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Abstract: Recently, video streaming services consumption has grown massively and is foreseen to
increase even more in the future. The tremendous traffic usage has negatively impacted the network’s
quality of service due to network congestion and end-to-end customers’ satisfaction represented by
the quality of experience, especially during evening peak hours. This paper introduces an intelligent
multimedia framework that aims to optimise the network’s quality of service and users’ quality of
experience by taking into account the integration of Software-Defined Networking and Reinforcement
Learning, which enables exploring, learning, and exploiting potential paths for video streaming flows.
Moreover, an objective study was conducted to assess video streaming for various realistic network
environments and under low and high traffic loads to obtain two quality of experience metrics; video
multimethod assessment fusion and structural similarity index measure. The experimental results
validate the effectiveness of the proposed solution strategy, which demonstrated better viewing
quality by achieving better customers’ quality of experience, higher throughput and lower data loss
compared with the currently existing solutions.

Keywords: video streaming services; QoE; QoS; SDN; reinforcement learning

1. Introduction

The unparalleled rise in video streaming traffic due to COVID-19 restrictions, touching
almost 60% of overall bandwidth, and the strict Quality of Service (QoS) provisions of
different applications impose great tension on the underlying network infrastructure [1].
Therefore, users’ Quality of Experience (QoE) provisioning has become a critical challenge
even faced by 5G/future networks. Due to network resource constraints and an enormous
scope of applications, it would be challenging to guarantee different QoS requirements
and thus significantly impact the users’ perceived QoE [2]. As a result, QoS provisioning
support has evolved into a required field in this research scope, particularly for services and
applications that need to transfer data under specific QoS requirements (e.g., multimedia
applications, video conferencing, video games, etc.).

Video streaming services from an extended selection of different platforms are rapidly
taking the lead in most data-hungry applications in the digital world. Their demands
are directly proportional to the video content resolution. In that event, the bandwidth is
vital for video streaming and the fact that a high video resolution indicates a high bitrate.
Thus the network has to accommodate more volume. Accordingly, giant services, including
YouTube and Netflix, agreed to degrade their default streaming resolution to standard
definition during the recent pandemic in order to conserve bandwidth. Although that
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did not prohibit subscribers from adjusting the streaming resolution, it affected the end-
user QoE [1]. Further, inadequate bandwidth increases the delay and loss rate, which
leads to decreased end-user QoE. Video streaming is more vulnerable to data loss with
high encoding bitrates since they severely impact the video streaming QoE. Users could
confront frame freezing, complete video loss, or other problems depending on the lost
video frames. On this basis, new and innovative technology solutions are investigated to
support the high traffic requirements and provide better QoS and QoE, including Software
Defined Networks (SDN) and Network Function Virtualisation (NFV) [3–5] and Artificial
Intelligence (AI) [6–8].

SDN is identified as one of the key enabling technologies for modern networks, which
provides numerous benefits to improve networks in relation to a logically centralised control
model, network programmability, global view and the detachment of the control plane and
data plane. The features of the SDN-based environment are suited for the deployment of
multimedia bandwidth-hungry applications, such as video streaming [9]. The softwarised
networks can be seen as a promising field for enhancing network performance which
recently has brought both academic institutions and industry to study further issues in
network performance optimisation. Additionally, AI and its subset machine learning (ML)
integration has acquired an increasing reputation due to its utilisation in practically every
sector [10–13].

This article introduces a new approach of Reinforcement Learning (RL)-based multi-
media traffic transmission in SDN environment that considers QoS metrics and network
information to enable exploring, learning, and exploiting potential paths for video stream-
ing traffic. The proposed approach aims to enhance the satisfaction degree of end-users
represented by QoE, towards Dynamic Adaptive Streaming over HTTP (DASH) based
video flows leveraging the RL in SDN. It is implemented using emulation with real video
content streamed by a multimedia provider and evaluated against other existing solu-
tions, under different realistic SDN-enabled networks in terms of bandwidth, latency,
jitter, loss, structural similarity index measure (SSIM) and video multimethod assessment
fusion (VMAF).

The remainder of this article is organised as follows. Section 2 brings up some existing
works on adaptive routing for multimedia traffic over SDN-enabled networks. Section 3
illustrates the proposed RL-based multimedia traffic routing framework. Section 4 high-
lights the problem domain and the proposed RL-based decision making solution. Section 5
presents the evaluation of the proposed approach. Section 6 describes the experiments’
results that back our proposed RL-based solution. Finally, conclusion and future work are
presented in Section 7.

