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Abstract: An emerging trend in utilizing service robots in a vast range of application areas could be
seen nowadays as a promising effort to uplift the living standard. These service robots are intended
to be used by non-expert users, and their service tasks often require navigation in human-populated
environments. Thus, human-friendly navigation behavior is expected from these robots by users.
A service robot should be aware of Human–Robot Proxemics (HRP) to facilitate human-friendly
navigation behavior. This paper presents a review on HRP. Both user studies conducted for exploring
HRP preferences and methods developed toward establishing HRP awareness in service robots are
considered within the scope of the review. The available literature has been scrutinized to identify
the limitations of state of the art and potential future work. Furthermore, important HRP parameters
and behavior revealed by the existing user studies are summarized under one roof to smooth the
availability of data required for developing HRP-aware behavior in service robots.

Keywords: proxemics; human–robot interaction; human-centred robotics; social robotics; service
robotics

1. Introduction

A service robot can be defined as “a robot that performs useful tasks for humans or
equipment excluding industrial automation applications” conferred to the International
Federation of Robotics [1]. The autonomy of service robots ranges from partially to fully
autonomous, which can perform a meaningful and purposive task based on information
gathered from their environment, user, and knowledge [2]. These service robots play a
vital role in the present world since the service robots are utilized in enormous application
areas including education [3–5], health-care [6,7], entertainment [8,9], cleaning [10–12], and
guidance [13–15]. Moreover, the utilization of service robots to support day-to-day tasks
improves the quality of life.

Service robots with intelligence are capable of increasing productivity and cost reduc-
tion in the growth of sales in the robotics market [16]. Many robotics designs are introduced
in such a way that to be a part of ordinary people. However, most of the users of these
robots do not possess much knowledge about the robotic domain. Therefore, the users
prefer to have human-friendly features in these service robots [17,18]. In this regard, the
service robots should be integrated with human-like cognitive decision-making abilities.
A robot intended for direct interactions with humans in human-shared environments is
known as a cobot, which means a collaborative robot. According to [19], cobots are pro-
posed to explicitly interact with humans and coping a shared payload, including industrial
robots. Thus, cobots should have proper human–robot interaction capabilities to enhance
their usability.

A service robot frequently needs to navigate when performing typical activities. The
developments of navigation algorithms such as A-star [20], SLAM [21], Dijkstra [22], and
Vector field histogram [23] attempted to improve the navigation functionalities of service
robots such as path planning while obstacle avoidance. These robots often operate in
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human-populated environments. Thus, the path planning module of a service robot
should consist of human-aware navigation capabilities [24,25]. Moreover, human-friendly
navigation behavior is expected from these robots by users [26,27].

Human-friendly navigation capabilities of a service robot would enhance the overall
interaction between the robot and a user, ultimately increasing user satisfaction [28,29]. A
service robot should be capable of maintaining a proper distance and direction with a user
while approaching the user or navigating toward a goal. This scenario can be explained
by the example shown in Figure 1, which represents a robot navigating from the initial
position ‘O’ to the goal position in different contexts. In Figure 1a, a person is doing an
exercise, and movements change rapidly. The person requires a large free space around
him. Thus, the robot should maintain a long distance with the user during the navigation
in this case. A situation where a person works with a computer while sitting is depicted in
Figure 1b. In this case, the distance to be maintained by the robot should be less than the
exercise scenario. Apart from single-person scenarios, there can be multi-person scenarios,
as depicted in Figure 1c, where two persons have a conversation. In this scenario, the
robot should navigate toward the goal without hindering the ongoing conversation by
obeying social etiquette. Therefore, Human–Robot Proxemics (HRP) plays a vital role when
navigation in human-populated environments.

O OO

Goal Goal Goal

𝑃𝑑

𝑃𝑑
𝑃𝑑

(a) (b) (c)

Figure 1. Robot approaching a goal position while perceiving human actions and maintaining an
appropriate distance with the person; (a): A person doing an exercise, (b): A person working on a
laptop, and, (c): Two persons having a conversation.

Proxemics is the study of human use of space or set between themselves and others
during interactions or performing an activity. It can be introduced as the distance between
persons when they interact with each other [30]. According to the study [31], the HRP
is essential for understanding the relationships between humans and robots and for the
HRI factors, rapport, cooperation, and positive experience. The work, [32] found out that
users often adjust HRP to a comfortable level when a robot invades their personal space.
The work [33] found that a user may get distracted from an ongoing activity if a robot
does not maintain proper HRP. On the contrary, the papers [34,35] argue that the HRP
alone does not influence the subjective measurements of users, such as user comfortably,
and a user prefers the distance where a robot accurately perceives user instructions than
comfortable HRP. Thus, the literature on HRP studies should be scrutinized to reveal the
insights helpful in developing service robots. Furthermore, the development of service
robots with human-like proxemic awareness is challenging due to the need to embody
human-like cognitive features into the robots. Therefore, a timely written review paper
on HRP would be beneficial for developing the field of service robotics since the content
of the review reveals the current status, limitations, and potential future directions of this
research niche.

In this regard, this paper presents a review of the literature on HRP. The literature
reviewed in this paper was selected by exploring major indexing databases such as Web of
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Science, SCOPUS, and Google Scholar. Nonpeer reviewed, or unpublished manuscripts
such as news items, theses and dissertations, web articles, and technical reports were
excluded from the review paper. Books, chapters, and standards that could be used to
provide supporting statements or additional information such as definitions are included
in the paper. A major focus has been given to a journal in the case of the same concept
was reported in two documents such as a conference paper and an extended journal article.
Only the manuscripts published in English were considered for review. The gathered
literature was taxonomically analyzed, and the taxonomy identified for the analysis is
depicted in Figure 2. A discussion on explanatory studies on human–human proxemics is
given in Section 2. Section 3 reviews the existing explanatory studies conducted to identify
natural HRP behavior. Furthermore, a summary of the findings revealed by the studies is
given to form a collection of facts related to HRP behavior. The state-of-the-art methods
proposed for establishing HRP-aware behavior on service robots are reviewed in Section 4.
The limitations of the current work and potential future work identified through the review
are taxonomically presented in Section 5. Concluding remarks of the review are given
in Section 6.

