dilated
convolution introduces a hyper-parameter d named dilatation rate, which refers to the
spacing between the kernel points, and the standard convolution is when d is 1.

For the hand skeleton, if the computational complexity of the network is not increased,
the original spatial–temporal convolution module can only extract the features of the
adjacent nodes with distance 1. The nodes that are relatively far apart in the natural
structure of the hand but contain important information, are most likely to be gradually
decayed in convolution operations. In this paper, we apply the dilated convolution to the
hand skeleton graph, and set the hyper-parameter d to 2 to obtain a larger range of features
without increasing the computational complexity. In this paper, the hand skeleton graph
with the step size D = 1 and dilated rate d = 2 is used for convolution, as shown in Figure 3.
The green point is the root node of the graph convolution, and the neighborhood includes
the yellow points. The receptive field is much larger than it was without the use of the
dilated convolution.
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Figure 3. Dilated convolution form on hand skeleton map.

2.3.2. Add Non-Physical Connection

The ST-GCN model constructs the graph structure based on the hand model in the
dataset. For the dataset with many kinds of hand movements and similar trends, the hand
graph structure using only natural connections may not be effective in extracting critical
feature information. The type of movement with high correlation with the top and end
joints of five fingers may have a lower accuracy because of less correlation of information
in the joint. Therefore, we manually add a non-physical connection as shown by the red
dotted line in Figure 4 to the hand skeleton graph, connecting the tip joint of one finger to
the root joint of the other finger.

Figure 4. Add non-physical connections to the hand skeleton graph.
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2.3.3. Build the New Partition Strategy

A good partitioning strategy can effectively enhance the model’s ability to extract fea-
tures. The ST-GCN model proposes three strategies for partitioning the set of neighborhood
points, as shown in Figure 5.

Figure 5. Original partition strategy for constructing convolution operations. (a) Example frame
of input skeleton; (b) Uni-labeling partitioning; (c) Distance partitioning; (d) Spatial configuration
partitioning.

Figure 5a is an example frame of an input skeleton, with a blue dot representing
the hand joints. When the parameter D of the filter is 1, the receptive field is the region
surrounded by the dotted gray ellipse. Figure 5b is the uni-labeling partition strategy, using
a filter with a parameter D of 1. The root node and its adjacent nodes are divided into a
subset and assigned the same weight parameters, which are the green dots in Figure 5b.
Figure 5c configures the partitioning strategy for the distance using a filter with a parameter
D of 1 in order to partition the distances between the nodes and their neighbors. At a
distance of 0, the root node itself is represented as a subset. that is, the green points
in Figure 5c, and at a distance of 1. The point with a distance of 1 to the root node is
represented as a subset, shown as the orange dots in Figure 5c. Figure 5d is a spatial
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configuration of the partitioning strategy, using a filter with a parameter D of 1. The
spatial-based configuration can divide the node set into three subsets: the root node is a
subset, that is, the green dots in Figure 5d; the adjacent nodes closer to the center of gravity
of the hand skeleton (black cross) than the root nodes themselves are a subset, that is, the
orange dots in Figure 5d; the adjacent joints that are farther from the center of gravity of
the hand skeleton (black cross) than the root joints themselves are a subset, shown as the
purple dots in Figure 5d.

According to the partition strategy of the spatial configuration, the motion of the hand
joint can be divided into centripetal motion and centrifugal motion. The adjacent region of
the root joint is divided into three sub-regions: (1) the root node itself; (2) the centripetal
set: the neighborhood nodes closer to the skeleton’s center of gravity than the root node;
and (3) the centrifugal set: the neighborhood nodes farther away from the skeleton’s center
of gravity than the root node. This strategy can be expressed as follows:

lti(vti) =


0 i f rj = ri
1 i f rj < ri
2 i f rj > ri

(10)

where rj is the distance from the joint to the center of gravity, ri is the average distance from
the gravity center to joint i overall frames in the training set.

In order to make full use of ST-GCN integrated spatial–temporal features, a new
partitioning strategy is used in this paper. The strategy is first used in the spatial dimension
and then extended to the spatial–temporal dimension. This paper classifies each joint by
the length of the distance between the root joint and other joints, then divides each joint
into different subsets.

