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Abstract: Shoeprints performs a vital role in forensic investigations. It has been an advanced research
issue in forensic science. The main purpose of shoeprint image retrieval is to acquire a ranking list
of shoeprint images in a database, according to their feature similarities to the query image. In this
way, a shoeprint can not only be used as an exhibit for bringing criminal charges but also to provide
a clue to a case. The goal of this work is to present an overview of the existing works conducted in
shoeprint image retrieval. We detail the different phases of the shoeprint retrieval task and present
a summary of the state-of-the-art methods. We analyzed the difficulties and problems in this field
and discussed future work directions. This review may help neophytes become involved in research
easily and quickly.
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1. Introduction

With the popularity of forensic investigation novels and TV series, a growing number
of people have become aware of what trace evidence that investigators extract at crime
scenes for case detection. Fingerprints, hair, blood and DNA can be collected at crime
scenes and provide clues to cases [1–5]. With the popularization of relevant knowledge,
the number of fingerprint traces and DNA evidence collected at scenes have decreased
noticeably, which seriously affects the investigation of criminal cases. However, after the
criminal suspects commit crimes, they inevitably leave traces at the crime scene [6]. This
inference is based on Locard’s principle that there is an exchange of materials between
two objects with contact. When it is difficult for criminal investigators to extract fingerprints,
DNA and other evidence at crime scenes, shoeprints can perform a vital role [7–10].

A shoeprint is a mark left by a shoe outsole when it makes contact with a surface. It
reflects the suspect’s height, weight, age [11], walking habits and some other individual
characteristics [12], so it can not only be used for bringing criminal charges but also can
provide a clue to a case [13,14]. Given a shoeprint image derived at a crime scene, shoeprint
retrieval searches for the most similar gallery shoeprints in a database. In forensic practice,
a crime scene shoeprint can be used in three kinds of tasks according to where the gallery
shoeprints come from. The first kind of task is the scene to scene (S2S) shoeprint retrieval,
in which the query image and the gallery images are both collected at the crime scenes. The
purpose of S2S shoeprint retrieval is to compare the query shoeprint image with shoeprint
images collected at other scenes to search for some clues [15,16]. The second kind of task is
scene to reference (S2R) shoeprint retrieval. Gallery shoeprints in this kind of shoeprint
retrieval task are collected from the suspects. The suspect is required to step on the uniform
backgrounds such as the chemical paper, and then the shoeprint images can be obtained
by scanning the chemical paper. This kind of shoeprint is referred to as the reference
shoeprint. The purpose of S2R shoeprint retrieval is to compare the query shoeprint image
with shoeprints captured from suspects to link the case with the suspect. The third kind of
task is scene to pattern (S2P) shoeprint retrieval. In this kind of shoeprint retrieval task,
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the gallery shoeprints are created by taking impressions of shoe outsoles presented by
shoe vendors. This kind of shoeprint is referred to as the standard pattern. S2P shoeprint
retrieval aims to determine the standard outsole of the query shoeprint. By conducting
S2P shoeprint retrieval, investigators can acquire a series of standardized data of the query,
such as the standard outsole, the manufacturer and the manufacturing time. The S2S and
S2R shoeprint retrieval tasks are usually used in forensic practice. Figure 1 shows three
groups of shoeprint image samples, and it visually illustrates the differences between S2S,
S2R and S2P shoeprint retrieval tasks.

Figure 1. Differences among the three kinds of shoeprint retrieval tasks: (a) S2S shoeprint retrieval.
(b) S2R shoeprint retrieval. (c) S2P shoeprint retrieval.

Given a shoeprint image collected at a crime scene, it is difficult for computer vision
systems to search for the most similar gallery images in a database. The main reason that
makes this task harder is that it is hard to determine the difference between the query
image and the degraded database samples. Although the researchers devote their efforts to
proposing efficient shoeprint retrieval methods, the existing methods have their deficiencies.
The main purpose of this study is to present a thorough review of the existing crime scene
shoeprint retrieval methods. We also analyzed the problems and challenges linked with
these methods. It may help advance the relevant research issues.

In this survey, our research contributions can be summarized as follows:

(1) Each kind of method is reviewed and compared in terms of the feature extraction
method, performance, etc. This may help neophytes become involved in research
easily and quickly.

(2) Discourse is presented on publicly available datasets and their details in terms of
attributes, size, etc.

(3) A comprehensive discussion is presented about current research issues and challenges
linked with these methods.

(4) Potential future work directions are explored to advance the relevant research issue.

The rest of the paper is organized as follows. In Section 2, a comprehensive overview
of the existing shoeprint image retrieval techniques is presented, and the comparisons
are followed by a literature review. Section 3 presents the publicly available datasets and
evaluation metrics. Section 4 sums up the reviewed articles in the context of challenges and
future work directions. The last section concludes by presenting an overview of the paper.

