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Abstract: This paper proposes a fault diagnosis system for inverters based on a cerebellar model
articulation controller (CMAC). First, a three-level T-type inverter was implemented and used to
create a three-level T-type inverter test environment for measuring the output voltage waveforms
of faulty power transistors on the main inverter circuit under different output frequencies. The
measured waveforms were processed using a fast Fourier transform (FFT) algorithm to create
frequency spectrum diagrams and extract the characteristic spectra of corresponding faulty switches.
Then, the associations of the spectra were determined and applied as training data for the CMAC to
detect the positions of the faulty power transistors. The test results demonstrated that the proposed
induction motor fault diagnosis system is capable of fast algorithm, requires less data to train, and
has excellent accuracy of identification, with an error margin of ±5%. The detection results were then
processed using a fault-tolerant controller (FTC) to enhance the reliability of the proposed system.
Finally, some simulations and experimental results were conducted and analyzed to validate the
feasibility of the proposed FTC system.

Keywords: cerebellar model articulation controller; T-type inverter; characteristic spectrum; fault
diagnosis; fault-tolerant control

1. Introduction

Compared with two-level inverters, multi-level inverters [1–5] demonstrate reduced
voltage stress on the switches and change in output voltage (dv/dt). They are suitable for
high-power applications, and their cascaded arrangement of power transistors facilitate the
formation of step-shaped wavelets in the output line-to-neutral point voltage waveform,
creating trapezoidal voltage waveforms (similar to sine waveforms) that reduce harmonic
content. Multi-level inverters can be categorized into diode-clamped, T-type, cascaded
h-bridge (CHB), and flying capacitor inverters. Among these categories, the three-level,
diode-clamped inverter is a widely applied inverter that is simple and easy to control [6].
This type of inverter is equipped with a capacitor that evenly divides the voltage from
the direct current (DC) side into three voltage levels (+Vdc/2, 0, and −Vdc/2). Therefore,
the output voltage comprises three states and requires diodes and switches to clamp the
output voltage of the inverter to the neutral-point voltage of the DC side. The three-level
T-type inverter proposed by Schweizer and Kolar [7], which is an inverter that does not
require diode clamping, was examined in this paper. This inverter adopts common emitter-
cascaded power transistors to achieve neutral-point voltage clamping rather than the use
of additional diodes by diode-clamped inverters. The three-level T-type inverter effectively
enhances the reliability and reduces the cost of the system. However, factors such as
extended overcurrent (high temperature) operations, component aging, and drive circuit
malfunction may damage the switches and hinder normal operations. To resolve these
issues, multi-level inverter designs must take into account fault detection mechanisms and
fault-tolerant control (FTC) capabilities to ensure that the inverter can maintain normal
operations when a fault occurs [8–10].
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Number or waveforms were directly used to represent the fault diagnosis information
produced by early measuring instruments for the motor drive system. Fault points can
be detected quickly and easily using these results. However, experienced personnel must
be present to interpret the diagnostic information, detect the fault type, and engage in
the maintenance or replacement of relevant components. This traditional fault diagnosis
method has often led to detection error and waste of time and manpower for unneces-
sary maintenance and replacement [11–13]. Therefore, developing new techniques to
diagnose system faults has been a longstanding focus of research. A number of scholars
in Taiwan and other countries have centered their efforts on developing new diagnostic
techniques [14–17]. Extant fault detection and diagnosis methods can be characterized
into three major types, specifically, model-based techniques, expert system, and artificial
intelligence (AI) algorithms. Model-based techniques are effective diagnostic methods.
However, assumptions and limitations are unavoidable in model-based techniques due
to the difficulty of building inverter models (including snubber capacitance and balance
resistors) and the parasitic nature of inverters. Expert systems are often used in large
systems. They effectively adjust systems but require experts to construct the entire system,
which can be extremely costly. By comparison, AI algorithms require neither models nor
expert knowledge [18–21]. Rather, they rely on the initial training data of normal and
abnormal conditions, making them extremely versatile. A variety of AI algorithms is
available, including the fuzzy method [22,23] and the neuro-fuzzy method [24]. These
methods can be used to establish a fault diagnosis system solely based on the associations
between input and output. However, the accuracy of algorithms increases over time. They
are also limited to diagnosing single datasets at a given time and rely on expert experience.
To overcome these limitations, this paper proposes a CMAC-based fault diagnosis method
that adopts fast-learning and highly responsive AI algorithms.

