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Abstract: Image denoising has been a knotty issue in the computer vision field, although the develop-
ing deep learning technology has brought remarkable improvements in image denoising. Denoising
networks based on deep learning technology still face some problems, such as in their accuracy
and robustness. This paper constructs a robust denoising network based on a generative adversarial
network (GAN). Since the neural network has the phenomena of gradient dispersion and feature
disappearance, the global residual is added to the autoencoder in the generator network, to extract
and learn the features of the input image, so as to ensure the stability of the network. On this basis,
we proposed an optimization algorithm (OA), to train and optimize the mean and variance of noise
on each node of the generator. Then the robustness of the denoising network was improved through
back propagation. Experimental results showed that the model’s denoising effect is remarkable.
The accuracy of the proposed model was over 99% in the MNIST data set and over 90% in the
CIFAR10 data set. The peak signal to noise ratio (PSNR) and structural similarity (SSIM) values of
the proposed model were better than the state-of-the-art models in the BDS500 data set. Moreover, an
anti-interference test of the model showed that the defense capacities of both the fast gradient sign
method (FGSM) and project gradient descent (PGD) attacks were significantly improved, with PSNR
and SSIM values decreased by less than 2%.

Keywords: image denoising; GAN; optimization algorithm; autoencoder; ResNet

1. Introduction

Image denoising is one of the hottest research topics in the field of image process-
ing [1]. There are various traditional image denoising methods. Tang used an improved
curvature filtering algorithm, where a projection operator was used to replace the minimum
triangular tangent plane projection operator of the traditional curvature filtering [2]. Li
proposed an adaptive matching and tracking algorithm. First, the sparse coefficients were
calculated. Then the dictionary was trained to be an adaptive dictionary, which could reflect
the image structure effectively by using the K singular value decomposition algorithm.
Finally, the image was reconstructed by combining the sparse coefficients with the adaptive
dictionary [3]. Dabov proposed block-matching and 3D filtering (BM3D), which made
use of the self-similarity existing in natural images to match with adjacent image blocks,
and then the similar blocks were integrated to form the denoised image through domain
transformation [4]. Xu proposed a trilateral weighted sparse coding (TWSC) scheme for
robust real image denoising [5]. Xie proposed a non-convex regular low rank sparse matrix
decomposition method for image denoising [6]. Although the above traditional denoising
methods achieved a good effect to a certain degree, there are highly time consuming and
low robustness. Li proposed a new image denoising approach based on undecimated
discrete wavelet transform (UDWT), which combines the technique of cone of influence
(COI) analyzing and UDWT [7].
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In recent years, with the rapid development of deep learning and remarkable achieve-
ments in the field of image processing, more and more people are applying deep learning to
image denoising. For example, the convolutional neural network has two major character-
istics, of local perception and parameter sharing, which have a good effect in image feature
extraction and recognition. Wang proposed a gradient vector convolution (GVC) model
for image denoising [8]. Wu proposed an interleaved cascade of shrinkage fields (CSF) to
reduce noise and jointly restore the transmission diagram and scene radiance from a single
noise image [9]. Zhang proposed a feedforward denoising convolutional neural network
(DnCNN) model, which combined batch normalization and residual learning [10]. Yan
proposed a self-consistent GAN network (SCGAN) to extract noise images directly from
noisy images, to achieve unsupervised noise modeling [11]. Yu proposed a deep iterative
down-up convolutional neural network (DIDN) for image denoising, which can process
various noise levels using a single model, without input noise information as a solution [12].
Zhang proposed a fast and flexible denoising convolutional neural network (FFDNet),
which used a noise estimation graph as input, balancing the suppression of uniform noise
and the preservation of details [13]. Chen’s proposed denoising method used GAN to
model the noise distribution, to generate noise samples through the established model and
form a training data set with clean image sets, and to train the denoising network model to
perform blind denoising [14]. Dong proposed a convolutional neural network denoising
method based on multi-scale redundancy of natural images [15]. Wang proposed a novel
channel and spatial attention neural network for image denoising [16]. Cai proposed a new
efficient image denoising scheme, where global structure and local similarity preservations
combined method of optimal directions (MOD) with approximate K-SVD (AK-SVD) for
dictionary learning [17]. Cai proposed a new development of non-local image denoising
using fixed-point iteration for non-convex `p sparse optimization [18]. Although neural
networks are widely applied in the field of image processing, they are vulnerable to adver-
sarial attacks that lead to incorrect network outputs. In 2014, Szegedy Christian introduced
the L-BFGS method, which induced the model to obtain a result completely deviating from
the real value by adding slight disturbance to the input sample image of the model [19].
In 2015, Goodfellow Ian J proposed an adversarial sample generation algorithm based
on the fast gradient sign method (FGSM), which sought the direction with the largest
gradient change in the deep learning model and generated disturbances, to increase the
loss of image classifiers in this direction [20]. Later, the FGSM derived project gradient
descent (PGD) and other gradient-based attack algorithms. However, some current defense
methods require a lot of manpower and material resources and have poor robustness [21].