The new partitioning strategy shown in Figure 6 uses a filter with a parameter D of
2, according to the length of the distance between the root node and the other nodes. It
is divided into three subsets: the root node itself a subset, shown as the green point in
Figure 6, and the distance from the root node is 1 is a subset, that is, the orange point in
Figure 6; the point with a distance of 2 to the root node is divided into a subset, which is the
yellow point in Figure 6. The new partition strategy mainly focuses on the movement of
the joints in the hand movement to the local joint components of the unit and the physical
composition of the hand. The filter parameter D is set to 2, which extends the whole subset
and enhances the association of the hand nodes by associating the root node with the
further nodes. It makes the model more profound to the local information perception of
the hand, thus further improving the accuracy of hand action recognition. Figure 6 shows a
new partition strategy proposed in this chapter for constructing convolution operations.
The adjacent regions of the joints are divided into three subregions: (1) the root joint (green);
(2) the adjacent joint (orange) with a distance of 1; and (3) the remaining adjacent joint
(yellow) with a distance of 2.

The new partition strategy not only considers the local motion of the hand, but also
considers the connection between the local motion. By associating the root joint with
the more distant joint, the information of each joint of the hand is strengthened, and the
relationship between global motion and local motion is closer. The perception ability of the
model to the whole motion is enhanced, therefore, the accuracy of hand action recognition
can be improved.
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Figure 6. New partition strategy for constructing convolution operations.

2.3.4. Hand Action Recognition Based on NST-GCN Model

This study aims to solve the problem that the ST-GCN temporal convolution kernel
samples the hand motion video in a small range of frames most of the time, which results
in the loss of temporal feature information. In this paper, the temporal features of the hand
motion video are processed by using the dilated convolution. This can enlarge the receptive
field in the temporal dimension without reducing the resolution and increasing the cost.
The use of multiple dilated convolution layers can effectively extract high-dimensional
temporal features, and adding new non-physical connections can improve the model’s
ability to extract spatial and temporal features. The improved model is called NST-GCN
(New ST-GCN), which is shown in Figure 7. Compared with the original network model,
the NST-GCN model has a larger sampling area, and the specific structure of NST-GCN is
shown in Figure 8.

Figure 7. NST-GCN model.
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Figure 8. NST-GCN network structure.

Firstly, the hand motion video obtains the hand joint coordinates by the NSRM (Non-
parametric Structure Regularization Machine) [20] with a hand pose estimation algorithm.
It then forms the data format according to the skeleton graph construction strategy, and
inputs into NST-GCN network. Input data from the NST-GCN network were first normal-
ized, and then spatial–temporal features of the hand were extracted through 10 NST-GCN
modules. The first fourth NST-GCN modules of the NST-GCN model contains 64 output
channels, the fifth seventh NST-GCN modules contains 128 output channels, and the eighth
tenth NST-GCN modules contains 25 output channels. Finally, the results of the hand
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classification are obtained by a softmax classifier. The input data of the NST-GCN is the
coordinate of the hand joints, and its dimension is (B, C, T, V, N), where B is the batch size,
C is the coordinate data of the hand joints (x, y, score), and T is the frame number of the
hand action video, V is the number of joints in the hand, and N is the number of hands
involved in the video. If the batch size B is 16, the coordinate characteristic number of the
hand joint C is 3, the frame number of the hand action video T is 70, and the number of
the hand joint V is 22. The dimensions of network input data are (16, 3, 70, 22, 1) when the
number of hands participating in the video n = 1.

3. Experiment

To test the effect of different improvement strategies on the accuracy of hand action
recognition, in this paper the ST-GCN model is tested from three aspects: using only dilated
convolution, using the dilated convolution and adding non-physical connections, using the
dilated convolution and a new partitioning strategy and adding non-physical connections.
The robustness and advancement of the NST-GCN model are verified in the DHG-14/28
large open hand action dataset.