2. Shoeprint Retrieval Method

In previous works, investigators collected shoeprints at a crime scene and manually
compared them with other crime scene shoeprints to search for clues. However, it is hard
work to perform manual comparisons because there is a huge amount of shoeprints for
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comparison. To perform the comparisons more efficiently, researchers devoted their efforts
to designing automatic shoeprint retrieval methods.

In the inception phase, the shoeprint retrieval methods work in a semi-automatic
manner. In these methods, shoeprints are represented by using a codebook of shape
primitives [16]. Although the shape primitives can be classified automatically [17], these
semi-automatic methods involve a lot of work, and inconsistent user encoding can result in
poor performance [18].

With the extensive application of computer techniques in the field of forensic investiga-
tion, more and more automatic shoeprint retrieval methods have been employed in forensic
practice. In this study, we concentrate on automatic shoeprint retrieval techniques. An auto-
matic shoeprint image retrieval system mainly consists of three phases: the shoeprint image
preprocessing phase, the shoeprint image feature extraction phase and the corresponding
feature similarity measurement and ranking score computation phase [19]. The preprocess-
ing phase aims to separate shoeprints from complex backgrounds and to enhance image
quality [20–22]. The feature extraction phase is used to extract discriminative features
to represent the shoeprint images. The main task of the feature similarity measurement
and ranking score computation phase is to match the query shoeprint with the database
images and to rank the database shoeprint images according to the matching scores. The
framework of the shoeprint image retrieval method is shown in Figure 2.

Figure 2. The framework of the automatic shoeprint retrieval task.

2.1. Shoeprint Image Acquisition

There are three kinds of shoeprints used in forensic practice. The first kind of shoeprint
is the crime scene shoeprint that is collected at different crime scenes. The shoeprints are
usually digitized by taking photos of the impressions. The imaging process is shown in
Figure 3. This kind of shoeprint can also be digitized by scanning the gelatin lifters on
the impressions. The second kind of shoeprint is the reference shoeprint that is collected
from the suspect. The shoeprints can be digitized with a camera or scanner by scanning
chemical paper stepped on by the suspects. The imaging process is shown in Figure 4. We
refer to this kind of shoeprint as the reference shoeprint. This kind of shoeprint can also be
digitized by using the shoeprint scanner [23], and the imaging process is shown in Figure 5.
The third kind of shoeprint is the standard shoeprint that is acquired by taking photos of
outsoles provided by footwear vendors.
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Figure 3. The imaging process of the crime scene shoeprints.

Figure 4. The imaging process of the reference shoeprints.

Figure 5. The imaging process of the shoeprint scanner.

In forensic practice, there are two kinds of reference shoeprint scanners used in
shoeprint image acquisition, i.e., the shoeprint scanner and the crime scene shoeprint
scanner. The reference shoeprint scanner is used to collect reference shoeprints stepped
on by the suspect. The imaging process of the reference shoeprint scanner is shown in
Figure 5. The crime scene shoeprint scanner is used to collect shoeprints at crime scenes.
The imaging process of the crime scene shoeprint scanner is shown in Figure 3. Shoeprint
images usually can be scanned at 300 dpi by using the two kinds of shoeprint scanners.

2.2. Feature Extraction Methods

In the shoeprint retrieval task, discriminative features usually play a vital role in
enhancing retrieval performance [24]. The main differences among existing shoeprint
retrieval methods are the types of features used in the methods. According to the type
of features, these methods are essentially organized into three main categories, and the
framework of feature extraction is shown in Figure 6. Methods in the first category usually
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extract holistic features immediately [25–27], and in these methods, a shoeprint is processed
as a whole, i.e., these methods always represent shoeprint images from global perspectives.
Methods in the second category concentrate on extracting distinctive features in semantic
regions [28–34]. Therefore, these methods always extract semantic regions at first and
then extract regional features in the semantic regions. Thus, these methods can represent
shoeprints from regional perspectives. Methods in the third category concentrate on
extracting local features [35]. These methods always extract interest points first, and then
the local features are extracted for representing shoeprint images. These methods can
describe shoeprints from local perspectives.

Figure 6. The framework of the feature extraction phase.

2.2.1. Holistic-Feature-Based Methods

Bouridane et al. [36,37] employed a fractal-based feature to describe shoeprint images
and then used the extracted feature to perform shoeprint image classification. The method
was tested on a database containing 145 shoeprints, and the classification accuracy was
about 88%. To verify the robustness of variations in rotation and translation, relevant
experiments were carried out. The results show that the method can deal well with
variations in image translation and rotation.