Literature

Human-Human 
Proxemics Studies

HRP Studies
Methods for 

Establishing HRP

User 
Attributes

Modeling HRP for 
Comfortability 

Virtual 
Reality

Drones

Robot 
Attributes 

Context

Emerging 
Directions

Adapting HRP for 
Communication

Adapting Robot 
Behavior per HRP

HRP-Aware Path 
Planning

Figure 2. Taxonomy used in this paper to analyze the proxemics literature.

2. Human–Human Proxemics Studies

Anthropologist Edward T. Hall [30] introduced the term ‘Proxemics’ defined as “the
interrelated observations and theories of humans use of space as a specialized elaboration
of culture”. He conducted various experiments with human–human and human-animal
to observe the variations of uses of space considering different contexts. This work could
be considered the foundation work of proxemics. Although Hall’s proxemics experiments
were conducted on Americans, the proxemics patterns in the cross-cultural context of
Japan and Arabs have been deduced. Hall was inspired by Hediger’s [36] animal distance
observations, wherein animal world, animals maintain distances such as fight distance and
critical distance when different kinds of species meet. Similarly, he introduced distance
zones that humans maintain with each other during different interaction contexts. His
work reported four main proxemic zones. These zonal distributions can be represented
as indicated in Figure 3. Each zone is subdivided into a close and far phase. The inti-
mate distance—close phase is considered the physical contact or possibility of physical
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engagement. The distance range related to each zone is given below with their specific
interaction context.

Intimate 

Zone

Personal 

Zone

Social 

Zone

Public Zone

3.7 m

0.46m

1.2 m

Figure 3. Hall’s proxemic zones introduced in [30].

• Intimate Distance: used for embracing, touching or whispering

– Close Phase: Less than 15 cm
– Far Phase: 15 to 46 cm

• Personal Distance: used for interactions among good friends or family

– Close Phase: 46 to 76 cm
– Far Phase: 76 to 122 cm

• Social Distance: used for interactions among acquaintances

– Close Phase: 1.2 to 2.1 m
– Far Phase: 2.1 to 3.7 m

• Public Distance: used for public speaking

– Close Phase: 3.7 to 7.6 m
– Far Phase: 7.6 m or above

Argyle and Dean [37] have conducted experiments on the relationship between eye
contact and interpersonal distance. According to their studies, eye contact is considered
a component of intimacy and influences proxemics preferences. Moreover, proxemics
distance decreased when eye contact was reduced. The study [38] discovered that most
of the time, females prefer the close phase of the personal zone (defined by Hall) during
human–human interactions.

During multi-person gatherings, the people arrange formations and distances between
them to exchange glances, words, and gestures comfortably. The work [39] introduced
the basic space arrangement of persons defined as F-formation. The basic six F-formation
are shown in Figure 4. The formations provide an amicable arrangement of people for
the smooth and efficient performance of a given task. The work [39] introduced many
situations that can apply these F-formation for two persons, such as at the setting edge (next
to a wall or similar barrier), away from the setting edges (in an open, unstructured space),
in the traffic line transecting a pedestrian setting (e.g., a plaza) and on a path transecting an
open non-pedestrian setting (e.g., a lawn).
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Figure 4. Six basic types of F-formation defined by Ciolek and Kendon [39].

The study [27] explored the approaching behavior of a person toward another person
who is having a conversation with a third person. The study investigated the variation
of proxemics behavior of an approaching person with three factors; orientation of two
conversating persons, the initial position of the approaching person, and the distance
between the conversing persons. The study found that the termination distance between
the approaching person and the person of interest is independent of the orientations and
the distances between the two conversating persons. Furthermore, there is no effect on
the proxemics from the initial position of the approaching person. The mean termination
distance was found to as 91 cm. The experiments were conducted using participants with
South Asian cultural backgrounds where data are limited for the targeted population.

3. Human–Robot Proxemics (HRP) Studies
3.1. User Attributes and HRP

A study has been conducted to identify the HRP preferences of adults and children [40].
In the study, the participants were asked to move toward the robot and indicate their com-
fortable distance preference. A robot’s approach toward participants was also considered.
It was found out that children prefer social zone and adults prefer personal zone (Hall’s
zones). Effects of the personality of a user on HRP have been studied in [41,42]. Both
studies conclude that there is a significant effect on HRP with user personality. According
to [41], proactive is the only user personality factor that correlates with social distance,
among others considered personality factors; social reluctance, timidity, and nervousness.
The study [42] considered extraversion, agreeableness, conscientiousness, neuroticism, and
openness as the user personality factors. They found out that users with lower neuroticism
and lower openness prefer lower HRP than those who have higher neuroticism and higher
openness. Effects of user gender on HRP have been studied in [43], and the work could
not find a significant effect of gender on HRP. The effects of a user’s cultural background
on HRP and robot–robot proxemics have been studied in [44]. Arab and Germans are
the two cultures considered for the study. There was a significant effect on HRP with
culture. Irrespective of the culture, user preference for robot–robot proxemic is significantly
different from HRP.

The adaptation of HRP with the experience of users has been examined in several
studies [45–47]. According to [46], HRP adapts with the experience, and the adaptation
happens only within the first few interactions. The study [47] found that pet owners prefer
a higher HRP than those who do not own a pet. However, contradicting outcomes were
identified in the study [45], where people who own a pet have a significantly closer HRP
than people who never own a pet. Furthermore, people with at least one year of experience
with a robot preferred closer HRP than others.
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3.2. Robot Attributes and HRP

In [48], an experiment has been conducted to explore the HRP variation concerning a
robot with four different voice types; natural voice-male, natural voice-female, synthesized
voice, and no voice. According to the outcomes of the experiment, a significantly higher
HRP has been observed for synthesized voice than in the other three cases. Furthermore,
they could not observe the effect of gender on HRP. The variation of HRP with internal
noises of the robot has been studied in [49]. A user approaching a robot with different
levels of machine-like noises has been considered for the study (see Figure 5a). The HRP
significantly increases with the increment of the robot’s noise level. The study [50] has
found the same sort of behavior in HRP when passing a robot. Furthermore, masking the
noise with music could reduce the HRP.