A three-level T-type inverter was used to test the performance of the proposed system
in detecting the positions of faulty power transistors. Subsequently, an FTC was used to
maintain the operation reliability of the inverter. The CMAC-based fault diagnosis system
for inverters architecture is illustrated in Figure 1.
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Figure 1. The CMAC-based fault diagnosis system for inverter architecture. 
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2. Fault Characteristics of Three-Level Inverters

The three-level T-type inverter circuit illustrated in Figure 2 was used to analyze the
fault diagnosis system. The time command pulse width modulation (PWM) scheme of
switches is generated using the comparison between the three-phase balanced sinusoidal
waves (vsin_a, vsin_b, and vsin_c) and triangular waves (vtri_1 and vtri_2) as shown in Figure 3.
In addition, the SX1

+ and SX1
−, and SX2

+ and SX2
− must be controlled into a complementary

state. Take a-phase as an example: when vsin_a > vtri_1, let the power transistors Sa1
+ and

Sa2
+ be turned on and Sa1

− and Sa2
− be turned off. If vtri_1 > vsin_a > vtri_2, let the power

transistors Sa2
+ and Sa1

− be turned on and Sa1
+ and Sa2

− be turned off. However, if
vsin_a < vtri_2, then let the power transistors Sa1

− and Sa2
− be turned on and Sa1

+ and Sa2
+

be turned off. The power transistors of b-phase and c-phase can be controlled with the
same control strategy. Generally, inverter faults can largely be categorized into three
types, namely, short-circuit fault, open-circuit fault, and trigger signal mistransmission.
Short-circuit faults occur when an excessive electrical voltage travels through a switch
without resistance. Open-circuit faults occur when power transistors fail to transmit trigger
signals to the appropriate channels. Trigger signal mistransmission occurred when switches
received erroneous trigger commands.
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Figure 2. The three−level T−type inverter architecture. 
Figure 2. The three-level T-type inverter architecture.

A practical three-level T-type inverter was implemented and used to create a test
environment. A switch fault at a random point in time was tested. Measured outcomes
indicated that the waveforms produced by the inverter achieved three-phase balance during
normal operation. When the inverter operated at a working frequency of 60 Hz without
faulty power transistors, the inverter produced output waveforms and frequency spectra
similar to those illustrated in Figures 4 and 5. Figure 4 shows that the size and shape
of the various phase voltage waveforms were similar with a mutual phase difference of
120◦. These are typical three-phase balance characteristics. When a fault occurs in any of
the switches in the inverter, the characteristics in Figure 4 would change. For example,
when a fault occurred in switch Sa1

+, the waveform of the a-phase output voltage (vao)
distorted (Figure 6). Figure 7 illustrates the waveform of the b-phase voltage (vbo) when
a fault occurred in switch Sb2

−. The figure clearly shows a significant difference between
the waveform of the voltage (vbo) during normal and faulty conditions. Figure 8 illustrates
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the waveform of the c-phase voltage (vco) when a fault occurred in switch Sc1
+. The figure

clearly shows waveform distortion in the output phase voltage of the c arm (vco). The
waveform of the a-phase output voltage (vao) of the inverter with a fault in switch Sa1

+

shown in Figure 6 is same as the waveform of the c-phase output voltage (vco) of the inverter
with a fault in switch Sc1

+ shown in Figure 8, but the phase difference is 120◦.
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The preceding analysis confirmed the presence of abnormalities in the voltage fre-
quency spectra of the inverter during the occurrence of a fault. Figure 9 illustrates the
frequency spectra of the various phase voltages when a fault occurs in switch Sc1

+ at a
working frequency of 60 Hz. A comparison between the frequency spectra of Figure 9 and
those of the inverter during normal operation (Figure 5) revealed increased variance at
(mf − 1)th and (mf + 1)th order of the frequency spectra for phase voltage vco. Therefore, the
spectral values at a working frequency of 60 Hz were adopted as the characteristic spectra
for faults. Subsequently, m f was defined as the frequency modulation index. The index can
be expressed as follows:

m f
∆
=

fcarrier
fre f erence

=
ftri
fsin

(1)

where, ftri represents the frequency of the triangular carrier wave (or the switching fre-
quency of the inverter), and fsin represents the frequency of the sine wave (or the working
frequency of the inverter). Parameter data concerning power transistor faults can be
retrieved from the measured and analysis results. A CMAC was used to create a fault
diagnosis system for inverters to detect faults in the main three-level T-type inverter circuit
during switching.
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faults: (a) phase voltage vao; (b) phase voltage vbo; (c) phase voltage vco.
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of 60 Hz with no switch faults: (a) phase voltage vao; (b) phase voltage vbo; (c) phase voltage vco.
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3. The Cerebellar Model Articulation Controller

The CMAC was introduced by J. S. Albus in 1970 [25]. The CMAC model mimics the
cerebellar neural structure of a human to achieve rapid learning and response characteristics.
The CMAC framework is illustrated in Figure 10. The input signals undergo quantization,
binary coding, and excitation address coding in the CMAC. The excitation addresses are
then summed to generate an output value. The size of the value is analyzed to determine
the type of switch fault. Training samples only excite or train their corresponding memory
units. For example, the ith (i = 1–6) training sample only excites, trains, or tunes the ith
layer. Therefore, overall training time is drastically reduced [26].
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3.1. Quantization

A number of equal quantization levels were categorized between the highest and
lowest values of the input signals. Quantization levels with higher resolutions are able to
produce more detailed quantization codes but demand more free memory. In this paper,
the input signals were divided into 255 levels. Levels higher than the maximum value were
allocated a quantization value of 255. Levels lower than the minimum value were allocated
a value of 0. A corresponding quantization value was allocated to the quantization levels
between the maximum and minimum values.