The moment’s invariant features are also used to describe geometric shapes, e.g., Hu
moments [38] and Zernike moments [39,40]. Algarni et al. [41] employed Hu moments to
retrieve shoeprints. The accuracy of the method was about 99.4% on the shoeprint images
of high image quality. In [42], Khotanzad extracted features to represent shoeprint images
by using the Zernike-moments-based method. Experiments were conducted on a database
containing more than two hundred shoeprints, and the accuracy at the top 50 was about
92%. The results show that the method can achieve good performance on shoeprints with
high image quality. Wei et al. [43,44] also used the Zernike moments method to extract
shoeprint image features and to achieve good performance.

The Fourier transform is an excellent method in image representation due to its good
performance in image analysis in the frequency domain. Huynh et al. [45] proposed
a Fourier-transform-based shoeprint classification method. The method is robust with
respect to variations in rotation, scale and translation. The method was tested on a database
of 503 shoeprint images, and the accuracy at the top one was about 54%. In [46,47],
frequency spectra were extracted by using the Fourier transform to represent shoeprint
images. Experiments were conducted, and the results showed that the methods are robust
with respect to variations in rotation, scale and translation. However, their accuracy may
decrease with partial shoeprints. In [48–52], Cervelli performed the Fourier transform on
the cropped shoeprint images. Experiments were conducted on 35 shoeprints, and the
accuracy at the top 6 was about 91%. However, the method may fail when dealing with
shoeprints with geometry transformations. Crookes et al. [53] employed phase correlation
and advanced correlation filters in the shoeprint retrieval method. The correlation methods
are insensitive to image translations. The method was tested on a database containing
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100 shoeprints, and the accuracy was about 99%. The method is sensitive to variations in
scale. Jing et al. [54] used four kinds of features to represent shoeprint images. Then, the
feature similarity between shoeprints was measured by summing the absolute difference
between these features.

The Fourier transform can work well in analyzing images in the frequency domain, but
it has the disadvantage of disabled local analysis. To overcome this drawback, the Gabor
transform [55,56] was used in some shoeprint image retrieval methods. Patil et al. [57,58]
used the Gabor transform to extract image features, and the method achieved good per-
formance. The accuracy at the top 2 was about 100%. The results show that the method is
robust with respect to partial shoeprints. In [59], Li used the Gabor feature and an integral
histogram to retrieve shoeprints. Experiments were conducted on a database containing
2000 shoeprint images, and the accuracy was about 46.8%. Variations in rotation, scale and
translation were not considered. Pei et al. [60] extracted texture and geometry features by
using odd and even Gabor filters. The geometry and texture features were used to weigh the
similarity and query, respectively. To achieve good performance, Kong et al. [61] extracted
textural and statistical features to represent shoeprint images by fusing Gabor features
and Zernike features. Experiments were conducted on a dataset containing 6000 shoeprint
images, and the accuracy at the top 5 of the ranking list was about 61.7%. The method
was tested on a dataset composed of 1225 gallery images and 104 probe images, and the
recognition rate at the top 1 of the ranking list was about 34.59%.

The deep learning method has been extensively used in shoeprint feature extrac-
tion and image recognition, as it has the powerful ability of image representation [62].
In [25,26], Kong extracted shoeprint image depth features by using a convolutional neural
network [63], and then the multi-channel normalized cross-correlation method was used to
match these depth features. The recall at the top 20% was about 94.0%. Zhang et al. [64]
used an extended shoeprint image database to fine-tune the parameters of the VGG-16
network [65] and then extracted features by using the fine-tuned network. The recall at the
top 10 of the ranking list was about 88.7%. Partial shoeprints were not considered.

Zhang et al. [66] represented shoeprint images by using an edge direction histogram.
This method uses an edge direction histogram to represent the shape attributes detected by
using the Canny edge detector. Experiments were conducted on a dataset containing 512
shoeprints, and its accuracy at the top 4% was about 97.7%.

In [27], Richetelli extracted features using scale-invariant feature transform descriptors,
the POC method and the Fourier–Mellin transformation method to represent shoeprint
images. Then, the performance of these methods was compared to the CS dataset. The liter-
ature reports that the POC method achieves the best performance on dust and blood traces.