2. Related Work

SDN draws a notable progression in networking technology and attracts attention
from many researchers to investigate its use and address further its advantages [14]. It is
worth noting that dynamic traffic routing approaches support different standards and
can dynamically manage traffic flows by observing the status of the network and flow
state. Network traffic flows can take any of the accessible paths with adaptable bandwidth
based on various goals. A dynamic approach of QoS routing for video streaming over
SDN-enabled networks was carried out in [15]. They presented an analytical framework
for the optimisation of forwarding decisions for adaptive video streaming. Video streaming
was given the highest routing priority, while the remaining services were granted as
best-effort flows. Then, their routing approach was modeled into a Constrained Shortest
Path (CSP) problem, which can be solved by employing the Lagrange Relaxation based
Aggregated Cost (LARAC) algorithm [16]. Research in [17] utilised SDN environment
and introduced an adaptive routing method, ARVS, for video streaming that supports
QoS. They split video streaming into two layers to be used as a two-levels of QoS flows.
They took delay variation as a given constraint to the CSP problem. If the jitter constraint
is not satisfied, the video is re-routed to another available path on the base layer, and the
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video enhancement layers remain on the same shortest path. Their method can enhance
the quality of streaming of scalable encoded videos. Ongaro et al. [18] presented Integer
Linear Programming (ILP) methodology for the QoS and QoE optimisation challenges in
SDN networks concerning loss rate and delay. They also counted on network constraints
and real-time service demands, such as maximum permitted loss and delay rates.

In [19] developers illustrated the impact of the Open Shortest Path First (OSPF) proto-
col over SDN-enabled networks. The work evaluated the resilience of network factors in
SDN and traditional networks. Round trip time, convergence time and the QoS have been
taken as the network parameters during the video streaming. The results indicated that
applying OSPF in SDN networks gives less performance compared to its performance in
classic networks; however, there is an improvement in QoS performance. Another work [20]
benefited from the integration of ML with SDN to authorise a dynamic computation of the
routing metrics for multimedia traffic. They proposed a modification in the OSPF protocol
formula concerning the network QoS factors: bandwidth, delay, and loss rate. Also, a
protocol for exchanging messages was run between the SDN controller and nodes in order
to adjust the link-state metrics based on the present topology state. The outcomes indicate
that the bandwidth utilisation increased, and the delay and packet loss rate decreased
in multimedia traffic flows. Authors in [21] presented a strategy of flow-based video
streaming routing over SDN. This strategy emphasised satisfying two QoS metrics, packet
loss ratio and bandwidth. It selects reliable paths for each video streaming flow based on
the existing state of the entire network. The experiment results reveal that HD videos are
affected more than SD videos in the event of more packet loss occurring since they acquire
more frame artefacts and colour distortions.

Concerning utilising ML methods with SDN, the work in [22] presented a new RL
method to determine the optimal time for modifying the video bit rate and re-routing
the traffic flows in order to minimise the data loss rate. They stated that their approach
outperforms the traditional routing and greedy-based approaches. However, only small-scale
topology scenarios are discussed in this study. Following this pioneered, Sendra et al. [23]
introduced a routing optimisation strategy in SDN by employing the RL technique to
improve network QoS. Their approach used the RL agent to choose the optimal paths
that obtain the lowest cost by considering three parameters: delay, packet loss rate, and
bandwidth. Authors in [24] proposed an intelligent QoS management framework for video
traffic over SDN named LearnQoS. Their framework uses RL to improve the operation of
a policy-based network management to guarantee the compliance of QoS demands for
multimedia traffic over SDN. Besides, the work in [8] presented an adaptive approach for
controlling multimedia traffic flow in an SDN-enabled network with a deep reinforcement
learning method. Their system can realise the flow control policy directly from experience
and assign bandwidth in order to maximise its total reward represented by customers’ QoE.
Another technique to utilise RL has been presented in [25] to satisfy the QoS demands. They
proposed an RL-driven QoS-aware routing algorithm. Authors consider a QoS monitoring
module to compute delay and packet-loss ratio and RL-based intelligent routing decision-
making (RIRD) to interact with the monitoring system and obtain the best path. When
the RL agent chooses the route with the minimum delay and packet-loss ratio during
implementation, it should receive the highest reward value. Authors in [26] employed a
Q-learning as a congestion-aware routing protocol over SDN called (QCAR). They utilised
a set of parameters to denote the node and link status, node queue length, the hop count to
the destination and re-transmitted packet rate. These parameters were measured periodically
and used by the RL agent to calculate the Q-value in order to obtain the best path by avoiding
congestion. The results indicate that QCAR performed better than the existing methods and
showed an improvement of more than 15%. Jawad et al. [27,28] presented a new RL-based
framework that determines the most suitable algorithm from a set of state-of-the-art routing
algorithms to be used on the QoS-based traffic flows for the sake of QoS provisioning
improvement. Guo et al. [29] focuses on traffic engineering in hybrid SDNs. It presents
the RL method to achieve link load balancing while avoiding routing iterations by reacting
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to the dynamic change in network traffic. Moreover, in [30], authors employed a deep
reinforcement learning (DRL) technique for routing optimisation over SDN. The network
topology operated in the data plane was data-centre networks. The scheme integrates
various network resources, including bandwidth and cache memory, in order to find their
unified contribution to minimising delay. The resulted information was then utilised to
enhance the routing performance.