3.2. Excitation Address Coding and CMAC Output Calculation

According to the corresponding quantization levels of the input signals, the values
were converted into binary codes. The coded values were then combined and re-coded.
Finally, the clusters were provided with a cluster code and an excitation address. For
example, the input signals are the voltages at (mf - 1)th and (mf + 1)th orders in the
three-phase frequency spectrum. Nine difference values are present between the two
voltages. Assuming that the levels after quantization were 209, 200, 10, 5, 3, 10, 5, 6, and 5,
they are first converted into binary codes (11010001b, 11001000b, 00001010b, 00000101b,
00000011b, 00001010b, 00000101b, 00000110b, and 00000101b) and then combined and re-
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coded (110100011100100000001010000001010000001100001010000001010000011000000101b)
to obtain a 72-bit code. If the code is clustered every three bits, a total of 24 clusters would
be obtained. The excitation addresses for the 24 clusters from the least significant bit (LSB)
to the most significant bit (MSB) are n1 = 101b = 5, n2 = 000b = 0, n3 = 000b = 0, n4 = 011b = 3,
n5 = 000b = 0, n6 = 010b = 2, n7 = 001b = 1, n8 = 000b = 0, n9 = 010b = 2, n10 = 001b = 1,
n11 = 100b = 4, n12 = 001b = 1, n13 = 000b = 0, n14 = 010b = 2, n15 = 001b = 1, n16 = 000b = 0,
n17 = 010b = 2, n18 = 001b = 1, n19 = 000b = 0, n20 = 100b = 4, n21 = 100b = 4, n22 = 011b = 3,
n23 = 100b = 4, and n24 = 110b = 6. Assuming that the initial weighting of the memory units
was 0, then the sum of w5

1, w0
2, w0

3, w3
4, w0

5, w2
6, w1

7, w0
8, w2

9, w1
10, w4

11, w1
12, w0

13, w2
14, w1

15,
w0

16, w2
17, w1

18, w0
19, w4

20, w4
21, w3

22, w4
23, and w6

24 would be 0. Hence, the CMAC output can
be expressed as follows:

y =
N∗

∑
i=1

wni
i (2)

where y is the actual output value, N∗ is the number of excitation addresses, wni
i is the

weight of the excitation memory, and ni is the address of the excited memory.

3.3. Memory Weight Tuning

The output target for the CMAC was set as 1.0 in this paper. A supervised learning
approach can be used for clear output targets. Subsequently, the steepest descent method
was adopted to tune the various weights [27], which can be expressed as follows:

wni
i(new)

= wni
i(old) + β

yd − y
N∗ i = 1, 2 , . . . , N∗ (3)

where wni
i(new)

is the new weight after tuning the excitation memory, wni
i(old) is the old weight

before tuning the excitation memory, β is the learning gain (0 < β ≤ 1), and yd is the
target value.

3.4. Fault Tolerance

The proposed fault diagnosis method demonstrates excellent interference resistance.
Using the 72-bit code characterized in Section 3.2, the original code was changed to
110100011100100000001010000001010000001100001010000001010000011001000101b. Af-
ter coding the excitation addresses (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14,
n15, n16, n17, n18, n19, n20, n21, n22, n23, and n24) changed from 5, 0, 0, 3, 0, 2, 1, 0, 2, 1, 4,
1, 0, 2, 1, 0, 2, 1, 0, 4, 4, 3, 4, and 6 to 5, 0, 1, 3, 0, 2, 1, 0, 2, 1, 4, 1, 0, 2, 1, 0, 2, 1, 0, 4, 4,
3, 4, and 6. A fault occurred only n3. All other excitation addresses achieved a normal
output, suggesting that the method demonstrated excellent fault tolerance. By expanding
the number of clusters, the address can be dispersed and stored in more locations, reducing
the effects of fault detection in the neighboring bit on output and enhancing accuracy.