2.2.2. Regional Feature-Based Methods

Tang et al. [67–69] extracted fundamentals to represent shoeprints with an attributed
relational graph (ARG), and the nodes in the ARG were these fundamental shapes. The
method was tested on a database containing 1400 shoeprints, and the accuracy at the
top 20% of the ranking list was about 91%. The results show that their method can deal
well with partial shoeprints. Pavlouet et al. [70,71] detected regions by using a maximally
stable extremal regions detector and then extracted features by using the SIFT method
in these detected regions. The accuracy at the top 1 was about 92%. In [28], Kortylewsk
provided a periodic pattern-based method. The method detects periodic patterns first
and then extracts the Fourier features of the detected periodic patterns. Shoeprint images
were ranked according to feature similarities. Experiments were conducted on the CSFID
dataset [28], and the recall at the top 20% of the ranking list was about 85.7%. Kortylewski
et al. [29,30] used the compositional active basis model on gallery shoeprint images and
then evaluated them against other crime scene shoeprint images. The method was tested
on the FID-300 dataset [29], and the accuracy at the top 20% was about 71%. The method
can achieve good performance on shoeprints with periodic patterns. Wang et al. [72–75]
divided a shoeprint image into two different regions and extracted features in these regions
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by using the Wavelet Fourier–Mellin transform. Experiments were conducted on a database
containing 10,096 shoeprints, and the accuracy at the top 2% was about 96.6%. Alizadeh
et al. [31] implemented a shoeprint retrieval method by using the sparse representation
method. Their results show that the method can achieve good performance. However, the
features they used may result in failure in dealing with variations in image translations and
rotations. In [32], Ma divided a shoeprint into different regions and then extracted features
by using convolutional neural networks. Experiments were conducted on the FID-300
dataset, and the accuracy at the top 10% of the ranking list was about 89.8%. Tang et al. [76]
extracted dot and line textures to represent shoeprint images. Experiments were conducted
on 3000 shoeprints, and the average recognition rate at the top 10 of the ranking list was
about 91.1%. In [77], Ghouti used the block energy-dominant of Directional FilterBanks
to represent shoeprints. Then, the Euclidean distance was used to match these features.
Alizadeh et al. [78] used local binary patterns to represent shoeprints, and this method has
good performance on high-quality shoeprint images. The method was tested on a dataset
composed of 190 probe images and 760 gallery images, and the accuracy at the top 1 was
about 97.6%.

2.2.3. Interest-Point-Feature-Based Methods

Interest-point-feature-based methods are not only used in shoeprint image retrieval
but also in some other tasks, such as recognition [79,80], classification [81], registration [82],
scene categorization [83], object detection [84,85], etc. In this kind of shoeprint retrieval
method, interest points are detected first, and the local features are extracted to represent
the detected points for retrieving shoeprints. Local feature extraction methods are usually
used to describe images, e.g., the binary robust independent elementary method [86], the
ORB method [87], the FREAK method [88], the BRISK method [89], the SIFT descriptors
and some improved SIFT methods [90,91]. These local feature methods are usually robust
with respect to variations in rotation, translation and scale.

Li et al. [92] and Wang et al. [93] represented shoeprint images by using SIFT descrip-
tors. The methods were tested on shoeprint datasets, and the accuracy was 90% and 97%,
respectively. In [94], Nibouche described shoeprint images by using SIFT descriptors and
estimated the matching performance by using the random sample consensus (RANSAC)
method. The method was tested on a database containing 300 shoeprints, and the accuracy
at the top 1 was about 91%. In [95], Su used SIFT descriptors to describe interest points
which are detected by using Harris corner detector. The method was tested on a database
containing 374 shoeprints, and the accuracy at the top 1 was about 87%. Almaadeed
et al. [35] extracted interest points by using a combination of Harris detectors and Hessian
detectors in multiple scales, and then they employed the SIFT descriptors to represent these
detected interest points. The method was tested on 400 classes of shoeprint images, with
each class containing a query image and a target image, and the recognition accuracy at the
top 10 was about 68.5%.

2.3. Similarity Evaluation and Ranking Score Computation

The main task of the feature similarity measurement and ranking score computation
phase is to match the query shoeprint with the database images and to rank the database
shoeprint images according to the matching score. The framework of the feature similarity
measurement and ranking score computation phase is shown in Figure 7. In the feature
space, the distance between similar shoeprint images is large, which makes it difficult
for the similarity measurement method to effectively measure the similarity of shoeprint
images. Some methods make an effort to solve this problem. The distance function is often
used to measure the similarity between image features. Common distance measurement
methods include Euclidean distance, Manhattan distance, Mahalanobis distance and cosine
distance. In addition, several other methods have been used to measure the similarity
between shoeprint images. In [96], Bouridane utilized correlation coefficients to evaluate the
similarity between shoeprint images. Gueham et al. [97] used phase-only correlation (POC)
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to measure shoeprint image similarity. Wang et al. [72,73] divided shoeprint images into
the sole region and heel region; extracted features from partitioned images and matched
them; and integrated feature similarity for the two partitions in the matching process. Kong
et al. [25,26] proposed a multi-channel normalized cross-correlation method to calculate
the similarity between multi-channel depth features. Due to complex backgrounds, clutter
and partial occlusion, there were large intra-class variations, i.e., the appearance of similar
shoeprint images collected from different sites always varied greatly. To overcome the
problem and achieve a better performance, some methods have used computation models
to calculate the ranking scores based on feature similarities, and the process is shown in
Figure 7, which is labeled with dotted lines. Wang et al. [73] used the manifold ranking
method to compute the ranking scores and then ranked shoeprints according to their
ranking scores. The experimental results show that there was a significant performance
improvement compared with the method that only uses feature similarities.