In view of low robustness of traditional denoising methods and vulnerability of deep
learning network under attacks, this paper introduces a simple and efficient method to
improve the robustness of the denoising network. The whole backbone of the denoising-
network is based on the GAN. Moreover, the denoised image is from the GAN. Random
noise is added into the neural network and it is optimized through back propagation. The
most important feature is that this method does not require additional resource consump-
tion and can simultaneously improve the model’s ability for denoising and defense against
attack. Furthermore, an integrated image denoising network is designed. Finally, FGSM
and PGD attack experiments were used to verify the anti-interference capability of the
adversarial network.

2. Related Work

In this section, we briefly overview some of the basic network modules and loss
functions that are involved in our design. First, we refer to the following three networks:
The first is the autoencoder, which is a form of neural network and is composed of an
encoder and decoder [22]. The encoder compresses the original data to obtain the features
of the original data, and learns the features through other neural networks to reduce the
burden of network generation. The decoder decompresses the learned features into original
data. This is an unsupervised algorithm, and then the back propagation algorithm is used
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to train the network to make the output close to the standard image. The second is the
residual module [23]. Although more features can be extracted, the training is also more
difficult due to the increasing depth of the neural network. With the increase of depth, the
original data information will be gradually lost in the process of convolution and pooling,
and the error signal is prone to gradient dispersion during the back propagation. Therefore,
the residual network is introduced to solve the training difficulties caused by increasing the
network depth. The residual network uses jump connections to connect the features after
convolution and pooling with the previous features, and the information representation
is enhanced by the addition of both gradual and deep features. This method avoids the
problem of image feature loss due to the increase of network depth, and solves the problem
of gradient dispersion and ensures the stability of the network. The third aspect is the
generative and adversarial network based on the two-person game idea, which is widely
used in various aspects of the imaging field. A generative adversarial network is a method
of unsupervised learning. It consists of a generator network and a discriminator network,
and learns by playing two neural networks against each other. The generator network
takes random samples from the latent space as input, and its output should imitate the real
samples in the training set as much as possible. The input of the discriminator network is
the real sample or the output of the generator network, and the purpose of the discriminator
network is to distinguish the output of the generator network from the real sample as far
as possible. The generator network tries to deceive the discriminator network as much
as possible. The final purpose of the two networks is to make the discriminator network
unable to judge whether the output result of the generator network is true or not [24].

Furthermore, we refer to three loss functions. The first is MSE loss [25]. The values
of each pixel of the generated image and the original image are compared, and the mean
square error of the generator network is represented by the loss of pixels. The second is
GAN loss, which is mainly formed by the discrimination network to determine between
the generated denoised image or the original real image [26]. The GAN loss ensures that
the generator network generates an image as close to the real image as possible. Then the
discriminator network is deceived, to achieve the optimal result of the generated image. The
third is classification loss [27]. As the generated image may cause the loss of some features,
it is necessary to analyze the generated image category. Then the generator network can
generate the same image as the real image, as far as possible.

3. Network Structure Design and Optimization Algorithm

The whole network structure is based on GAN. The generator network uses an autoen-
coder for image generation. A discriminator network is used to discriminate between the
generated images. When the discriminator network cannot discriminate the authenticity
of the generated images, the generated images can be used as the input of a classification
network, to further verify the denoising ability of the network for noisy images. On the
other hand, Gaussian noise is added to the stochastic gradient estimates of the standard
deviation path of each neural network neuron. In this way, the gradient estimates and the
noise level are byproducts of back propagation.