3.5. CMAC Training

The training process for the CMAC-based fault diagnosis system for inverters is
illustrated in Figure 11. The input training samples first underwent quantization, combined
coding, cluster coding, and memory address excitation. The weights of the excitation
addresses were then summed to produce an output. Equation (3) was used to tune the
memory weights. Once all the samples were trained, the sample weights were analyzed to
determine whether the target value was achieved. The training program can be terminated
once the target value is achieved. Otherwise, the training program can be terminated once
the predetermined number of training sessions has been reached.
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4. CMAC-Based Fault Diagnosis for Inverters

Extended overcurrent (high-temperature) operations or component aging can cause
faults in inverters. The three-level T-type inverter structure illustrated in Figure 2 was used
to test switch faults. The proposed CMAC-based system was then employed to detect the
positions of faulty power transistors.

First, the measured waveforms of the three-phase voltage in the inverter were pro-
cessed using a fast Fourier transform algorithm to obtain the voltage spectra at (mf − 1)th
and (mf + 1)th orders and the difference between them. These values served as the input
signals of the CMAC. Switches Sa1

+, Sa2
−, Sb1

+, Sb2
−, Sc1

+, and Sc2
− served as the different

fault types. Moreover, 648 sets of data were collected concerning the faults of the six
switches in the inverter at a working frequency between 20 and 90 Hz. The datasets were
divided into 432 training data sets and 216 test datasets. The training data sets were pro-
cessed using the CMAC training model characterized in Section 3.5 to obtain the weights
of the different faulty switches. The parameter settings for the CMAC training program are
as follows: (1) quantization levels: 255 levels; (2) bits per cluster: 3 bits; (3) cluster quantity:
24 clusters; (4) learning constants (β): 1 constant; and (5) training sessions: 25 times.

Fault detection and diagnosis can commence once the CMAC has been trained. The
diagnosis procedures are as follows:

Step 1. Access the weights of the trained CMAC.
Step 2. Access the test data samples.
Step 3. Proceed in the quantization, combined coding, clustering, and excitation address
coding of the data.
Step 4. Sum the weights of the excitation addresses to produce an output.
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Step 5. Determine the weight of the output (weight value closer to 1 denotes an increased
likeliness of fault).
Step 6. Generate fault diagnostic results.

5. Test Results

To detect faulty power transistors, the fault categories were divided into the fault of
six switches, specifically, Sa1

+, Sa2
−, Sb1

+, Sb2
−, Sc1

+, and Sc2
− (Table 1).

Table 1. Fault categories.

Fault Conditions Category

Fault occurs in Sa1
+ F1

Fault occurs in Sa2
− F2

Fault occurs in Sb1
+ F3

Fault occurs in Sb2
− F4

Fault occurs in Sc1
+ F5

Fault occurs in Sc2
− F6

The characteristic spectral data of the various phase voltages of the inverter oper-
ating at 52 Hz, 85 Hz, and 120 Hz with a fault in each of the switches are tabulated
in Tables 2–4, respectively. The test data in Tables 2–4 were incorporated into the proposed
fault diagnosis system.

Table 2. Characteristic spectral data of the inverter at 52 Hz with different fault categories.

Fault
Category

a-Phase Characteristic Spectra b-Phase Characteristic Spectra c-Phase Characteristic Spectra

mf − 1 mf + 1 Difference mf − 1 mf + 1 Difference mf − 1 mf + 1 Difference

F1 119.613 121.643 2.030 5.313 4.388 0.925 4.758 5.824 1.066
F2 114.776 124.832 10.056 5.321 5.855 0.534 5.230 5.144 0.086
F3 5.747 5.700 0.047 120.198 120.783 0.585 5.726 6.377 0.651
F4 5.991 5.839 0.152 116.877 124.288 7.411 4.527 4.709 0.182
F5 5.067 5.678 0.611 5.630 4.802 0.828 114.667 125.159 10.492
F6 6.368 6.210 0.158 4.728 5.491 0.763 122.676 119.228 3.448

Table 3. Characteristic spectral data of the inverter at 85 Hz with different fault categories.

Fault
Category

a-Phase Characteristic Spectra b-Phase Characteristic Spectra c-Phase Characteristic Spectra

mf − 1 mf + 1 Difference mf − 1 mf + 1 Difference mf − 1 mf + 1 Difference

F1 103.875 104.962 1.087 3.451 2.456 0.995 3.154 3.693 0.539
F2 100.778 106.730 5.952 3.270 3.914 0.644 3.110 2.930 0.180
F3 3.270 3.141 0.129 103.991 104.641 0.650 3.971 3.995 0.024
F4 4.109 4.218 0.109 102.684 106.825 4.141 2.568 2.519 0.049
F5 2.722 3.698 0.976 3.619 2.994 0.625 100.973 107.094 6.121
F6 3.976 3.638 0.338 2.600 3.613 1.013 105.701 103.733 1.968

Table 4. Characteristic spectral data of the inverter at 120 Hz with different fault categories.