Figure 7. The framework of the similarity evaluation and ranking score computation phase.

The details of the recent shoeprint image retrieval methods are summarized in Table 1.

Table 1. Summary of the published shoeprint retrieval methods.

Methods Features Matching Methods Performance Dataset

Kortylewski, et al., 2014 [28] Periodical Texture Defined Similarity
Measure 27.1%@1% #S:170, #R:1175

Wang, et al., 2014 [72] Fourier–Mellin Correlation Coefficient 87.5%@2% #S:72, #S:10096
Almaadeed, et al., 2015 [35] Harris + Hessian + SIFT RANSAC 68.5%@10 #R:400, #R:400
Kortylewski, et al., 2016 [29] Original Pixels Probabilistic Model 71%@20% #S:300, #R:1175

Wang, et al., 2017 [73] Fourier–Mellin Manifold Ranking 93.5%@2% #S:72, #S:10096
Richetelli, et al., 2017 [27] SIFT RANSAC 97%@5 #R:272, #R:100

Alizadeh, et al., 2017 [31] Original Pixels Sparse Representation
for Classification 99.5%@1 #R:190, #R:190

Kong, et al., 2017 [25] Deep Features Normalized
Cross-Correlation 92.5%@20% #S:300, #R:1175

Kong, et al., 2019 [26] Deep Features Normalized
Cross-Correlation 94%@20% #S:300, #R:1175

Ma, et al., 2019 [32] Deep Features Deep Neural Networks 89.8%@10% #S:300, #R:1175
Wu, et al., 2019 [74] Fourier–Mellin Manifold Ranking 96.6%@2% #S:72, #S:10096
Wu, et al., 2019 [75] Fourier–Mellin Manifold Ranking 92.5%@2% #S:72, #S:10096

Alizadeh, et al., 2021 [78] Local Binary Pattern Chi-squared Test 97.6%@1 #R:190, #R:760

#S: the number of crime scene shoeprints. #R: the number of reference shoeprints. x%@y means that the cumulative
match score at the top y of the ranking list is x percent.

3. Datasets and Evaluation Metrics
3.1. Publicly Available Datasets

Publicly available datasets are essential to advance research issues. The main problem
in this field is that lacking real crime scene shoeprint images makes it difficult to train
a shoeprint image retrieval model. Most existing methods test their methods on shoeprints
collected under laboratory conditions, and most shoeprints used in the literature are
generated by adding artificial distortions [46,71,98,99]. In addition, most shoeprint datasets
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used in the literature are not made available. Thus, most of the literature does not conduct
comparisons with existing methods. In later research works, we found two shoeprint
datasets that had been made publicly available for shoeprint retrieval evaluation, i.e., the
FID-300 dataset [29] and the CS dataset [27]. The details of the datasets are summarized
as follows.

3.1.1. FID-300 Dataset

The FID-300 dataset consists of one probe set and one gallery set. Shoeprint images in
the probe set are used as the query images, and they are collected at different real crime
scenes. Shoeprint images in the gallery set are reference shoeprint images, and they have
high image quality. The reference images are digitized by scanning the chemical paper
stepped on by the reference shoes. The FID-300 dataset contains 1175 gallery images and
300 query shoeprint images.

Figure 8 shows some samples of the FID-300 dataset. Figure 8a shows the query
images, and their corresponding reference shoeprint images are shown in Figure 8b.

Figure 8. Sample shoeprints in the FID-300 dataset: (a) The query shoeprint collected at crime scenes.
(b) The corresponding shoeprints of the query shoeprints.

3.1.2. CS Dataset

To understand how different methods perform under different conditions, Richetelli
et al. [27] offered the CS dataset. The CS dataset contains one probe set and one gallery
set. Shoeprint images in the gallery set are reference shoeprints, and the image quality of
these images is very high. The gallery set contains 100 images. The probe set consists of
dust shoeprints, blood shoeprints, enhanced blood replicates and high-quality shoeprint
images. The number of dust shoeprints is 66, and these dust shoeprint images are digitized
by scanning the gelatin lifters on the impressions stepped on by analysts. The number of
blood shoeprints is 53, and the blood shoeprint images are digitized by scanning the blood
prints. The enhanced blood prints are enhanced by using leuco-crystal violet (LCV). The
number of high-quality shoeprint images is 100. Shoeprints in this dataset are not collected
at real crime scenes, and they are scene-like ones.
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Figure 9 shows some sample shoeprints in the CS dataset. Figure 9a–d show the query
shoeprints, and Figure 9e,f show their corresponding reference shoeprints.