The people who interact with a robot may consider physical appearance. Several stud-
ies have been conducted to determine the relationship between the HRP and the physical
appearance of a robot. The study [49] used four different robots; a manipulator robot, two
service robots, and an anthropomorphic robot head (shown in Figure 5b) to investigate this
hypothesis. The HRP preference for the manipulator robot was significantly higher than the
other three robots implying less human-likeliness increases HRP. Another similar study has
been conducted in [51] considering a short-mechanoid, a tall-mechanoid, a short-humanoid,
and a tall-humanoid robot. The results indicate that a higher degree of anthropomorphic
attribution is linked to higher expectations of HRP norms. The comfortability of HRP
while approaching or passing a person by a robot of different sizes has been evaluated
in [52]. Here, a robot comparable to human height has been considered a large robot, while
a shorter robot than human knee height has been considered a small robot for the study.
The study indicated that users feel comfortable when a small robot comes closer than a
large robot.

Vocal emotions:
Happy, Sad, Angry, Fear

Noise level

Different robot appearances

Service robot 1

Manipulator

Anthropomorphic

robot head

Service
robot 2

(a) (b)

(c) (d)

Facial emotions

Figure 5. An overview of the HRP study conducted in [49]. (a): with internal noise levels of the robot,
(b): An anthropomorphic robot head, (c): A manipulator, and (d): A service robot.

The variation of HRP with the availability of a human-like virtual reality avatar on a
mobile robot has been studied in [53]. In this regard, HRP variations during the two scenar-
ios, a user following a robot and a user avoiding a robot, were studied. The study failed to
identify an effect between HRP and the human-like virtual reality avatar availability.

The HRP variation per a robot’s vocal and facial emotions has been studied in [49]. The
study setups are shown in Figure 5b,c, respectively. The six primary facial emotions (i.e.,
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happy, sad, disgust, surprise, fear, and anger) were displayed in the robot during the study.
The outcomes revealed that humans prefer the highest proxemics distance with a robot
when the robot’s facial emotion is angry or disgusting. In contrast, humans prefer closer
HRP when a robot’s facial expression is happy or sad. In the case of vocal emotions, the
robot’s synthesized voice has been altered to reflect happy, sad, angry, and fear emotions. In
this case, it was found that users preferred a significantly higher HRP when the robot vocal
emotion was angry. In the work [54], the authors compared HRP for happy, neutral, and
sad cases. A combination of facial and body expressions was used to reflect the emotions
in this work. They found that HRP in the case of happy emotion is significantly less than
sad emotion.

3.3. Context and HRP

A study has been conducted to determine the human preferred approaching direction
and the distance for a robot considering four different contexts [55]. Sitting on a chair in the
middle of an open space, standing in the middle of an open space, sitting at a table in the
middle of an open space, and standing with their back against a wall were considered as
the contexts in this regard. Front left and front right were observed as the most comfortable
approaching direction for all scenarios within the personal distance range. Approaching
from the rear direction was the least preferred. In studies [42,43], the variation of HRP
according to the user’s body posture has been studied. Study [42] identified a significant
effect of user body posture on the preference of HRP. The body postures, standing and
walking, have a higher HRP than the body postures, sitting and lying, which have a lower
pose. However, the study [43] failed to identify a significant effect of user body posture
on HRP. They considered only sitting and standing as body postures. Thus, the results are
compliant with that of the study [42].

The study [43] observed a significant impact of robot posture on HRP, where lower
HRP is preferred in the case of sitting than standing. The work [45,47] examined the
variation of HRP with robot gaze. Two different gazing contexts of a robot, a robot gazing
toward a user’s head or leg, were considered in the study [45]. The study found a significant
effect from gaze when the context is segregated based on gender. In the case of robot gaze
toward a user’s head, women prefer significantly higher HRP than men. In contrast, there
is no significant difference in the gaze toward the legs. However, no significant impact
of robot gaze on HRP could be found without considering the gender-based segregation.
In [47], contexts of mutual and averted gazes of a robot have been considered. However,
no effect from gaze (general or segregated on gender) could not be observed. The variation
of HRP with a robot’s service task has been studied in [56]. The study considered two
service tasks where a robot handing over a soft drink and a hat. The participants have
no significant difference in proxemic distance preference in the two tasks. However, the
study found that the preference for a robot’s approaching direction significantly alters
the considered two service tasks in fresh interactions. During long-term interactions, this
difference vanishes.

The variation of HRP according to the ways of approaching, a human toward a robot
and a robot toward a human, has been studied in [40,41,46]. The studies concluded that
HRP is not significantly dependent on these two approaching contexts. However, according
to [46] users do not prefer closer HRP when a robot approaches a user in scenarios where
the user’s mobility is restricted. The study [57] found that participants prefer a robot’s
approaching from the right direction to hand over an object to a person sitting on a chair.
Approaching from the front was the least preferred in this context. The work [58,59]
conducted a user study for analyzing the stopping distance when a robot approaches
two persons during a conversation. The robot was moved along different approaching
paths as shown in Figure 6 when the two persons were sitting on the chairs, and the
comfortable HRP decided by the participants was recorded. The outcomes of the study
can be summarized as follows. In general, the preferred distance was outside of Hall’s
personal zone. There is a significant effect of approaching direction on stopping distance
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and user comfortability. Users feel the highest comfortability when a robot approaches
from the front, while the least comfortability can be observed from approaching the robot
from −70◦ direction.