Fault
Category

a-Phase Characteristic Spectra b-Phase Characteristic Spectra c-Phase Characteristic Spectra

mf − 1 mf + 1 Difference mf − 1 mf + 1 Difference mf − 1 mf + 1 Difference

F1 90.164 91.107 0.944 2.995 2.132 0.863 2.738 3.206 0.468
F2 87.475 92.642 5.166 2.838 3.397 0.559 2.699 2.543 0.156
F3 2.838 2.726 0.112 90.264 90.828 0.564 3.447 3.468 0.021
F4 3.567 3.661 0.095 89.130 92.724 3.594 2.229 2.186 0.043
F5 2.363 3.210 0.847 3.141 2.599 0.542 87.645 92.958 5.313
F6 3.451 3.158 0.293 2.257 3.136 0.879 91.748 90.040 1.708
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The detection outcomes are tabulated in Tables 5–7. The tables show that the system
accurately detected the fault data. For example, the detection outcomes in Table 5 generated
an output weight of 0.6999 for the test data of F2 faults in Table 2, which was the highest of all
the fault data points, suggesting that the fault was category F2. To validate the interference
resistance of the proposed system, the samples for three working frequencies were tested
with an error margin of ±5%. The detection outcomes are tabulated in Tables 8–10. The
outcomes show that the proposed system can accurately detect fault categories with or
without the presence of error.

Table 5. Detection outcomes of the inverter at 52 Hz with different fault categories.

Fault
Category

Output Weight Detection
OutcomeF1 F2 F3 F4 F5 F6

F1 0.7066 0.5039 0.2158 0.1147 0.5605 0.4640 F1
F2 0.5594 0.6999 0.1957 0.1363 0.4814 0.4542 F2
F3 0.2930 0.2163 0.7419 0.6132 0.5812 0.5308 F3
F4 0.2375 0.1476 0.5404 0.6918 0.4793 0.5279 F4
F5 0.5462 0.4348 0.5371 0.4375 0.8931 0.7285 F5
F6 0.4886 0.4583 0.5007 0.4262 0.7563 0.8933 F6

Table 6. Detection outcomes of the inverter at 85 Hz with different fault categories.

Fault
Category

Output Weight Detection
OutcomeF1 F2 F3 F4 F5 F6

F1 0.7440 0.5517 0.2297 0.2480 0.5754 0.4923 F1
F2 0.5552 0.6683 0.2333 0.1660 0.5146 0.5312 F2
F3 0.2803 0.2050 0.7136 0.4682 0.5912 0.5467 F3
F4 0.2019 0.1526 0.5619 0.5859 0.5076 0.4151 F4
F5 0.4780 0.4384 0.4806 0.4135 0.8566 0.6552 F5
F6 0.4745 0.4783 0.4386 0.3918 0.7345 0.8697 F6

Table 7. Detection outcomes of the inverter at 120 Hz with different fault categories.

Fault
Category

Output Weight Detection
OutcomeF1 F2 F3 F4 F5 F6

F1 0.7291 0.5406 0.2251 0.2431 0.5639 0.4825 F1
F2 0.5441 0.6549 0.2286 0.1627 0.5043 0.5206 F2
F3 0.2433 0.2009 0.6993 0.4588 0.5794 0.5358 F3
F4 0.1979 0.1495 0.5507 0.5742 0.4974 0.4068 F4
F5 0.4684 0.4296 0.4710 0.4052 0.8395 0.6421 F5
F6 0.4651 0.4687 0.4298 0.3839 0.7198 0.8523 F6

In the half-bridge and full-bridge circuits, where two transistors are connected in
series in one converter leg, it is important to provide a blanking time so that the turn-on
control input to one transistor is delayed with respect to turn-off control input of the other
transistor in the inverter leg. This blanking time should be chosen conservatively to be
greater than the worst-case maximum storage time of the transistors being used to avoid
cross condition. Under normal operation, such a conservatively chosen blanking time
ensures that both the transistors in the inverter leg are off. This dead time introduces
an unwanted nonlinearity in the converter transfer characteristic. This dead time can be
minimized by the use of design enhancements to drive circuits, which minimize turn-on
and turn-off delay time in power semiconductor devices being used as the power switches.
There are usually only a few us for a power device IGBT. Therefore, its influence on fault
diagnosis can be ignored.
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Table 8. Detection outcomes of the inverter at 52 Hz with a ±5% error margin.