Figure 9. Sample shoeprints in the CS database: (a) Dust shoeprint. (b) Blood shoeprint. (c) Blood
shoeprint enhanced by LCV. (d) High-quality shoeprint. (e) The reference shoeprint of (a). (f) The
reference shoeprint of (b–d).

3.2. Evaluation Metrics

In forensic practice, forensic investigators pay more attention to the top n shoeprints in
the ranking list; therefore, shoeprint image retrieval methods are always evaluated by using
cumulative match characteristic (CMC) curves and the cumulative match score (CMS).

The CMS is an efficient measure method, and it is always used in evaluating the
performance of image retrieval methods [100]. The cumulative match score is formulated
as follows:

CMS(n) =
rn

Q
× 100% (1)

where Q denotes the number of the query images, and rn represents the number of the
query images in the top n ranked matches. The CMC shows how often the query appears
in the top n matches. The cumulative match scores are plotted on a graph. The rank is
plotted along the horizontal axis, and the vertical axis is the cumulative match scores.

The results in the literature are reported in the format CMS(n)@n, which refers to
CMS(n) as the top n matches. To display the results more intuitively, n can be expressed in
the form of a percentage.

4. Research Challenges and Discussions
4.1. Research Challenges
4.1.1. Limited Data

Publicly available datasets are essential for model training and performance evaluation.
The main problem in this research issue is the lack of real crime scene shoeprint image
datasets. So far, few publicly available shoeprint image datasets have been published in the
literature for research purposes, and some state-of-the-art approaches conduct experiments
on their own datasets. This means that there are few shoeprint images to be used for the
training retrieval model. Furthermore, in some datasets, there is only one shoeprint per
class. Thus, it is difficult to find the most similar shoeprint according to the contents of the
query shoeprint.

4.1.2. Degraded Images

Shoeprints collected at crime scenes are of low image quality, and most shoeprint
images are misaligned, incomplete, cluttered and highly degraded. Some properties of the
crime scene shoeprints are summarized in Figure 10. The degraded shoeprints render it
more challenging to represent shoeprint images.



Electronics 2022, 11, 2487 11 of 15

Figure 10. The properties posed by the crime scene shoeprint images: (a) Shoeprints are hardly distin-
guished from the complicated background. (b) Shoeprints are randomly incomplete. (c) Deformations
of the shoeprint can occur. (d) Deformation can occur.

4.1.3. Large Intra-Class Variations

There are big differences between shoeprints in the probe set and gallery set. Although
two shoeprints may have the same shoe pattern, there are large intra-class variations. The
large intra-class variations are caused by variations in shape, appearance, noise, partial oc-
clusion and clutter. Large intra-class variations make it difficult to match shoeprint images.

4.2. Discussions

In the literature, a large number of handcraft features have been used for shoeprint
retrieval, and these features achieve good performance on non-realistic and generated
shoeprint images. However, they cannot achieve expected performance on real crime
scene shoeprints. The crime scene shoeprints are always incomplete and degraded, and
they are difficult to represent and match. Deep-learning-based methods can deal well
with real crime scene shoeprints in some scenarios, but the features extracted by these
methods are sensitive to variations in rotation, scale and translation. Thus, they needs
huge computations in the process of feature matching. Furthermore, to achieve better
performance, the methods need to train their models on a huge amount of data. We think
that the researchers can carry out their works from three aspects: (1) extending the real
crime scene shoeprints, as public datasets are essential not only for the model training
but also for the performance evaluation; (2) reducing the amount of computation in deep-
learning-based methods; and (3) paying more attention to designing matching methods to
deal with degraded shoeprints.