In summary, several existing literature approaches focus on taking advantage of the
integration of ML and SDN to achieve better network QoS. However, only few prior stud-
ies [8,24,27,28] considered the improvement of end-users’ QoE via route-based learning.
This paper aims to address this issue by introducing a framework that realises improv-
ing the satisfaction degree of end-users towards multimedia services by utilising SDN
characteristics with RL, which intelligently decides the best path for multimedia flows.
The proposed scheme follows the approach presented in [26], in terms of directly learning
the route hop-by-hop. It also considers four link-state metrics (i.e., available bandwidth,
delay, jitter and packet loss rate) as parameters for the RL agent to deliver video streaming
packets. The proposed RL-based solution learns the next route, hop-by-hop, for video
packets at each OpenFlow switch from the source to the destination while prioritising links’
available bandwidth and avoiding links with high delay, jitter and packet loss rate.

3. RL-Based Multimedia Traffic Routing Architecture

In this section, the architecture for video streaming traffic based routing in SDN envi-
ronments is introduced to enhance the QoS of the network with an emphasis on optimising
users’ QoE. Figure 1 depicts the architecture of RL-based multimedia traffic routing.

Figure 1. RL-based multimedia traffic routing architecture.
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3.1. Architecture and Components
3.1.1. Infrastructure Plane

This plane includes three major components 1 Video streaming providers 2 SDN-
enabled network 3 Video streaming customers. The first component is responsible for
providing various video streaming services, which will be transferred over the SDN net-
work. The second one contains the forwarding switches, which are under the management
of the SDN controller and the links connecting them. These elements intend to carry out a
set of primary tasks, such as forward the incoming packets to one or more ports or drop
the packets. The video traffic is transmitted based on the path information installed in the
flow tables of the SDN switches. The SDN switches have no knowledge about the network
and account on the control plane and the application plane to occupy and install their
flow tables. The final element is in charge of giving feedback. The feedback indicates the
overall level of satisfaction with video streaming services which reflects the QoE of the
services. The infrastructure plane also represents a reinforcement learning environment
that periodically provides information about network topology by reacting to queries
received from the control plane.

3.1.2. Control Plane

This plane connects with the infrastructure plane through the southbound interface.
It has a global view of the infrastructure plane since it utilised to gather information about
network topology to obtain the environment states. It contains six modules. 1 Network
awareness; maps the SDN-enabled network topology into a graph representation and stores
its physical information to use them in other modules. 2 Network statistics; maintains the
flow state within the network environment (SDN-enabled network) by periodically gath-
ering statistical information of all flows. 3 Video stream classifier; classifies the network
traffic flows where video flows are prioritised against the best-effort traffic generated by
using Iperf testing tool [31]. 4 Flow installation; operates re-actively which means that
the OpenFlow switches in the infrastructure plane are re-actively programmed to build
flow entries once traffic arrives. 5 Network data processing; receives network information
from the network statistics module and periodically computes network data represented
by the network QoS parameters, including link delay, jitter, loss ratio and available band-
width. 6 Network data repository; stores the four QoS metrics processed by the network
data processing module. The storage module carries records that outline the source and
destination nodes plus the related tuples of QoS metrics.

3.1.3. Application Plane

This plane contains the RL method, which learns the network characteristics and
applies intelligence concerning route calculation. It communicates with the control plane
via northbound interface to get the link-state and topology information in order to compute
the optimal route between the source-destination pairs.