Fault
Category

Error
Rate

Output Weight Detection
OutcomeF1 F2 F3 F4 F5 F6

F1
+5% 0.6706 0.5592 0.2090 0.1431 0.5708 0.5251 F1−5% 0.6457 0.4993 0.2439 0.1454 0.5136 0.4768

F2
+5% 0.4525 0.7206 0.1111 0.1148 0.4693 0.3698 F2−5% 0.4726 0.6165 0.1711 0.1386 0.4906 0.4526

F3
+5% 0.2310 0.2145 0.6713 0.5192 0.5900 0.5044 F3−5% 0.3332 0.2504 0.6910 0.5634 0.5757 0.5640

F4
+5% 0.2518 0.0922 0.5670 0.6080 0.4840 0.4681 F4−5% 0.2470 0.1257 0.5595 0.7397 0.5096 0.5351

F5
+5% 0.4445 0.4228 0.5517 0.4030 0.9062 0.7037 F5−5% 0.5444 0.4758 0.4715 0.4586 0.8274 0.7609

F6
+5% 0.5538 0.4585 0.4769 0.4255 0.7682 0.8771 F6−5% 0.4258 0.4217 0.4987 0.4038 0.7699 0.8961

Table 9. Detection outcomes of the inverter at 85 Hz with a ±5% error margin.

Fault
Category

Error
Rate

Output Weight Detection
OutcomeF1 F2 F3 F4 F5 F6

F1
+5% 0.7012 0.4889 0.2386 0.2282 0.5687 0.5251 F1−5% 0.6974 0.5512 0.2385 0.1924 0.5192 0.5309

F2
+5% 0.5301 0.6586 0.1823 0.1373 0.5600 0.4343 F2−5% 0.5175 0.6687 0.1922 0.1605 0.5172 0.4643

F3
+5% 0.2800 0.2232 0.6873 0.5318 0.5848 0.5731 F3−5% 0.2104 0.1871 0.7173 0.4320 0.6328 0.4432

F4
+5% 0.2057 0.1313 0.4782 0.5397 0.4936 0.4091 F4−5% 0.1315 0.1625 0.5224 0.5717 0.5107 0.3889

F5
+5% 0.4780 0.4384 0.4806 0.4135 0.8566 0.6552 F5−5% 0.5003 0.4220 0.4237 0.3800 0.7992 0.6669

F6
+5% 0.4479 0.4731 0.4328 0.4021 0.7341 0.8639 F6−5% 0.5313 0.4555 0.4687 0.4098 0.6987 0.9409

Table 10. Detection outcomes of the inverter at 120 Hz with a ±5% error margin.

Fault
Category

Error
Rate

Output Weight Detection
OutcomeF1 F2 F3 F4 F5 F6

F1
+5% 0.6872 0.4791 0.2338 0.2236 0.5573 0.5146 F1−5% 0.6835 0.5402 0.2337 0.1886 0.5088 0.5203

F2
+5% 0.5195 0.6454 0.1787 0.1346 0.5488 0.4256 F2−5% 0.5072 0.6553 0.1884 0.1573 0.5069 0.4550

F3
+5% 0.2744 0.2187 0.6736 0.5212 0.5731 0.5616 F3−5% 0.2062 0.1834 0.7030 0.4234 0.6201 0.4343

F4
+5% 0.2016 0.1287 0.4686 0.5289 0.4837 0.4009 F4−5% 0.1289 0.1593 0.5120 0.5603 0.5005 0.3811

F5
+5% 0.4684 0.4296 0.4710 0.4052 0.8395 0.6421 F5−5% 0.4903 0.4136 0.4152 0.3724 0.7832 0.6536

F6
+5% 0.4389 0.4636 0.4241 0.3941 0.7194 0.8466 F6−5% 0.5207 0.4464 0.4593 0.4016 0.6847 0.9221
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6. Fault Tolerance of Three-Level T-Type Inverter

Figure 2 presents the structural diagram of the three-level T-type inverter, revealing
that the occurrence of an open-circuit fault in any of the inverter switches (Sa1

+, Sa2
−,

Sb1
+, Sb2

−, Sc1
+, and Sc2

−) would cause an abnormal output voltage in the phase and thus
result in a three-phase imbalance. The imbalance would change the voltage level of the dc
bus, engendering a voltage imbalance in the upper and lower capacitors. This situation
would further induce repeated three-phase imbalances in the output voltage. Therefore, to
maintain inverter operation in the event of switch failure, the switching state of the inverter
and the phase angle of the reference voltage must be adjusted simultaneously to maintain
the three-phase balance in the output voltage.