3.1. Dataset & Evaluation Metrics

The DHG-14/28 dataset is a publicly available hand action dataset. The dataset
contains a sequence of 2800 hands with 14 hand categories, including Grab, Tap, Expand,
Pinch, Rotation CW, Rotation CCW, Swipe Right, Swipe Left, Swipe Up, Swipe Down,
Swipe X, Swipe V, Swipe + and Shake, performed as 1-finger or 5-fingers configurations
(thus also as 28 classes). For DHG-14/28, each hand configuration was performed 5 times
by 20 participants.

In this paper, the performance of the NST-GCN model for hand action recognition is
verified by using the accuracy indexes of Top-1 and Top-5. Top-1 is the probability that the
first-ranked category in the inferred probability vector is the correct category, also known as
the accuracy of the classification; Top-5 is the probability that the top five-ranked categories
in the inferred probability vector contains the correct category. Top-1 and Top-5 can be
calculated using the following formula:

top− 1 =
∑N

i δ(classtrue
i = rank1(classpred

i ))

N
(11)

top− 5 =
∑N

i δ(classtrue
i ∈ rank5(classpred

i ))

N
(12)

where δ is the judgment function, if the condition is false, then take the value of 0, otherwise
take the value of 1; classtrue

i is the correct category for the i-th action; rank1(classpred
i ) is the

inference categories with the highest score of the i-th action probability; rank5(classpred
i ) is

the top five inference categories for the i-th action; N is the number of hands.

3.2. Results and Analysis of Model Training and Hand Action Recognition

This paper uses 2D joint point coordinates to train, validate and test a hand motion
recognition model on the DHG-14/28 dataset. The model is trained on the training set, and
the model is tested on the validation set and test set. The environment configuration for
network training is shown in Table 1.



Electronics 2022, 11, 2518 12 of 16

Table 1. Experimental training environment.

Environment Configuration

System windows10
GPU P106-100

Memory size 6GB
CPU Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz

Python 3.7
Torch 1.2.0

CUDA 10.0

The model is trained using the SGD optimizer, with a momentum of 0.9 and weight
decay of 0.0001. The batch size is set to 16 and the number of epochs is 100. The initial
learning rate is 0.1, and when the number of epochs reaches 60, 80 and 90, the learning rate
is attenuated to 1/10 of the original.

This paper tests the effect of each module’s improvement on the overall performance
of the NST-GCN model through experiments. The basic method is to directly use the
ST-GCN model to recognize the hand movements of the two-dimensional joint based on
the DHG-14/28 dataset. DC is the dilated convolution module, NPC is the non-physical
connection module, and NPS is the new partition strategy module. Table 2 details the
performance improvement of the model by adding an additional improved module at
each stage based on ST-GCN. Using ST-GCN directly to recognize the hand movements,
the evaluation indexes of 14 Top-1, 14 Top-5, 28 Top-1 and 28 Top-5 were 73.04%, 90.54%,
74.11% and 92.50%, respectively. On the basis of ST-GCN, compared with the original
model, the evaluation indexes of 14 categories of Top-1 and 28 categories of Top-1 were
improved by 1.07% and 4.46%. On the basis of ST-GCN, using dilated convolution at
the temporal dimension and adding non-physical connectivity, it has improved by 3.75%
and 5.71% compared with the 14 Top-1 and 28 Top-1 evaluation indexes of the original
model. Based on ST-GCN, using dilated convolution and new partitioning strategy, it
has improved by 3.21% and 5.71%, compared with the 14 Top-1 and 28 Top-1 evaluation
indexes of the original model. Compared with the original ST-GCN model, the NST-GCN
model has an improvement of 4.82% and 6.96% in the evaluation indexes of 14 Top-1 and
28 Top-1. Therefore, the three improved modules proposed in this paper are effective, and
the NST-GCN model proposed in this paper is effective for hand action recognition.

Table 2. Comparison of accuracy of different improvement modules.