3.2. Process Description

To begin with, a customer requests to watch a video from a multimedia provider.
The SDN switch sends a packet_In message request to the controller, which starts to monitor
the network topology in the infrastructure plane by utilising the network awareness and
the network statistics. In the meantime, the controller (on-the-fly) uses the video stream
classifier module to check the packet type and decide which routing path should be
chosen. There are several scheduled events for monitoring the network. Each event runs
periodically based on the utilised topology. Three different network sizes have been used;
small, middle and large scale (see Section 5.1). Several experiments under the operation of
varying topology sizes have been carried out to select the correct values for each scheduled
event which resulted in maintaining a full image of the network state to obtain accurate
results. The monitoring step updates every 10 s under the employment of the small-scale
network, 15 s when the middle-scale network is utilised, and 20 s when the large-scale
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topology is used. It involves the network awareness module, which operates every 5, 6
and 8 s for small, medium and large scale networks, respectively and the network statistics
module, which runs within the monitoring step. The monitoring periods include the
computation of link delay, measured by implementing a python-based RYU application [32]
that operates every 8, 10 and 15 s according to the network size. At this point, it is possible
to measure the link-state metrics (i.e., available bandwidth, delay, jitter and packet loss
rate), which are later fed as QoS parameters into the RL agent The measurement of these
metrics is explained in detail in Section 4.1. After that, the network data processing and
the network data repository are utilised to extract and log the QoS parameters. Based
on the classification result, video flows are prioritised against background traffic flows.
The application plane receives the topology information and QoS metrics, which allow
applying intelligence to find the best route. Once the path is found, it will use the flow
installation module, which starts to install the optimal route between the customer and the
video provider. Figure 2 illustrates the flowchart of the described process.

Figure 2. Flowchart of the proposed RL-based multimedia traffic routing.
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4. RL-Based Decision Making Solution
4.1. Problem Domain

According to graph theory, let the infrastructure plane be modeled into an undirected
graph G(V, E), where V represents the set of nodes and E is the set of links between the
nodes. V is associated with four subsets V = (W, X, Y, Z), where W refers to video stream-
ing customers, X indicates the video streaming servers, Y denotes OpenFlow switches,
and Z is the SDN controller. Each customer w ∈W is connected to a forwarding switch
y ∈ Y through a link l ∈ E. Each l in the network is related to a limited capacity Cl , allocated
to the link flows, and it defines the maximum possible flow allowed to travel via the link.
Every traffic flow f is associated with two types of flows F = (Fv ∪ Fb), where Fv stands for
video streaming flows and Fb indicates UDP traffic flows. Generally, a flow in the network
is known as a sequence of communications between the source and destination nodes. It is
typically defined by its 5-tuple attributes (source IP, destination IP, source port, destination
port, protocol field).

The clients request to watch a video from a streaming provider over the SDN-enabled
network. The idea is to set up a feasible routing path for the video flows. If P contains
the set of potential routes, then the routing method is employed to obtain the feasible
path p ∈ P , in which a path is specified by a set of links p = l1, . . . , ln that connects the
nodes between source-destination pairs. If more traffic flows exist in the same link and
compete over the network link capacity, the link gets heavily loaded and congested since
the traffic flows trying to pass through this link exceed its bandwidth. In this case, the
involved traffic flows are more likely to exhibit higher data loss and delay, which seriously
impact the network QoS and users’ QoE. Accordingly, this study presents an optimisation
method that addresses this case by considering a network monitor, where network status
is periodically monitored, and path decisions will be deployed according to the current
status of network links. Therefore, RL agent will react quickly to congestion in the link
and suggest another path for video transmission. In this case, the proposed solution shall
provide a good viewing experience to the clients.