3.1. Whole Network Structure Design

The network framework we proposed is shown in Figure 1. It consists of three sub-
networks: a generator network (G), discriminator network (D), and classification net-
work (C). The G inputs an image with noise and outputs an image with the same size as
the original image, through feature extraction of the network; the D inputs the generated
image and standard image, and outputs “0” or “1”, which represent the similarity between
the generated image and standard image; the C inputs generated images, to complete the
classification of image content. In G and D, we apply the network optimization algorithm
(OA) proposed in the following section, which improves the robustness of GAN networks.
The MSE loss and GAN loss are used to update the iterative training parameters of the
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GAN neural network; classification loss is used to update the iterative training parameters
of the classification network. The training finally makes the network tend to be stable.
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Figure 1. Whole network structure.

3.2. Optimization Algorithm

Here we deduce the OA in Figure 1. Let τ represent the layers of the neural network;
mt represents the number of neurons at layer t, t ∈ 1, 2, . . . , τ. The output of layer t is
x(t)= [x(t)1 , x(t)2 , . . . , x(t)mt ] ∈ Rmt , and x(0) is the input of the network.

Suppose the network has N inputs, denoted as x(0)(N), N = 1, 2, . . . , n. For the n
input, the i output of the t layer is Formulas (1) and (2).

x(t+1)
i (n) = ϕ

(
v(t)i

)
(1)

v(t)i =
mt

∑
j=0

θ
(t)
i,j x(t)j (n) + z(t)i (n) (2)

x(t).
J
(n) is the j input of the n data in the t layer; θ

(t)
i,j is the weight of the i input in

the t layer; v(t)
i . is the i output of the t layer; ϕ is the activation function; z(t)i (n) is the n

data and independent random noise added to the i neuron in the t layer. Figure 2 shows a
visualization of noise addition.
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L represents the loss function. For the n data x(0)(n) marked as Y(n), L(x(τ)(n),Y(n))
represents the loss value. In our work, we tried to optimize the size of the noise level of the
central normal random noise σ

(t)
i of each neuron. z(t)i (n) = σ

(t)
i ε

(t)
i (n), where ε

(t)
i (n) is a
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standard normal random variable. The residual of the i neuron at the t layer of the n data
propagates backward through the neural network and is defined as as Formula (3).

δ
(t)
i (n) =


e(τ)i (n)ϕ′

(
v(τ−1)

i (n)
)

t = τ

ϕ′
(

v(t−1)
i (n)

)( mk
∑

j=0
θ
(t)
i,j δ

(t+1)
j (n)

)
t < τ

(3)

e(τ)i (n) is defined as formula (4):

e(τ)i (n) =
∂L(x, Y(n))

∂xi

∣∣∣∣
x=x(τ)(n)

(4)

Back propagation essentially provides information about all parameters θ
(t)
i,j (t=1,2, . . . τ− 1),

path random derivative estimation of loss function L. As shown in Formula (5), j ∈ {0, 1, . . . , mt},
i ∈ {0, 1, . . . , mt+1}.

∂L
(

x(τ)(n), Y(n)
)

∂θ
(t)
i,j

= δ
(t+1)
j (n)x(t)j (n) (5)

The algorithm flow is as follows:

(a) First input training data P =
{(

x(0)(n), Y(n)
)}N

n=1
, loss function L.

(b) Construct neural network.
(c) Use Formulas (1) and (2) to calculate the output x(τ)(n).

(d) Calculate the loss function L
(

x(τ)(n), Y(n)
)

.

(e) Use Formulas (3) and (5), respectively, to estimate the gradient of loss to weight and
noise level.

(f) Update weights and noise levels.
(g) Repeat steps c to f until the parameters meet the requirements of the model.

3.3. Sub-Network Structure Design

The three sub-network structures proposed in this paper are shown in Figure 3.
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Figure 3a shows the network structure of the generator network, which includes four
convolution blocks, thirteen residual blocks, and four deconvolution blocks. Each one of
four convolution blocks includes a convolution layer, optimization layer, relu layer, and
pooling layer. In addition, each of thirteen residual blocks includes a convolutional layer,
batch normalization layer, relu layer, and algorithm optimization layer. While, each one of
the four deconvolution blocks includes a deconvolution layer and relu layer. The network
outputs an image the same size as the standard image. The generator network is the core
part of the whole network, and the image denoising effect largely depends on the ability
of the generator network. Therefore, the neural network adopts encoding and decoding
structures such as the autoencoder. A residual module jump connection is added in the
middle, to enhance image feature representation, to avoid gradient dispersion, and to
ensure the stability of the network.