Method DC NPC NPS 14 Top-1 14 Top-5 28 Top-1 28 Top-5

ST-GCN - - - 73.04% 90.54% 74.11% 92.50%
+DC

√
- - 74.11% 90.54% 78.57% 93.39%

+NPC
√ √

- 76.79% 91.61% 79.82% 93.57%
+NPS

√
-

√
76.25% 91.25% 79.82% 93.57%

Ours
√ √ √

77.86% 91.61% 81.07% 93.57%

3.3. Real Scene Model Test Results

In order to verify the recognition effect of NST-GCN in the real scene, the mobile
phone camera was used to collect the hand motion video in the laboratory scene, and the
resolution of the video was 720 × 1280. The 14 categories of hands in the DHG-14/28
dataset was used: grab, tap, expand, pinch, rotation CW, rotation CCW, swipe right, swipe
left, swipe up, swipe down, swipe X, swipe V, swipe + and shake. Each type of hand
movement is completed by 2 different testers. Each tester repeats the movement 5 times,
and each category of hand action contains a total of 10 sequences.

Figures 9 and 10 show the changing process of hand joint point information for shake
and grab actions in the DHG-14/28 dataset, respectively. Firstly, the specific position of
the hand is obtained through the hand target detection model, and then the intercepted
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hand image is sent to the hand pose estimation model to obtain the coordinates of the hand
joints. Finally, the change process of the hand joint information is obtained. From Figures 9
and 10, it can be observed that the change of hand joint information can effectively show
the change trend of hand actions.

Figure 9. The change process of shake action.

Figure 10. The changing process of grab action.

The change trend of the whole hand in the shaking action can be seen from Figure 9,
and the change trend of the five fingers in the grab action can be seen from Figure 10. Due
to the errors in hand detection and hand pose estimation, some joint points may be missing,
but it does not affect the recognition of hand actions.

For each category of hand, 8 key frames are given to show the results of hand action
recognition, and the experimental results are analyzed.

Figure 11 is the hand action recognition result of the grab action. Based on the
coordinate information of the hand joints, the hand action recognition is realized by using
the hand action recognition model based on the NST-GCN network.
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Figure 11. Hand action recognition results (Grab).

Figure 12 is the process of hand action recognition of the swipe V action. Based on
the coordinate information of hand joints, hand action recognition is realized by using the
hand action recognition model based on the NST-GCN network.

Figure 12. Hand action recognition results (Swipe V).

Using a mobile phone to collect 14 kinds of hand action in the laboratory, each action
contains 10 action sequences. The overall recognition rate statistics are shown in Table 3.
As can be seen from Table 3, the recognition model of hand action based on the NST-GCN
network has a good effect on the categories of hand action with great changes, such as
swipe X, swipe V and swipe +, etc. The recognition accuracy was 100%, and was poor for
hand categories with small amplitude or similar trend of hand changes, such as grab and
pinch actions. The recognition model based on the NST-GCN network still has room for
improvement for the similar trend of hand action.
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Table 3. Results of hand action recognition accuracy.

Categories Accuracy

Grab 60%

Tap 80%

Expand 80%

Pinch 70%

Rotation CW 60%

Rotation CCW 80%

Swipe right 90%

Swipe left 90%

Swipe up 90%

Swipe down 90%

Swipe X 100%

Swipe V 100%

Swipe + 100%

Shake 50%

4. Conclusions

In this paper, we present the NST-GCN model for hand action recognition based on
joint information. Firstly, the spatial–temporal graph convolution is constructed, and the
sampling function and weight function are set up. Then, three improved modules are
introduced to solve the problem of the root joint and the further joint not being closely
connected, resulting in the poor hand action recognition effect. We used dilated convolution
in the temporal dimension to increase the receptive field in the time domain, adding a non-
physical connection and using a new partition strategy to strengthen the hand correlation
of each joint point information. The ablation experiments show the validity of the three
improved modules, and the NST-GCN model is established. The results show that the
NST-GCN model is more accurate than the original model, and the performance index of
Top-1 is 77.86% on DHG-14/28. This is 4.82% higher than that of the ST-GCN model, which
shows that it has a good recognition effect. In the real scene, the recognition accuracy of the
hand categories with great changes in hand movements, and the recognition accuracy of
the hand categories with similar trends in hand movements is poor, so the performance of
the model still has room for improvement. In the future, the problem of low accuracy of
hand motion recognition with a similar motion trend will be further studied.
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