The proposed solution of video streaming QoS/QoE optimisation considers four
link-state metrics in each path p: link available bandwidth Bl , link delay Dl , link loss
rate Ll and link jitter Jl . These parameters may cause distortions in the video streaming
that affect the received service quality [33]. The resolution of the video is affected by the
available bandwidth of the network. Having enough bandwidth will ease the transmission
of the video smoothly hence providing better video quality. Whereas, the lack of available
bandwidth affects customers’ QoE as it leads to video streaming quality degradation [34].
To obtain the Bl through an end-to-end path between two pairs, the network statistics in
the control plane is used to track the traffic flow and collect the received and transmitted
bytes at each port at regular intervals of time. Compared with the retrieved values at two
successive responses time, it is feasible to calculate the available bandwidth. Let say that
the controller receives OFPortStatsReply message from the infrastructure plane, at time
t1, which contains the number of bytes received, brt1 . Then, after an interval period ∆t,
another OFPortStatsReply message is obtained, at time t2, which contains the number of
bytes received brt2 , the used bandwidth can be computed as follows:

ubwl =
brt2 − brt1

∆t
(1)

where ∆t represents the period of the sample interval. Then, the available bandwidth abwl
of link l is decided by:

abwl = Cl − ubwl (2)

where ubwl is the total throughput of the passing flow f ∈ F in l ∈ E.
The delay impacts the video quality, particularly at the beginning of viewing, caus-

ing the start-up delay. However, this impact can be minimised in the rest of the video
delivery due to the existence of a buffer which helps to play the video smoothly [35].
The measurement of Dl follows the method published in [36]. RYU controller Z sends
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a Link Layer Discovery Protocol (LLDP) packet to a source switch, y1 ∈ Y and records
the sending timestamp. y1 then sends the LLDP packet to a destination switch y2 and
from y2 to Z. Z then obtains the total delay (Td) by calculating the difference between
sending and receiving times of the LLDP packet. At this moment, the Td of the path has
been registered Z− y1 − y2 − Z. The next step is to compute the delay between Z− y1 and
Z− y2. Z sends an OFPEchoRequest contains the sending time ST as the data. y responses
with OFPEchoReply message and records the receiving time RT. In this case, the delay
between controller and switch DZy is calculated based on the following formula:

DZy =
ST − RT

2
(3)

Now, the calculation of the delay between y1 and y2 is presented as follows:

Dly1,y2
= Td − DZy1 − DZy2 (4)

Link loss affects the received video streaming as it reduces its resolution. In this
case, a frame may be lost, resulting in freezing in the most recent frame and jumping to
the subsequent consecutive frame that arrives, making the video streaming inefficient to
watch. Network congestion usually leads to packet loss [35]. To compute Ll , statistics from
the y ∈ Y, have queried using OFPPortStatsRequest messages. By taking advantage of
these statistics, the delta of transmitted packets by y1 and received packets by y2 can be
computed, which results in the link loss ratio:

Ll =
txop − rxip

txop
(5)

where txop is defined as the number of transmitted bytes of the output ports that can be ob-
tained when receiving a reply message. And rxip is the number of received bytes of ingress
ports that can be collected when another reply message is received in a different period.

Jitter, also known as delay variation, makes video streaming packets work inefficiently.
It affects the presentation of the correct order of the frames by making them wait in the
queue. This may cause freezing for the most recent frame until the arrival of the overdue
frame, which starts playing in brief to provide time preservation of other arrived frames [37].
The jitter is defined as the difference in the link delay Dl :

Jl = Dl t2
− Dl t1

(6)

where t1 and t2 denote respectively the previous and the current link delay.
An explanation of the exchanged messages protocol between the forwarding switch y

with the RYU controller Z and the RL-based solution is depicted in Figure 3. It contains the
preliminary negotiation and the important messages between y and Z. When a multimedia
provider begins streaming, Z receives a packet_In from y. Z utilises its modules to monitor
and extract the statistical network information. Then, it passes this request to the application
plane where the routing computation takes place. In the end, Z uses the flow installation
module which starts to install an optimal path for video traffic between the two pairs.

With the terms explained earlier, the research focuses on QoS based network opti-
misation and improving users’ experience. The enhancement criteria in this work can
be seen as maximising all links utilisation of video streaming based networks. The main
strategy to achieve this goal is to avoid paths with high end-to-end delay, jitter and loss
ratios while maximising the capacity by prioritising paths with high available bandwidth.
Using a Reinforcement Learning (RL) algorithm could be beneficial to realise an intelligent
video streaming routing that considers the above problem. RL interacts with the dynamic
environment and allows the agent to explore the state collected by the control plane ac-
cording to an action performed by the agent to acquire the policy that maximises the long
term reward.
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Figure 3. Sequence diagram of OpenFlow with RYU controller and RL-based solution.