0°

−35°

70° 70°

35°

0.5 m1 m

1.25 m

Participant

Robot’s Starting 
Point
Robot’s Stopping
Point

Walking toward the 
left point
Walking toward the 
middle point

Walking toward the 
middle point

Figure 6. The experimental arrangement of the HRP study reported in [58].

Comfortable HRP during passing scenarios of robots and humans has been studied
in [60]. In this regard, cases of the passing of a robot from the left and the right of a
participant were considered. There is no significant effect from the passing side per the
observations of the study. In contrast, the user comfortability increases significantly with
the increment of passing HRP. The study [53] examined the variation of HRP during
a human following or avoiding a robot. The study found that a robot’s moving speed
significantly affects HRP during following and avoiding contexts. The variation of the
HRP with the speed of the robot was also accounted for in the study. During the context
of following a robot, HRP increases with its speed. In contrast, HRP decreases with the
robot’s speed in the context of avoidance.

3.4. HRP Studies on Emerging Directions
3.4.1. HRP in Virtual Reality (VR) Settings

Explorations of HRP in VR scenarios are an emerging area found in the literature. In
study [61], the authors compared the variation in HRP in VR and the real world. Overall,
they found that comfortable HRP was significantly higher in VR than in the real world. In
the case of VR, four distinct scenarios (i.e., familiar environment, unfamiliar environment,
with sound, with no sound) have been considered. The HRP observed in the scenario of VR
with sound is lesser than that of the scenario with no sound. A significantly higher HRP was
observed for the scenario of VR with an unfamiliar environment and no sound compared
to the real world. However, there is no significant difference between the scenarios of
VR. In [62], a situation of exploring a room collaboratively by a robot and a user in a VR
environment has been considered. Two cases of the robot, with proxemics awareness and
with no proxemics awareness, have been used for the investigation. According to the
outcomes, most participants preferred the robot with proxemics awareness. Therefore, it
can be concluded that HRP is essential in a VR environment, similar to real-world settings.

3.4.2. Drones and HRP

The study of human proxemics with drones is another emerging research niche in HRP
due to drone usage in human-populated environments. Comfortable HRP for approaching
a drone toward humans has been studied in [63]. In this regard, a drone was moved to
intimate, personal, and social zones (Hall’s zones), and user comfortability was evaluated.
Personal distance was significantly preferred by the participant over the other two zones.
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When the drone came near to a participant, comfortability was decreased. There was no
increase in comfortability when the drone moved out. However, participants felt calm
and in control when the drone moved out. Furthermore, approaching from the front is
preferred. The study [64] also examined the comfortable HRP when a drone approached a
human and a human approached a drone. They found no significant difference between
the cases of the drone approach and the human approach. In [65], the authors explored
the variation of HRP with the approaching height of a drone. However, the study failed to
identify a significant effect of approaching height on HRP.

The work [66] studied the variation of HRP per the socialness of a drone. In this regard,
four cases of different degrees of socialness, as shown in Figure 7 have been considered.
A drone with a social shape and a greeting voice is preferred a closer HRP compared to a
drone with a nonsocial shape and no greetings. Apart from the main findings, the study
concluded that pet owners prefer closer proxemics than non-pet owners. Furthermore,
females preferred higher HRP than males. In addition to these, the variation of preferred
HRP with height and lateral distance has also been studied in the work [66]. In a scenario
where a drone approaches a person at a lower height can observe a closer HRP than that of
a higher height. Users prefer closer HRP when the lateral distance of the drone’s approach
is away from them.

Socialness

Social shape 

(appearance)

No Social shape 

(no appearance)

Greeting

voice

No Greeting 

voice

Greeting

voice

No Greeting 

voice

Figure 7. The taxonomy of cases considered in the study [66].

3.5. Summary of HRP Preferences Revealed by Human–Robot Studies

A summary of HRP identified from the human–robot studies is given in Table 1. The
factors/parameters altered to identify the effects on HRP, as well as the factors fixed during
each study, are stated there, along with quantitative and qualitative HRP preferences.
The identified comfortable HRP distances and directions of different scenarios of each
study are given if the information is available in the corresponding paper. These HRP
values corresponding to different scenarios would help develop HRP-aware behavior in
service robots.
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Table 1. HRP preferences revealed by human–robot explanatory studies.

Paper User Atrributes Robot Attributes Context

[40]
*Children: 1.75 m
*Adults: <=0.5 m
No experience

Mechanistic appearance
(PeopleBot)

Robot toward human
Human toward robot

[41]
Adults
No experience
0.45 m–3.6 m

Mechanistic appearance
(PeopleBot)

Robot toward human
Human toward robot

[42]

Adults
No experience
*Extraversion: High—0.90 m, Low—0.85 m
*Conscientiousness: High—0.85 m, Low—0.95 m
*Agreebleness: High—0.87 m
*Neuroticism: High—0.95 m, Low—0.67 m
*Openness: High—0.90 m, Low—0.70 m

Pioneer 3DX

Robot approach toward human
*User body posture:
Standing—0.95 m
Walking—0.96 m
Sitting—0.78 m
Laying—0.82 m

[43]
Adults
No experience
New Zealand

Nao

*Human toward a sitting robot:
Male—0.40 m, Female—0.30 m
*Robot toward a sitting human:
Male—0.30 m, Female—0.40 m
*Human toward a standing robot:
Male—0.55 m, Female—0.40 m
*Robot toward a standing human:
Male—0.40 m, female—0.45 m

[44]

Adults
No experience
*German culture:
Robot–robot—0.42 m, Human–robot—0.86 m
*Arabic culture:
Robot–robot—0.4 m, Human–robot—0.66 m

Nao Placing robots for conversation

[45]
Adults
*Experience: No—0.34 m, 1 year—0.25 m
*Pet owner: Yes—0.39 m, No—0.52 m

PR2

Robot toward human
*Robot’s gaze toward human’s head:
Female—0.30 m, Male—0.25 m
*Robot’s gaze toward human’s head:
Female—0.25 m, Male—0.30 m