5. Conclusions

In this study, shoeprint retrieval methods are reviewed and classified based on feature
extraction techniques that are presented in the literature. The matching methods and
performance comparisons are presented for a thorough understanding of the existing
methods. Some publicly available shoeprint datasets and their details are presented, which
help researchers to choose the appropriate dataset for their research work and to conduct
fair comparisons with existing shoeprint image retrieval approaches. It also presents the
fact that there is a lack of publicly available real crime scene datasets for this research
issue. Furthermore, the challenges that the researchers face and future work directions are
also analyzed.
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26. Kong, B.; Supančič, J.; Ramanan, D.; Fowlkes, C.C. Cross-Domain Image Matching with Deep Feature Maps. Int. J. Comput. Vis.
2019, 127, 1738–1750. [CrossRef]

27. Richetelli, N.; Lee, M.C.; Lasky, C.A.; Gump, M.E.; Speir, J.A. Classification of footwear outsole patterns using Fourier transform
and local interest points. Forensic Sci. Int. 2017, 275, 102–109. [CrossRef]

28. Kortylewski, A.; Albrecht, T.; Vetter, T. Unsupervised footwear impression analysis and retrieval from crime scene data. In
Proceedings of the Asian Conference on Computer Vision, Singapore, 1–5 November 2014; pp. 644–658.

29. Kortylewski, A.; Vetter, T. Probabilistic Compositional Active Basis Models for Robust Pattern Recognition. In Proceedings of the
27th British Machine Vision Conference (BMVC), York, UK, 19–22 September 2016.

30. Kortylewski, A. Model-Based IMAGE Analysis for Forensic Shoe Print Recognition. Ph.D. Dissertation, Department Computer
Graphic Bilder Kennung, University of Basel, Basel, Switzerland, 2017.

31. Alizadeh, S.; Kose, C. Automatic retrieval of shoeprint images using blocked sparse representation. Forensic Sci. Int. 2017, 277,
103–114. [CrossRef]

32. Ma, Z.; Ding, Y.; Wen, S.; Xie, J.; Jin, Y.; Si, Z.; Wang, H. Shoe-Print Image Retrieval with Multi-Part Weighted CNN. IEEE Access
2019, 7, 59728–59736. [CrossRef]

33. Rathinavel, S.; Arumugam, S. Full shoe print recognition based on pass band dct and partial shoe print identification using
overlapped block method for degraded images. Int. J. Comput. Appl. 2011, 26, 16–21. [CrossRef]

34. Hasegawa, M.; Tabbone, S. A local adaptation of the histogram radon transform descriptor: An application to a shoe print dataset.
In Proceedings of the 2012 Joint IAPR International Conference on Structural, Syntactic, and Statistical Pattern Recognition,
Hiroshima, Japan, 7–9 November 2012; pp. 675–683.

35. Almaadeeda, S.; Bouridaneb, A.; Crookesc, D.; Nibouche, O. Partial shoeprint retrieval using multiple point-of-interest detectors
and SIFT descriptors. Integr. Comput. Aided Eng. 2015, 22, 41–58. [CrossRef]

36. Alexander, A.; Bouridane, A.; Crookes, D. Automatic classification and recognition of shoeprints. In Proceedings of the
International Conference on Image Processing and its Applications, Manchester, UK, 24–28 October 1999; pp. 638–641.

37. Bouridane, A.; Alexander, A.; Nibouche, M.; Crookes, D. Application of fractals to the detection and classification of shoeprints.
In Proceedings of the International Conference on Image Processing, Vancouver, BC, Canada, 10–13 September 2000; pp. 474–477.

38. Hu, M.K. Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 1962, 8, 179–187.
39. Teague, M.R. Image analysis via the general theory of moments. J. Opt. Soc. Am. 1980, 70, 920–930. [CrossRef]
40. Teh, C.H.; Chin, R.T. On image analysis by the methods of moments. Pattern Anal. Mach. Intell. 1988, 10, 496–513. [CrossRef]
41. Algarni, G.; Amiane, M. A novel technique for automatic shoeprint image retrieval. Forensic Sci. Int. 2008, 181, 10–14. [CrossRef]
42. Khotanzad, A.; Hong, Y.H. Invariant image recognition by Zernike moments. Pattern Anal. Mach. Intell. 1990, 12, 489–497. [CrossRef]
43. Wei, C.H.; Gwo, C.Y. Alignment of core point for shoeprint analysis and retrieval. In Proceedings of the International Conference

on Information Science, Electronics and Electrical Engineering, Sapporo City, Hokkaido, Japan, 26–28 April 2014; pp. 1069–1072.
44. Gwo, C.Y.; Wei, C.H. Shoeprint retrieval: Core point alignment for pattern comparison. Sci. Justice 2016, 56, 341–350. [CrossRef] [PubMed]
45. Huynh, C.; de Chazal, P.; McErlean, D.; Reilly, R.; Hannigan, T.; Fleury, L. Automatic classification of shoeprints for use in forensic

science based on the Fourier transform. In Proceedings of the International Conference on Image Processing, Barcelona, Spain,
14–18 September 2003; pp. 569–572.