4.2. RL-Based Solution

The proposed RL-based intelligent video streaming routing aims to enhance network
QoS and user QoE. The RL agent is designed to learn a strategy through interactions with its
dynamic environment by repeatedly exploring and observing its state. Based on the available
knowledge, it will take actions meant to maximise its total cumulative reward. From this
context, the goal of the RL-based solution is to find the optimal path for video streaming-
based traffic via interacting with the SDN environment to maximise user QoE concerning the
QoS demands of each service. The RL agent employs the Q-learning algorithm to figure out
the optimisation problem. Q-learning is a model-free RL algorithm used to find the optimal
policy by learning the optimal Q-values per state when all potential state-action pairs are
visited for a pre-defined number of loops [38,39]. In the following subsections, the details
of the state space, the action space, the exploration-exploitation strategy and the reward
function employed to model the proposed problem are described.

4.2.1. State Space

The state in the proposed RL-based solution indicates the nodes of the environment
in the infrastructure plane which reflects the OpenFlow switches. The transition from one
state to another represents the links connecting the corresponding switches. The network
awareness module in the control plane designed to map the SDN-enabled network to the
graphical structural representation and stores its physical information to be used by the
RL agent. In this case, each state in the state space represents an OpenFlow switch of the
network topologies that will be employed for the experimental evaluation of our approach.

4.2.2. Action Space

The action in the proposed RL-based solution determines the selection of a switch
neighbour to be the next forwarder to deliver video streaming packets to a destination.
It also determines the optimal video streaming traffic policy. The policy is intended to
minimise the reward value in the Q-routing method. In the process of assigning a routing
path for video streaming flows, the agent learns to choose routes with low delay, jitter and
loss ratio while prioritising paths with high available bandwidth. Moreover, the actions
should be modified according to the reward value.

In Q-learning, the RL agent visits all states and tries different actions to approximate the
optimal Q-function. It then updates and saves the Q-value after an episode in a Q-table which
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becomes a reference for the RL agent to select the best route for a node pair. The Q-value is
defined as a measure of the overall expected reward if the RL agent is in a state S and takes
action A. The learning phase of the RL agent includes a series of stages named episodes
(0, 1, 2, . . . , n, . . .). Throughout the nth episode at time t, the agent determines an action
A on a video streaming packet at a current state S and obtains a reward R as it proceeds
to the next state, S′. The optimal multimedia traffic routing problem can be modeled
as a minimisation problem, and the Q-learning algorithm must be adjusted to adapt to
minimisation requirements. The RL agent utilises the following modified Q-learning
equation to update the Q-value for optimal path routing.

Q(S, A) =

Current
Q-value︷ ︸︸ ︷

Q(S, A) +α[R(S, A)︸ ︷︷ ︸
Reward

+

Minimum predicted
reward, given new

state and all
possible actions︷ ︸︸ ︷

min
A

Q′(S′, A′) −Q(S, A)] (7)

where α is the learning rate that decides how much of the new learned value will be utilised.
As it can see from Equation (7), the output is the new Q-value for the state which is resulted
by increment the current Q-value by α multiplied by the chosen action’s Q-value. α ∈ [0, 1],
when the value α is set to 0, the RL agent will not be able to learn from new actions.
Contrariwise, if it is set to 1, the agent totally passes over previous knowledge and only
values the recent learned information taking into consideration the instant reward for the
state-action pair. Higher α values allow newly learned Q-values to change quickly.

4.2.3. Exploration-Exploitation Strategy

In RL, exploration and exploitation are both very significant concepts. An exploration
means a selection of actions other than the ones that have been experienced before while
an exploitation indicates the selection of the optimal actions. ε-greedy strategy was imple-
mented in the proposed solution to have a balance between exploration and exploitation.
ε-greedy method continues to explore, meaning that it gives a chance to execute random
actions. It employs a tuning parameter, ε ∈ [0, 1], to indicate whether the agent should
explore with a probability of ε and exploit with a probability of 1 − ε.

The calculation of the ε-greedy strategy is shown in Equation (8). The RL agent utilises
this equation to select the upcoming action at a particular state. In the proposed RL-based
solution, the action with the lowest Q-value is selected; this means that, rather than finding
a route with the highest reward, the proposed solution obtains a route with the lowest costs
by greedily choosing actions having the lowest rewards.

A′ = argmin
a∈A

Q′(S, A) (8)

where argmin
a∈A

indicates the exploitation of Q(S, A) in regards to action A. The ongoing

exploration in a greedy way improves the instant reward.