6.1. Fault-Tolerant Control Analysis

Figure 12 shows the phasor diagram of a balanced three-phase voltage of a switch
without fault. When the switch Sa1

+ or Sa2
− incurs an open-circuit fault, the a-phase h-

bridge switches (Sa1
+ and Sa2

−) must be deactivated to activate the neutral-point switches
(Sa1

− and Sa2
+); specifically, point a is connected to the neutral point, and b and c-phases are

still switched normally. The FTC for the occurrence of an open-circuit fault in Sa1
+ is shown

in Figure 13. The voltage phasor diagram corresponding to this situation is illustrated in
Figure 14a. As illustrated in this figure, the phasor positions of the line voltages Vab and
Vca in Figure 12 become those of Vab1 and Vca1, with the voltage magnitude decreasing by
0.577 times relative to the original line voltage. The line voltage Vbc1 remains unchanged.
However, because the voltage vao is 0, the phase angle of the b-phase voltage should be
simultaneously adjusted to be 150◦ behind that of the a-phase voltage, and the phase
angle of the c-phase voltage should be 150◦ ahead of that of the a-phase voltage. After the
occurrence of a fault, the three-phase voltage can still maintain the operation of the balanced
three-phase system; the corresponding voltage phasor diagram of the system is shown in
Figure 14b. The phasor positions of the line voltages Vab1 and Vca1 presented in Figure 14a
shift to those of Vab2 and Vca2, with the magnitude of the line voltage Vbc2 decreasing by
0.577 times relative to that of the original line voltage Vbc1. If an open-circuit fault occurs in
the switch Sb1

+ or Sb2
−, the b-phase h-bridge switches (Sb1

+ and Sb2
−) are deactivated, and

the neutral-point switches (Sb1
− and Sb2

+) are activated; specifically, point b is connected to
the neutral point, and the a- and c-phase switches continue to operate normally. The FTC
for the occurrence of an open-circuit fault in Sb2

− is shown in Figure 15. The voltage phasor
diagram corresponding to this situation is shown in Figure 16a. The phasor positions
of the line voltages Vab and Vbc in Figure 12 shift to those of Vab1 and Vbc1, with the
voltage magnitude decreasing by 0.577 times relative to the magnitude of the original line
voltage; by contrast, the magnitude of the line voltage Vca1 remains unchanged. However,
because the voltage vbo is 0, the phase angle of the a-phase voltage should be simultaneously
adjusted such that it is 30◦ ahead of that of the a-phase voltage, and the phase angle of the
c-phase voltage should be 90◦ ahead of that of the a-phase voltage. Figure 16b presents
the voltage phasor diagram derived after these adjustments. The phasor positions of the
line voltages Vab1 and Vbc1 presented in Figure 16a shift to those of Vab2 and Vbc2, with
the magnitude of the line voltage Vca2 decreasing by 0.577 times relative to that of the
original line voltage Vca1. Similarly, if an open-circuit fault occurs in the switch Sc1

+ or
Sc2

−, the c-phase h-bridge switches (Sc1
+ and Sc2

−) are deactivated, and the neutral-point
switches (Sc1

− and Sc2
+) are activated. Point c is connected to the neutral point, and the

a- and b-phase switches continue to operate normally. The FTC for the occurrence of an
open-circuit fault in Sc1

+ is shown in Figure 17. Figure 18a shows the voltage phasor
diagram corresponding to this situation. The phasor positions of the line voltages Vbc and
Vca shown in Figure 12 switch to those of Vbc1 and Vca1, with the voltage magnitude
decreasing by 0.577 times relative to the magnitude of the original line voltage; by contrast,
the magnitude of the line voltage Vab1 remains unchanged. However, because the voltage
vco is 0, the phase angle of the a-phase voltage should be simultaneously adjusted such that
it is 30◦ behind the original a-phase voltage, and the phase angle of the b-phase voltage
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should be 90◦ behind the original a-phase voltage. Figure 18b illustrates the voltage phasor
diagram derived after the adjustments. The phasor positions of the line voltages Vbc1 and
Vca1 presented in Figure 18a switch to the positions of Vbc2 and Vca2, with the magnitude
of Vab2 decreasing by 0.577 times relative to that of the original line voltage Vab1.
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it is 30◦ behind that of the original phase angle of the a-phase voltage; adjusted phase angle of the
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6.2. FTC Simulation Results

The FTC operations for the occurrence of an open-circuit fault in Sa1
+, Sb2

−, and Sc1
+

were simulated. The simulation results are illustrated in Figures 19–21. Distortion was
exhibited in the three-phase output line voltage 0.06 s following the occurrence of an open-
circuit fault, particularly in the faulty phase. The FTC was activated at 0.12 s. The figures
show that once the FTC was activated, the five-level three-phase output line voltage was
reduced to three levels and the output line voltage maintained three-phase balance after
the occurrence of a fault.
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6.3. FTC Experimental Results

To verify the simulation results, this study uses the digital signal processor TMS320F28335
as the control core and considers the occurrence of open-circuit faults in the switches Sa1

+,
Sb2

−, and Sc1
+ to test the fault-tolerant control strategy. Regarding the parameter setting of

the motor drive, a 300-Vdc inverter with a switching frequency of 21 kHz is connected to
an induction motor. The parameters of the induction motor are listed in Table 11.