[46]
Adults
*Experience in weeks: 1—0.50 m, 2—0.43 m,
3—0.46 m, 4—0.43 m, 5—0.45 m, 6—0.51 m

Mechanistic appearance
(PeopleBot)

Robot toward human
Kitchen and living room

[47] Adults
*Pet owners prefer higher HRP

Wakamaru

Human toward robot
*Mutual gaze:
Female—1.0 m, Male—1.1 m
*Avatar gaze:
Female—1.0 m, Male—1.0 m

[48]
Adults
No experience and
experienced

Mechanistic appearance (PeopleBot)
*Natural male voice: 0.52 m
*Natural female voice: 0.60 m
*Synthetic voice: 0.80 m
*No voice: 0.42 m

Robot toward human
Human toward robot

[49]
Adults
No experience
South Asian

*Facial emotion:
Happy—0.60 m, Sad—0.45 m,
Angry—1.22 m, Surprise—0.88 m,
Disgust—1.22 m, Fear—0.88 m
*Vocal emotions:
Happy—0.85 m, Sad—0.67 m,
Angry—1.27 m, Fear—0.82 m
*Noise:
00 dB—0.72 m, 53 dB—0.76 m,
57 dB—0.92 m, 62 dB—1.07 m
*Physical appearance:
MIRob—0.68 m, Robot head—0.67 m,
K3 manipulator—0.97 m, Fuzzbot—0.63 m

Human approach toward
robot for a conversation

[50] Adults
No experience

*Noise:
Regular sound (65 dB)—1.10 m
Silent—0.92 m
Mask sound—1.03 m

Human passing a robot
in a corridor

[51] Adults
No experience

*Appearance
Humanoid—0.62 m, Mechanoid—0.50 m
*Mental model
Human-like—0.57 m, Non-human—0.52 m

Robot toward human
Robot passing human
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Table 1. Cont.

Paper User Atrributes Robot Attributes Context

[52]
Adults
No experience

*Robot upto human height: 0.55 m
*Robot upto knee height: 0.25 m

Robot approaching toward human
Robot passing human

[53] Adults
No experience

Mixed-reality avatar robot build in Pioneer 3-DX
Human following a robot:
*Speed 0.8 m/s: Avatar visible—1.30 m, Avatar invisible—1.25 m
*Speed 1.0 m/s: Avatar visible—1.42 m, Avatar invisible—1.38 m
*Speed 1.2 m/s: Avatar visible—1.50 m, Avatar invisible—1.55 m
Human avoiding a robot:
*Speed 0.8 m/s: Avatar visible—2.25 m, Avatar invisible—2.35 m
*Speed 1.0 m/s: Avatar visible—2.18 m, Avatar invisible—2.8 m
*Speed 1.2 m/s: Avatar visible—2.00 m, Avatar invisible—2.04 m

[54]
Adults
No experience
Japanese

Pepper
*Body and facial emotions:
Happy—1.09 m, Neutral—1.18 m, Sad—1.37 m

Human toward robot

[55] Adults
No experience

Mechanistic appearance
(PeopleBot)

Robot toward human
*Seated on a chair in an open space:
*Standing on an open space:
*Seated at a table in an open space:
*Standing back against a wall
For all, front left, front right—most
comfortable, Right—least preferred

[56]
Adults
*Short term: Prefer Side approaching
*Long term: No preference in direction

Care-O-bot
Robot toward human
*Delivering a drink: 0.5 m, front
*Delivering a hat: 0.5 m, side

[57] Adults
No experience

Mechanistic appearance
(PeopleBot)

Robot hand over an object
when human sitting on a chair
*Right: highest preferred
*Front: least preferred

[58] Adults
No experience Nao

Robot approach toward two
persons having a conversation
*Directions:
−70◦ : 0.92 m, −35◦ : 0.98 m,
35◦ : 1.05 m, 70◦ : 1.11 m

[60]
Adults
No experience Pepper

*Human passing a robot
in a corridor: 1.1 m

[61]
Adults
No experience

Pepper
*Virtual Reality (VR) and real robot:
VR—0.46 m, Real—0.53 m
*VR: Sound—0.40 m, No sound—0.52 m

Robot approach toward human

[62]
Adults
No experience VR

Collaboratively explore a room
by a robot and a human

[63] Adults
No experience

Drone
Speed: 0.5 m/s
Trajectory: straight

Drone toward human
Front direction most comfortable
*1.2 m personal zone is preferred

[64]
Adults
No experience

Drone
Height: 1.5 m, Speed: 0.7 m/s

*Drone toward human: 1.8 m
*Human toward drone: 1.6 m

[65]
Adults
Experienced

AR100R drone
*Height: Short—0.62 m, Tall—0.63 m

Drone approach toward human

[66]
Adults
*Gender: Female—1.5 m, Male—1.1 m
*Pet ownership: Yes—1.13 m, No—1.39 m

Drone
*Social shape:
Greeting voice—1.06 m
No greeting voice—1.14 m
*Non social shape:
Greeting voice—1.33 m
No greeting—1.38 m

Drone approach toward human
*Approaching height 1.2 m
Lateral distance: 0 m—-1.14 m,
0.3 m–1.02 m, 0.6 m–0.95 m
*Approaching height 1.8 m
Lateral distance: 0 m–1.35 m,
0.3 m–1.38 m, 0.6 m–1.27 m

The symbol ‘*’ indicates the factors/parameters varied for examining the HRP in each study.

4. Methods Developed for Establishing Proxemics Awareness in Service Robots
4.1. Methods of Modeling HRP for Improving User Comfortability

A proxemic planner for a robot that can determine appropriate HRP has been devel-
oped in [67]. The proposed proxemics planner utilizes a proxemic preference algorithm
inspired by human–human and human–robot proxemic studies presented in [47,60]. The
proxemic preference algorithm considers 21 possible target coordinates around a user,
as shown in Figure 8. The inner two layers are utilized for physical interactions such as
fetch and carry tasks, while the outer layer is configured only for verbal interaction. The
default layer for the physical interaction is the middle layer, and the innermost layer is
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for experienced users. The proxemics planner can determine the appropriate HRP in a
particular case by selecting one of the points among these predefined coordinates based on
contextual factors. The approaching direction is considered to be in the frontal region of
a user.