4.2.4. Reward Function

The reward in the proposed RL-based solution is defined in Equation (9), and it is
designed to find the best video streaming path according to the four QoS metrics: link
available bandwidth, delay, jitter and loss rate. The intention is to find a route with
minimum delay, loss, and jitter while prioritising links with large bandwidth to enhance
the QoE of the video streaming service. It is noteworthy that different influence factors (IFs)
can impact the satisfaction degree of video streaming services. This research concentrates
on the network-related IFs, which refer to the QoS factors because it has been demonstrated
that these metrics significantly influence the QoE [40].

R = w1 ∗
1
Bl

+ w2 ∗ Dl + w3 ∗ Ll + w4 ∗ Jl (9)
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It is worth noting that these metrics have different units (e.g., the available bandwidth
in bit per second and delay in millisecond), which have an impact on the learning efficiency
thus, each metric value is normalised to united ranges and scales [41]. The values w1, w2, w3,
and w4 ∈ [0, 1] are tuning weights assigned to a determined metric during the reward
computation, where w1 +w2 +w3 +w4 = 1. Note that the tuning weights of QoS factors are
specified in the agreement with the quality standard bounds and their relative importance
degree, which are provided in [34] in this fashion, Ll 58.9%, Jl 15.1%, Dl 14.9% and Bl 11.1%.

4.3. RL-Based Multimedia Traffic Routing Algorithm

The proposed routing algorithm is implemented to find the optimal path from the media
provider to the customer in the infrastructure plane. Algorithm 1 takes the network topology,
the QoS parameters, learning rate α, ε-greedy parameter and the number of learning episodes
as input. When video packets flow in the network from a given provider to the desired
customer, the algorithm initialises the Q-values of the Q-table to zeros. This means that for
a given video packet at the source OpenFlow switch ysrc, the first learning episode begins
with initialising the state of a video packet at the source switch. At this point, this state starts
selecting one action A from the current state S using ε-greedy exploration-exploitation policy.
Next, the algorithm uses the network QoS parameters and the state S to compute the reward
based on Equation (9) related to the action A and discovers the new state S′. Following that,
the Q-function is obtained using Equation (7) and set the next state S′ as the current state
S. The state transition iteration continues as this episode ends, and a new one starts till S is
equivalent to the final state (i.e., the video packet arrives at the OpenFlow destination switch
ydst). Finally, the RL agent obtains the optimal path that achieves the lowest Q-values derived
from the Q-table to forward video packets between the given provider-customer pairs. Once
the final goal is reached, the flow installation module in the control plane receives the path
and installs it in the routing table of the OpenFlow switches.

Algorithm 1 Q-Learning-based Multimedia Traffic Routing
Input: Network topology: G(V, E)

Network QoS parameters: Bl ,Dl ,Jl ,Ll
Learning rate: α
Exploration-exploitation parameter: ε
Learning episodes number: n

Output: Optimal path from the media provider to the customer that produced the
lowest Q-values derived from the Q-table

foreach Video transmission over (ysrc,ydst) ∈ Y do
Initialise Q: Q(S, A) = 0,∀s ∈ S, ∀a ∈ A
for episode← 1 to n do

Initialise state S = ysrc ∈ S;
while S′ is not ydst do

Choose an action A from S using ε-greedy policy, Equation (8) derived
from Q;

R′ ← R(S, A) // The RL agent obtains the reward from network
QoS parameters using Equation (9); then it observes the
new state S′;

Q(S, A) = Q(S, A) + α[R(S, A) + min
A

Q′(S′, A′)−Q(S, A)]

S← S′ // proceed with the next state;

end
end

end
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5. Evaluation

In this section, an experimental platform used to evaluate the performance of the
RL-based solution approach is presented. The proposed architecture implemented on
Ubuntu 16.04 installed in HP Z230 tower workstation with an Intel Xeon processor and
16 GB RAM. Mininet emulator [42] used to run the infrastructure plane, which includes the
SDN-enabled video streaming network. RYU Controller [32] utilised to emulate the control
plane, which collects information about network topology to obtain the environment states.

5.1. Test-Bed Preparation

Three realistic network topologies are used for the experimental evaluation of our ap-
proach; a modified Abilene topology utilised in [43], Geant [44], and Cernet [45]. The topolo-
gies have been built and implemented in Mininet using a Python script; SDN-Openflow
switches replaced the nodes for each network topology. Each switch has a host that for-
warded and received different types of traffic. Multimedia providers are deployed in a
number of Openflow switches. The provider is able to stream real-time Dynamic Adaptive
Streaming over HTTP (DASH) based video flows. Due to Mininet resources constraints,
links capacities for each topology have been scaled to meet the experimental environment
requirements. Table 1 shows the utilised network topologies employed to evaluate our
RL-based multimedia traffic routing.