Table 11. Parameters of the three-phase induction motor.
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Rotor
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Rotor
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(H)
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Magnetization
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(H)

Moment
of Inertia
(kg-m2)

1 10.4 0.04 11.6 0.04 0.557 0.004
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Figure 22 shows that the occurrence of an open-circuit fault in the switch Sa1
+ would

distort the three-phase output line voltage. The fault is particularly severe in the vab and vca
phases, and the fault-tolerant control strategy can be launched 0.03 s after the occurrence of
the fault. In this situation, the a-phase h-bridge switches (Sa1

+ and Sa2
−) are deactivated, and

the neutra-point switches (Sa1
− and Sa2

+) are thus activated. The b and c-phase switches still
operate normally; the phase angle of the b-phase voltage is simultaneously adjusted such
that it is 150◦ behind the phase angle of the a-phase reference voltage, and the phase angle
of the c-phase reference voltage is adjusted such that it is 150◦ ahead of that of the a-phase
voltage. After the execution of the fault-tolerant control strategy, the three-phase output line
voltage is reduced from five to three levels (Figure 22). However, after the occurrence of
the fault, the output line voltage still maintains the operation of the balanced three-phase
system. Therefore, the motor can still operate normally under reduced load.
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Figure 22. Measured waveform of the output voltage generated by the fault-tolerant control strategy
when an open-circuit fault occurs in the switch Sa1

+.

If an open-circuit fault occurs in the switch Sb2
−, the fault would distort the three-phase

output line voltage, as illustrated in Figure 23. The fault is particularly severe in the vab and
vbc phases. In this situation, if the fault-tolerant control strategy is launched, the b-phase
h-bridge switches (Sb1

+ and Sb2
−) are deactivated and the neutral-point switches (Sb1

− and
Sb2

+) are thus activated; the a- and c-phase switches still operate normally. However, the
phase angle of the new a-phase reference voltage is adjusted such that it is 30◦ ahead of
that of the original a-phase reference voltage, and the phase angle of the c-phase reference
voltage is adjusted such that it is 90◦ ahead of that of the original a-phase voltage. Figure 23
indicates that after the execution of the fault-tolerant control strategy, the three-phase output
line voltage is reduced from five to three levels; however, after the occurrence of the fault,
the output line voltage can maintain the operation of the balanced three-phase system.
Therefore, the motor can continue to operate appropriately under reduced load.
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If an open-circuit fault occurs in the switch Sc1
+, the fault would distort the three-phase

output line voltage, as presented in Figure 24. The fault is particularly severe in the vbc
and vca phases. If the fault-tolerant control is launched 0.03 s after the occurrence of the
fault, the c-phase h-bridge switches (Sc1

+ and Sc2
−) are deactivated and the neutral-point

switches (Sc1
− and Sc2

+) are activated; the a- and b-phase switches still operate normally.
The phase angle of the a-phase reference voltage is adjusted such that it is 30◦ behind that of
the original a-phase reference voltage, and the phase angle of the b-phase reference voltage
is adjusted such that it is 90◦ behind that of the original a-phase reference voltage. Figure 24
reveals that after the execution of the fault-tolerant control strategy, the three-phase output
line voltage is also reduced from five to three levels. However, after the occurrence of the
fault, the output line voltage can maintain the operation of the balanced three-phase system.
Therefore, the motor can continue to operate appropriately under reduced load.
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Figure 24. Measured waveform of the output voltage generated by the fault-tolerant control strategy
when an open-circuit fault occurs in the switch Sc1

+.

If the capacitor at the DC link is not large enough, and the switching of FTC is not fast
enough, the voltage of DC link will vary. In this paper, because the capacitor used in the
DC link is quite large, and the switching time of FTC switch is very short, there is almost
no voltage variation in the DC link before fault and after clearing the fault.

7. Conclusions

This paper proposed a CMAC-based fault diagnosis system for inverters capable of
detecting the positions of faulty power transistors in three-level T-type inverters. The
application of a CMAC reduces training time. It also possesses capabilities to reduce the
effects of interference signals. The FTC strategy enabled the system to engage in FTC
immediately following the occurrence of a fault to maintain the normal supply power of
the inverter, thereby greatly enhancing the power reliability of three-level T-type inverters.
Finally, the experimental results verify that the proposed system can accurately detect fault
categories, even with the presence of interference. Moreover, the FTC strategy enables the
system to maintain the three-phase balance of the output line voltage upon the occurrence
of a switch fault, confirming the feasibility of the proposed system.

Author Contributions: K.-H.C. planned the project and did the writing, editing, and review. He also
did the analysis and optimized the cerebellar model articulation controller. L.-Y.C. developed the
three-level T-type inverter and used to create a three-level T-type inverter test environment. C.-C.H.
was responsible for data curation, software and experimental corroboration for the T-type inverter
and fault-tolerant controller. K.-H.C. administered the project. All authors have read and agreed to
the published version of the manuscript.
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