Front

Left Right
0.4 m

0.7 m

1.5 m

Front

Left Right
0.4 m

1.5 m

0.7 m

17

20 16

21 18

19 153

5

6

7 4

2

1
10

13 9

12 8

14 11

Figure 8. The set of locations defined around a user for determining the comfortable HRP by the
poxemic planner proposed in [67].

An attempt to develop an empirical framework for determining HRP by a service robot
could be seen in [68]. The paper proposed a lookup table, which indicates the variation
of HRP in accordance with situations, context, and attributes of a robot and a human.
The statistical conclusions gathered from previous HRP studies have been utilized for
estimating the HRP for the considered lookup table entries. However, the method has not
been implemented or experimented with a robot. Defining a long lookup table with many
entries to cover all the probable cases is the major limitation of the work.

An Adaptive Neuro-Fuzzy Inference System (ANFIS) [69] has been developed to
determine the HRP to be maintained by a service robot [70]. The ANFIS is capable of
adapting HRP per the height of a user, a robot’s appearance, and user familiarity with
the robot (overview of the ANFIS is given in Figure 9). A set of data collected from a
human–robot user study conducted as a part of this work has been used to train and test
the proposed ANFIS. The variation of human height has been considered in the range of
0.5 m–2 m. The appearance is considered human-likeliness, represented on a 1 to 5 scale.
However, the deployment of the model on a robot has not been considered within the scope
of the work. Moreover, the validation of the work is limited to testing with the data set.

Height

Appearance

Familiarity

ANFIS
Personal 

Space

Figure 9. An overview of the ANFIS proposed in [70].

Another development of an ANFIS for determining HRP to improve user comfort
could be found in [71]. The proposed ANFIS is capable of determining proper stopping
HRP during an approach of a robot based on user activity and personality that have been de-
veloped. The configuration of the proposed system is explained in Figure 10. User activity
is determined by a Naive Bayesian classifier (NBC) by analyzing the inertial measurements
retrieved from a wearable sensor placed on a user. User activity, personality factors, and
robot velocity are fed to the ANFIS as inputs. The personality factors are identified for each
user through a questionnaire. The output of the ANFIS is the appropriate HRP for stopping
the approach of a robot. Even though the robot is capable of adapting the proxemics based
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on user activity, the adaptation is limited to a small set of predefined activities (stand-
ing, sitting, walking, and laying). Thus, the proposed method would not be feasible for
more activities.

Robot 

approaching

ANFIS

NBC

Stopping 

distance

Activity

Personality

factors

Data from  

wearable device

Velocity

Figure 10. An overview of the system proposed in [71].

A method to determine the approaching proxemics for a service robot based on user
behavior has been proposed in [72]. The method considers the dynamic movements of a
human’s body joints to perceive the user behaviors instead of posture classification. Thus,
the applicability of the method is not limited to a set of activities or posture categories.
Furthermore, the system can vary the proxemics within the same activity based on how the
user is performing an activity. The motivation of the proposed method can be explained
with the example scenarios shown in Figure 11, where a human doing an exercise extending
legs and arms in a wider manner requires a large interpersonal distance than a situation
where arms and legs are not much extended. In the proposed system, dynamic body
parameters perceived through an RGB-D sensor are used as inputs of a fuzzy inference
system, where the output is the approaching proxemics of a service robot. A user study has
been conducted by embedding the proposed method into a service robot. The user study
has found that HRP determined by the proposed system is not significantly different from
natural human–human proxemics.

(a) (b)

𝑑1 𝑑2

Figure 11. Motivation behind the method proposed in [72]. (a): a small interpersonal distance is
sufficient since body joints are not much extended and not moving fast. (b): large interpersonal
distance is required since body joints are widely extended with a considerable speed.

A Takagi-Sugeno Kang-type [73] fuzzy inference system to model the variation of user
comfort according to a robot’s approach direction and distance has been proposed [74].
Empirically available proxemic data were used to design the fuzzy inference system. The
fuzzy inference system has two inputs, distance, and angle of approach. The system consists
of thirty rules representing all the possible combinations. The output is user comfort. The
proposed model has a prediction error of 35.6% for user comfort. This model could be
used to aware a service robot on user comfort variation with approaching proxemic. The
use of deep learning approaches for the same goal has been investigated in [75]. A subset
of the data set discussed in [74] has been used for training different deep neural network
architectures by varying the fourth and fifth layers of the deep learning topology shown in
Figure 12. Feed-forward layers, gated recurrent units, and long-short-term memory are
considered to make three different architectures. According to the model testing results,
long-short-term memory-based architecture outperforms the other two architectures.
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Input 

Layer

Output 
Layer

Embedding Layer

Feed-forward

LSTM

Feed-forward

Sigmoid

Sigmoid

Sigmoid
Sigmoid

Figure 12. The topology of the deep learning network proposed in [75].

The work [76] proposed a method to adapt the proxemics based on user preferences
identified from subconscious body signals. Here, the intimate, personal, and social distance
of the robot can be adapted toward a user. The policy gradient reinforcement learning
approach is utilized to adapt the proxemics behavior from the initially defined values. A
rule-based algorithm to replicate the natural approaching behavior of humans toward two
persons who are having a conversation has been implemented in a service robot [77]. This
algorithm has been derived based on the outcomes of the study discussed in [27]. The
proposed system has been validated through a user study where it found that the proposed
algorithm can satisfy and comfort both persons involved in an interaction.