46. de Chazal, P.; Flynn, J.; Reilly, R.B. Automated processing of shoeprint images based on the Fourier transform for use in forensic
science. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 341–350. [CrossRef] [PubMed]

47. Gueham, M.; Bouridane, A.; Crookes, D.; Nibouche, O. Automatic recognition of shoeprints using Fourier-Mellin transform. In
Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems, Noordwijk, The Netherlands, 22–25 June 2008;
pp. 487–491.

48. Dardi, F.; Cervelli, F.; Carrato, S. An automatic footwear retrieval system for shoe marks from real crime scenes. In Proceedings of
the International Symposium on Image and Signal Processing and Analysis, Salzburg, Austria, 16–18 September 2009; pp. 668–672.

49. Dardi, F.; Cervelli, F.; Carrato, S. A texture based shoe retrieval system for shoe Marks of real crime scenes. In Proceedings of the
International Conference on Image Analysis and Processing, Trieste, Italy, 7–10 November 2009; pp. 384–393.

50. Cervelli, F.; Dardi, F.; Carrato, S. A translational and rotational invariant descriptor for automatic footwear retrieval of real cases
shoe marks. In Proceedings of the European Signal Processing Conference, Aalborg, Denmark, 23–27 August 2010; pp. 1665–1669.

51. Cervelli, F.; Dardi, F.; Carrato, S. A texture recognition system of real shoe marks taken from crime scenes. In Proceedings of the
IEEE International Conference on Image Processing, Cairo, Egypt, 7–10 November 2009; pp. 2905–2908.

52. Dardi, F.; Cervelli, F.; Carrato, S. A combined approach for footwear retrieval of crime scene shoe marks. In Proceedings of the
3rd International Conference on Crime Detection and Prevention (ICDP), London, UK, 3 December 2009; pp. 1–6.

53. Crookes, D.; Bouridane, A.; Su, H.; Gueham, M. Following the Footsteps of Others: Techniques for Automatic Shoeprint
Classification. In Proceedings of the Second NASA/ESA Conference on Adaptive Hardware and Systems, Edinburgh, UK,
5–8 August 2007; pp. 67–74.

54. Jing, M.Q.; Ho, W.J.; Chen, L.H. A novel method for shoeprints recognition and classification. In Proceedings of the IEEE
International Conference on Machine Learning and Cybernetics, Baoding, China, 7–15 July 2009; pp. 2846–2851.

55. Daugman, J.G. Two-dimensional spectral analysis of cortical receptive field profiles. Vis. Res. 1980, 20, 847–856. [CrossRef]

http://doi.org/10.1007/s11263-018-01143-3
http://doi.org/10.1016/j.forsciint.2017.02.030
http://doi.org/10.1016/j.forsciint.2017.05.025
http://doi.org/10.1109/ACCESS.2019.2914455
http://doi.org/10.5120/3126-4301
http://doi.org/10.3233/ICA-140480
http://doi.org/10.1364/JOSA.70.000920
http://doi.org/10.1109/34.3913
http://doi.org/10.1016/j.forsciint.2008.07.004
http://doi.org/10.1109/34.55109
http://doi.org/10.1016/j.scijus.2016.06.004
http://www.ncbi.nlm.nih.gov/pubmed/27702449
http://doi.org/10.1109/TPAMI.2005.48
http://www.ncbi.nlm.nih.gov/pubmed/15747790
http://doi.org/10.1016/0042-6989(80)90065-6


Electronics 2022, 11, 2487 14 of 15

56. Daugman, J.G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two dimensional
visual cortical filters. J. Opt. Soc. Am. 1985, 2, 1160–1169. [CrossRef] [PubMed]

57. Patl, M.P.; Kulkarni, V.J. Rotation and intensity invariant shoeprint matching using Gabor transform with application to forensic
science. Pattern Recognit. 2009, 42, 1308–1317. [CrossRef]

58. Deshmukh, M.P.; Patl, M.P. Automatic shoeprint matching system for crime scene investigation. Int. J. Comput. Sci. Commun. Tech-
nol. 2009, 2, 281–287.

59. Li, X.; Wu, M.; Shi, Z. The retrieval of shoeprint images based on the integral histogram of the Gabor transform domain.
In Proceedings of the International Conference on Intelligent Information Processing, Hangzhou, China, 3–6 October 2014;
pp. 249–258.

60. Pei, W.; Zhu, Y.; Na, Y.; He, X. Multiscale Gabor wavelet for shoeprint image retrieval. In Proceedings of the 2nd IEEE International
Congress on Image and Signal Processing (CISP), Tianjin, China, 17–19 October 2009; pp. 1–5.

61. Kong, X.; Yang, C.; Zheng, F. A novel method for shoeprint recognition in crime scenes. In Proceedings of the 9th Chinese
Conference on Biometric Recognition, Shenyang, China, 7-9 November 2014; pp. 498–505.
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