Figure 3b shows the network structure of the discriminator network, which includes
three convolution blocks, three linking blocks, and a sigmoid function layer. Each of three
convolution blocks includes two convolution layers, an optimization layer, maximum
pooling layer, batch normalization layer, and relu layer. Each of the three linking blocks
includes a full link layer and leakyrelu layer. The sigmoid function layer outputs “0” or
“1”, which is used for the binary classification problem, to judge the difference between the
positive and negative labels of the image. The discriminator network is designed based on
the full convolution neural network, to discriminate the similarity between the standard
image and the generated image.

Figure 3c shows the network structure of the classification network, which includes
two convolution blocks, eleven residual blocks, and three full connection layers. Every two
convolution blocks include a maximum pooling layer, batch normalization layer, and relu
layer. Each of the eleven residual blocks includes a convolution layer, batch normalization
layer, and relu layer. The final full connection layer outputs n categories to complete the
classification of images. The classification network is used to classify the generated-images
after the optimization of the generated network.

4. Experiments and Analyses

First, the proposed method was used to test the classification accuracy in the MNIST
and CIFAR10 data sets. Then the method was compared with the DnCNN, BM3D, FFDNet,
and IRCNN denoising methods, and the PSNR and SSIM values were calculated, which
under the standard deviation of Gaussian noise were 25, 50, 75, and 100. Moreover, we
performed a visual perception experiment. Finally, the network robustness was verified
under FGSM and PGD attacks. The experiments illustrated that the method is effective.

4.1. Data Set and Parameter Setting

The MNIST data set is very well known. It consists of 60,000 training samples and
10,000 test samples, where each sample is a 28 × 28 pixel grayscale handwritten digital
image. The Cifar-10 data set contains 50,000 training images and 10,000 test images, all of
which are 3-channel color RGB images with a size of 32 × 32, including 10 categories in
total. The two data sets were used to test the accuracy of model recognition under different
noise conditions. Then we used the BDS500 data set to train and test the model. The peak
signal to noise ratio (PSNR) and structural similarity (SSIM) were compared with other
methods under different noise conditions.

The hardware platform of this experiment was a Tesla P100 with 16GB memory;
software was Ubuntu18.04, CUDA10.02, python3.6; and the deep learning framework was
Pytorch1.8; the batch processing was 128; the Adam algorithm was used to update the
gradient; the initial learning rate was 0.001, and the learning rate decreased as the number
of trainings increased; the momentum was 0.9.
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4.2. Evaluation Index

The fidelity of image denoising is represented by the evaluation index, which is the
error between the standard image and the denoised image, and the PSNR and SSIM are
used for evaluation and analysis.

PSNR measures denoising performance, using the error between corresponding pixels
of the denoising image and the standard image. PSNR is expressed as Formulas (6) and (7).

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (6)

PSNR = 10lg
MAX2

I
MSE

(7)

where m and n represent the number of rows and columns of the image pixels, MAXI is
the maximum possible pixel value of the image. According to Formulas (6) and (7), the
larger MSE is, the smaller PSNR is, which indicates that the denoising effect is good and
the denoised image is closer to the standard image.

SSIM is measured based on the luminance, contrast, and structure between the de-
noised image and standard image. The value ranges from “0” to “1”, a larger value indicates
a better denoising effect. SSIM is expressed as Formulas (8) and (9).

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2

s(x, y) =
σxy + c3

σxσy + c3

(8)

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (9)

µx is the mean value of x; µy is the mean value of y; σ2
x is the variance of x; σ2

y is the

variance of y; σxy is the covariance of x and y; c1 = (K1L)2, c2 = (K2L)2 which are constants
that avoid zero; L is the range of pixel value; K1=0.01 and K2 = 0.03 are the default values.

4.3. Experimental Result and Analysis
4.3.1. Comparison of Classification Accuracy on Different Data Sets

In this paper, Gaussian noises with standard deviations of 25, 50, and 75 were added
to the test set. The experimental results are shown in Figure 4.