4.2. Methods That Adapts HRP for Enhancing Communication

In [78], the development of a method to adapt the HRP to enhance communication
performance between a human and a service robot is presented. A Bayesian network was
developed to represent the relationship between communication parameters (i.e., levels
of voice and gesture inputs and outputs) and HRP. The model has been built based on
data collected through a human–human study and a human–robot study. The scope of the
work is limited to the formation of a model, and validation has not been conducted. This
framework has been extended by the work [79] to determine the approaching proxemic of a
service robot that would maximize the interaction of social signals. Variation of gesture and
speech recognition rates with the distance is primarily used to determine the appropriate
approaching proxemics by the model. Therefore, the model is capable of improving the
interaction through social signals. However, the system cannot alter the proxemics based
on any other factor except the characteristic of the sensory perceiving and output system.

4.3. Methods That Adapts a Robot’s Behavior Based on HRP

A method to adapt the behavior of a social robot based on HRP has been proposed
in [80]. The method uses a proxemic scaling function to adapt the behavior. Two types
of scaling functions, linear and logarithmic, as shown in Figure 13 have been considered.
According to the Proxemic Scalar Value (PSV), corresponding to the HRP in a situation is
used to adapt the behavior. Here, a robot’s behavior, such as moving velocity and voice
output, is modified proportionally to the PSV. The performance of the proposed method
has been evaluated through a user study. According to the outcome of the user study, both
logarithmic and linear scaling functions are preferred over a system with no scaling in the
aspects of user comfort and stress. In contrast, the logarithmic proxemic scaling function
is preferred over the linear scaling function in terms of the robot attributes of intelligence,
likability, proxemic awareness, and submissiveness.
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Figure 13. The method proposed in [80] to adapt a robot’s behavior based on HRP.

The work [81] proposed a system that enables a robot to decide whether to initiate
or terminate interaction with a couple of persons based on the proxemic behavior of the
persons. The system has been developed using a Hidden Markov Model (HMM) [82],
capable of detecting social events leading to interaction initiation and termination. The
authors have conducted an interaction study to analyze and gather data on human proxemic
behavior in natural social encounters. Physical (the distance and orientation of two persons)
and psychophysical features (based upon values from the literature on the human sensory
system) are considered the features that represent human proxemic behavior. The HMM
has been trained to determine the required transition of behaviors (i.e., either interaction
initiation or termination) based on the proxemic features fed to the model. The classification
accuracy of the two social behaviors has been evaluated from testing data for validation.

4.4. Methods for HRP Aware Path Plannings

Service robots could often encounter humans when navigating through narrow spaces
like corridors. The work [83] proposed a rule-based model to realize the smooth passing
of a robot in such encounters. The proposed rule-based approach can be explained with
the aid of Figure 14, where a robot encounters a human in a corridor. When the distance
between the robot and the human is within the personal space (defined by Hall), the robot
initiates a move to the right to a predefined lateral distance. After completing the passing,
the robot returns to regular operation (i.e., moves toward the goal). Three lateral distances,
0.2 m, 0.3 m, and 0.4 m, were considered, and experiments found that the cases of lateral
distances 0.3 m and 0.4 m have a higher user preference. The proxemic distance that
initiates the movement to the right is also fixed to a predefined value. In other words,
proxemic is not adapted.

R P1 P2 Goal

Figure 14. Proxemic aware passing strategy proposed in [83].

A probabilistic method to determine a human-aware navigation path for a service
robot has been proposed in [84]. The proposed method uses a social cost map around a
person to minimize the invasion of a human’s social space during navigation. However,
the method uses a fixed social cost map around a person in this regard. The HRP-aware
navigation path planner proposed in [85] could enable a service robot to plan paths in
environments populated with multiple persons. The HRP-aware path plan strategy can be
explained with the aid of Figure 15. In this method, the personal space of an individual
is represented by an asymmetric two-dimensional Gaussian function. When considering
a group of humans, the individual Gaussian functions are combined through a Gaussian
mixture. A path, which minimizes the overlap through the resultant personal spaces, is
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determined to navigate a robot to a goal. The validation of the proposed system is limited
to simulations.

Robot’s Initial 
position

Robot’s goal

Personal space
single person

Personal space
group of two persons

Figure 15. HRP aware path planing strategy proposed in [85].

The model proposed in [86] enables a robot to engage a person in a human-like manner
while the robot has a side by the sidewalk with another person. The method adapts its
navigation behavior according to the accompanying person and other dynamic people.
The best point to encounter a person is predicted using a gradient descent method that
takes the dynamics of the people of interest. According to a user study, the proposed model
can plan an approach and engage with people while maintaining proxemics within an
acceptable range.

5. Limitations of Current Work and Potential Future Directions

As discussed in Section 3, many human–robot explanatory studies have been con-
ducted to identify the natural HRP preferences of humans. Effects on HRP preferences from
user attributes, robot attributes, and context of interaction have been primarily examined
by state-of-the-art explanatory studies. The current status and extent of these explanatory
studies are taxonomically summarized in Table 2. Even though many explanatory studies
have already been conducted to identify the natural HRP preferences of humans, a vast
amount of explorations is yet to be conducted to gather the necessary details for developing
a service robot with perfect HRP-aware behavior. Potential explanatory studies that would
benefit the development of HRP-aware service robots are listed in Table 2.

Many methods have been proposed to develop HRP-aware behavior on service robots
(see Section 4). Some of these methods are grounded on the outcomes of the HRP explana-
tory studies conducted to identify natural HRP preferences. However, a minimal amount of
explored behavior through explanatory studies is exploited in the present developments of
establishing HRP-aware behavior on robots. Directing the research focus toward this non-
exploited already identified behavior poses an opportunity for rapid development of novel
methods for improving HRP aware behavior of service robots. Human–robot explanatory
studies might be conducted if natural HRP behavior is not yet known or identified for
potential future developments. Identifying the HRP behavior of service robots preferred
by users in an area of concern and formulating a framework for replicating the required
behavior on the robots are the key challenges faced by the researchers. The limitation of the
state-of-the-art methods and potential future developments are given in Table 3 in terms of
the following three aspects; scope, interaction, and adaptation.
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Table 2. Summary of current status and potential future work of HRP explanatory studies.

Current Status Potential Future Work

User Attributes

⊗ Studies are limited to user attributes
• Gender (e.g., [43])
• Age (e.g., [40])
• Personality factors (e.g., [41,42])
• Culture: Arabic and Germans (e.g., [44])
• Experience (e.g., [45–47])

⊗ Study variation of HRP with respect
to the emotional state (e.g., happy, angry,
sad, etc.) of users.

⊗ Consideration of other cultures

Robot Attributes

⊗ Studies are limited to robot attributes
• Voice characteristics (e.g., male, female, natural, synthetic) (e.g., [48])
• Appearance (humanoid, mechanoid) (e.g., [49,51])
• Height (e.g., [52])
• Noise level (e.g., [49,50])
• Facial emotions (e.g., [49,54])
• Vocal emotions (e.g., [49,54])

⊗ Consideration of robot gender revealed
from the appearance

⊗ Consideration of androids and zoomorphic
robots for appearance.

⊗ Consideration of dynamic mechanical
attributes such as speed of moving parts
and temperature

Context

⊗ HRP has been studied based on the robot and user encounters related to
• Robot approach toward user and vice versa (e.g., [40,41,46])
• Approaching and passing (e.g., [53,60])

⊗ Studying of effect from items delivering/handovering by a robot
is limited to delivery of hat or drink. (e.g., [57])

⊗ Considerations of user context limited to posture categories,
sitting, standing, walking, and laying. (e.g., [42])

⊗ Encounters in open and constrained spaces
for a user have been considered. (e.g., [55])

⊗ Effects on HRP in context of interactions with
drones and VR settings have been studied. (e.g., [61–66])

⊗ Variation of HRP with different user context
or activities such as having a meal and
watching TV could be explored.

⊗ Variation of HRP with groups with
multiple persons could be evaluated.

⊗ Consideration of HRP variation with
environments such as living rooms, corridors,
and kitchen or public and private places

⊗ Explore variation of proxemic preferences
of users in accordance to privacy concerns
of context.

Table 3. Summary of current status and potential future work of methods for establishing HRP on
service robots.

Current Status Potential Future Works

Scope

⊗ The existing work considers maintaining of HRP during
• Approaching (e.g., [67,71,72,74,75,77])
• Passing (e.g., [83–85])

⊗ Limited to consideration of general-purpose service robots

⊗ Develop methods to maintain HRP during different
service tasks

⊗ Consideration of HRP awareness for minimalistic
robots such as floor cleaning robot

Interaction

⊗ Majority of work limited to single person cases (e.g., [67,71,72,74,75,83])
⊗ Multigroup cases are limited to the context of conversation. (e.g., [77,85])
⊗ User perceiving abilities are limited. e.g.,

• Personality factors are perceived through questionnaires. (e.g., [71])
• Wearable devices are used to recognize user activity. (e.g., [71])
• RGB-D cameras are used to perceive user behavior. (e.g., [72])

⊗ Extending the methods to cope with multigroup cases
in different activity contexts.

⊗ Use of vision-based inputs to determine required HRP.
⊗ Consideration of multimodal inputs for systems

Adaptation

⊗ The existing methods can adapt HRP based on
• User’s activity defined by posture (e.g., [71])
• User’s dynamic behavior (e.g., [72])
• User’s personality factors (e.g., [71])
• Robot’s attributes such as appearance and height.(e.g., [70])
• Service task (limited to verbal or physical interaction) (e.g., [67])

⊗ Computational intelligence techniques are often used. e.g.,
• Fuzzy logic (e.g., [72,74])
• ANFIS (e.g., [70,71])
• Probabilistic methods (e.g., [84])

⊗ Performance evaluation is often performed based on post hoc
subjective measurements. e.g.,
• Questionnaires (e.g., [71,77])
• Comparison with empirical data (e.g., [72,74,75])

⊗ Facilitates the adaptation to entities such as
• Cultural backgrounds
• Emotions
• Privacy concerns
• Different service tasks

⊗ Consideration of multiple entities for determining HRP
⊗ Use of artificial intelligence techniques such as

reinforcement learning to personalize HRP
⊗ Development/use of objective indexes for

evaluating performance. e.g.,
• Heart rate variation
• Subconscious body signals

6. Conclusions

This paper has reviewed literature related to HRP. HRP should be considered in
the designs of service robots to improve the comfort of their users. Moreover, a service
robot should possess HRP awareness when performing their service tasks in human-
populated environments. For example, an assistive/caregiving robot should maintain
proper proxemics while interacting with a user to improve acceptance. In addition, when
delivering something to a user, the robot needs to identify the context and maintain proper
distance and directions that satisfy user expectations. Therefore, proper use of HRP is
crucial for many service robotics applications.

Many human–human studies and human–robot studies have been conducted to find
the natural proxemic preferences and behavior of humans. The main intention of the
human–robot studies is to gather data and conclusions required for developing HRP
awareness in service robots. Thus, the review examined and presented the key findings
of HRP parameters and behavior identified in these studies. Moreover, a collection of key
findings, which would benefit robotics researchers in developing HRP awareness in service
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robots, is gathered. The review has also highlighted the limitations of the current findings
related to HRP and suggested potential explorations directions for future user studies.

Many developments of methods for establishing HRP awareness on service robots
could be seen in the literature. The majority of the methods are built upon the outcomes of
either human–human or human–robot proxemics studies, and the methods are capable of
improving HRI to a certain extent. However, surprisingly less work has been conducted
on the development of HRP awareness in service robots compared to the explanatory
studies conducted to identify the natural HRP preferences of humans. The limitations of
the existing systems have been identified, and possible future improvements have been
suggested in this paper. This review concludes that there are promising opportunities for
technology advances in this particular research niche and critical challenges to overcome.
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