From Figure 4a, we can see that under the influence of different noise environments
the classification accuracy could reach more than 99%, and the experimental error remained
within 0.005. This proves that the method is feasible for image denoising. It can resolve the
classification problem of different noise levels and the images can be correctly classified
under different noise levels.

Figure 4b shows the classification accuracy on CIFAR10, which could reach more
than 90%. CIFAR10 is a rebuilt data set including RGB images with noise, so that the
classification of CIFAR10 was harder. The experimental results showed the experimental
error was stable within ±0.1. This shows that the algorithm not only had a significant
denoising effect for grayscale images, but also had a strong denoising ability for RGB color
images, and it could realize the classification of color images and ensure the recognition
accuracy of images. This paper mainly compared the accuracy gap between denoised
images and standard images, without excessively pursuing the recognition accuracy of the
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data set. Therefore, the recognition of the data set did not achieved an optimal effect, which
will be the next project.
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4.3.2. Comparison of PSNR and SSIM on the BDS500 Data Set among Different Methods

To compare the PSNR and SSIM values after denoising, Gaussian noises with standard
deviations of 25, 50, 75, and 100 were added to the images from the BDS500 data set. Then
the DnCNN, BM3D, FFDNet, IRCNN, LSLA-2, UDWT, and our method were tested. The
results are shown in Tables 1 and 2.

Table 1. PSNR values of the different methods.

Noise (σ) BM3D UDWT DnCNN FFDNet IRCNN LSLA-2 This Paper

25 29.97 25.51 30.43 30.44 30.38 28.99 27.53
50 26.72 23.42 27.18 27.32 26.32 25.63 26.85
75 22.32 19.98 22.21 22.43 22.87 22.31 24.49

100 19.56 17.53 20.12 20.62 19.78 20.54 24.71

Table 2. SSIM values of the different methods.

Noise (σ) BM3D UDWT DnCNN FFDNet IRCNN LSLA-2 This Paper

25 0.8447 0.8053 0.8597 0.8582 0.8576 0.8286 0.8413
50 0.7659 0.7495 0.7865 0.7841 0.7853 0.7664 0.8176
75 0.7132 0.7054 0.7178 0.7232 0.7152 0.7143 0.7868

100 0.6856 0.6394 0.6871 0.6882 0.6725 0.6532 0.7640

It can be seen from Table 1 that the PSNR values of BM3D, DnCNN, FFDNet, IRCNN,
UDWT, and LSLA-2 are slightly higher than this paper’s method, when the standard
deviation of Gaussian noise σ = 25, and the difference was almost the same when the
standard deviation of Gaussian noise σ = 50, even being slightly higher than that of some
methods. When the standard deviation of Gaussian noise was σ > 50, the proposed
method was significantly higher than the other methods. When the standard deviation of
Gaussian noise σ > 50, the PSNR of the proposed method was about 4 dB higher than the
other methods.

Table 2 shows that the SSIM value of the proposed method was lower than that of
other methods when σ = 25; and the SSIM value of the proposed method was significantly
higher than that of the other methods when standard deviation of Gaussian noise was
greater than 25.
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4.3.3. Comparison of Visual Perception

In view of the evaluation index of visual perception difference, this paper selected a
picture in the test set for visualization under different methods. The experimental results
are shown in Figure 5. Where (a) is the standard image; (b) is the image with Gaussian
noise; (d) is the image denoised by BM3D; © is the image denoised by DnCNN; (f) is the
image denoised by FFDNet; and (g) is the image denoised by IRCNN. Although these
methods also removed the noise of the image, the image looks partly fuzzy and some edge
features have a fuzzy phenomenon. The image (c), denoised by the method proposed in
this paper, has a more intuitive visual experience. The clarity of the denoised image is
almost the same as that of the standard image, and the features of the image are relatively
intact. The image in this paper is clearer.
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To sum up, when the noise level was low, the denoising effect of the method in this
paper was equal to that of the other methods. However, when the noise standard deviation
was greater than 25, the denoising ability and effect of the proposed method were better
than the other methods, and both the values of PSNR and SSIM were higher than other
methods. The test showed that when the noise environment was more complex, our method
was more advantageous and had a stronger robustness and could effectively improve the
image. This paper’s method had little influence on the noise environment but its denoising
ability was relatively stable in different environments.

4.3.4. FGSM Attack Result

FGSM is an algorithm based on gradient generation of adversarial samples and is a
single-step, non-directional attack algorithm. Figures 6 and 7 show the comparison effect
of SSIM and PSNR values between the generated images and the standard images under
different attack degrees. The range of difference between the SSIM and PSNR values of
the generated image and the standard image become smaller with a larger disturbance
after FGSM attacks. Therefore, the method of adding random noise to the neurons of a
neural network can improve the anti-interference ability of the network, which proved the
superiority of our method in stability and robustness.
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4.3.5. Ablation Experiments and PGD Attack

In order to further verify the restoration ability of this paper’s method with noisy
images, an ablation experiment was carried out. First, the optimization algorithm (OA) was
removed, to test the performance of the model. Gaussian noise with a standard deviation
of 25, 50, 75, and 100 was added to the BDS500 dataset for the experiment. Comparing the
PSNR and SSIM, the results are shown in Table 3. When OA was used in the generator
network and discriminator network, it could optimize the network and achieve better
results in the processing of noise images. This shows that our optimization method could
improve the robustness of the network.

Table 3. Results of ablation experiments with no PGD (PSNR/SSIM).

σ=25 σ=50 σ=75 σ=100

With OA (PSNR/SSIM) 27.53/0.8413 26.86/0.8176 24.49/0.7868 24.71/0.7640

Without OA (PSNR/SSIM) 21.13/0.6396 20.45/0.6034 19.12/0.5958 18.63/0.5756

Second, in order to further verify the robustness of this paper’s method for the network,
experiments with OA and without OA were performed, to test the defense performance of
the model under different disturbance levels of PGD adversarial attack. The PGD attack is
an iterative attack, which can be regarded as a copy of FGSM–K-FGSM (K represents the
number of iterations). We performed a 10-step PGD adversarial training with a step size of
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0.01, to verify the stability of the model under different disturbance levels. The results are
shown in Table 4. The defense performance of the network against PGD attack decreased
significantly without OA. With the increase of attack amplitude, the SSIM and PSNR values
without OA decreased more than those of the network with OA. When ε = 0.05, adding
OA could even improve the SSIM and PSNR values by more than 100%. This proved
that adding OA could improve the anti-interference ability and enhance the robustness of
the network.

Table 4. Results of ablation experiments under PGD (PSNR/SSIM).

σ=25 σ=50 σ=75 σ=100

With OA
(PSNR/SSIM)

ε = 0.01 26.93/0.8325 25.86/0.8123 23.91/0.7783 24.02/0.7601
ε = 0.02 26.52/0.8297 25.21/0.8043 23.42/0.7642 23.02/0.7554
ε = 0.05 26.36/0.8223 25.15/0.7931 22.97/0.7662 22.25/0.7510

Without OA
(PSNR/SSIM)

ε = 0.01 16.57/0.5217 15.50/0.5020 14.35/0.4715 13.36/0.4563
ε = 0.02 13.45/0.4570 12.62/0.4234 11.98/0.4044 10.52/0.3851
ε = 0.05 11.39/0.4178 10.84/0.3899 10.02/0.3620 9.15/0.3572

5. Conclusions

This paper proposed an image denoising method based on GAN network. In our
method, a global residual is added into the autoencoder to extract and learn the features of
the input image, preventing the loss of features in the process of denoising and preserving
the details of the image features. Gaussian noise is added to the standard deviation path
random estimation of each neuron in the neural network, to make it become a by-product
of back propagation, which can effectively increase the robustness of the neural network
and make it relatively stable in the case of noise environment fluctuations. MSE loss and
adversarial loss are used to adjust the network, so that the network can achieve the best
performance and have a better denoising effect. We compared our method with other
methods. Although it was not as good as the other methods in the case of a low noise level,
it was generally better than the other methods in the case of a high noise level. Both from
the perspective of vision and quantitative objective evaluation, the denoising effect of the
proposed method was remarkable in most scenes. The algorithm model provides help for
target detection, recognition, and other applications, and it also has a good practicability.
The future work after this paper is to further optimize the denoising effect in low noise
environments, so as to achieve an optimal denoising effect in all noise environments
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