Table 1. Three realistic network topologies.

Name Nodes Links

Cernet (large-scale topology) 36 48
Geant (middle-scale topology) 23 37
Abilene (small-scale topology) 12 20

5.2. QoE Metrics Measurements

The full reference (FR) model is an objective quality assessment utilised to estimate
the QoE of video streaming. It performs a direct comparison between the video under
processing called distorted and the actual video, named reference, in order to evaluate the
video streaming quality. The two assessed videos are studied according to their properties
frame-by-frame to inspect different characteristics, including colour processing and contrast
features [46]. The Video Multimethod Assessment Fusion (VMAF), presented by Netflix [47]
and the Structural Similarity Index Metric (SSIM) [48] are employed as FR measurement
metrics for QoE assessment. Both metrics correlate well with human perception and allow
an efficient computation. The metrics are computed off-line and as the average VMAF and
SSIM over all the video frames. Table 2 represents a mapping of objective QoE (VMAF)
and (SSIM) to the nominal Mean Opinion Score (MOS). MOS is a 5-point scale utilised to
evaluate the end-users’ satisfaction in a subjective manner [21].

Table 2. VMAF and VMAF to MOS mapping.

MOS VMAF SSIM

5 (Excellent) 80–100 >0.99
4 (Good) 60–79 ≥0.95 & <0.99
3 (Fair) 40–59 ≥0.88 & <0.95
2 (Poor) 20–39 ≥0.5 & <0.88
1 (Bad) <20 <0.5

5.3. Learning Parameters Settings

Before implementing the proposed RL-based solution, it is essential to determine the
learning rate α and exploration probability ε values. With a probability of exploration
value close to one and a high learning rate value, the RL agent managed to find shorter
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routes to deliver the video streaming traffic along the sequence of episodes. After several
experiments, the parameters are set as follows: α = 0.9, ε = 0.8, and the number of training
episodes is set to 300.

5.4. Evaluation Scenarios

Several testing scenarios are implemented to analyse the proposed RL-based solution
algorithm. They demonstrate the importance of QoS parameters and their impact on video
streaming quality perceived by customers. The goal is to evaluate the well-known routing
algorithms such as Shortest Path First (SPF) with the proposed approach under varying
traffic load with different network topologies scenarios. SPF is a primary mechanism
to originate routing paths, which is extensively utilised in multiple protocols like Open
Shortest Path First (OSPF). OSPF-based approach is compared with our solution to eval-
uate customers desired satisfaction across real-time DASH video streaming using both
approaches. In each test, the reference video without degradation is distorted and recorded
to generate the processed video with degradation. At this stage, by having both videos, an
objective experiment of the perceived video quality is conducted. As an outcome of this
experiment, VMAF and SSIM values are obtained.

6. Results and Discussions

This section explores the impact of our proposed solution on the users’ perceived
quality when both low and high traffic loads existed. Three different topology scales are
used as depicted in Table 1. Iperf testing tool was also used to inject high and low traffic
loads into the simulated network. Real-time DASH-based video flows is utilised to test the
performance of the RL-based solution. DASH video is divided into 4-s chunks encoded
into five discrete bit rates ranging from 260 Kbps to 2998 Kbps using FFmpeg version 4.3.2
with the H.264 codec, and segmented based on GPAC MP4Box in order to create the DASH
manifest and associated files. The video content streamed by multimedia providers is the
“Big Buck Bunny” animation [49] with a 1920 × 1080 pixels resolution and was cut into
5 min long. The selection of hosts that partake in the experiment has been constructed
to enable the traffic flow to pass through the whole network topology. In the meantime,
the study has utilised Wireshark as video traffic monitoring software in the end-user’s
device in order to capture the received video segments during video streaming. Once the
streaming ended, the monitoring step on the client device is terminated and saved on
the PCAP file. It is noteworthy that the video that was finally broadcast is not available;
therefore, the PCAP file is used to collect video segments and recreate the processed video.
Now that the processed video is ready, the objective study to determine the QoE metrics
values is possible to be executed.

6.1. The Impact of Low Traffic Load on Client Satisfaction

This part shows the impact of low traffic load on the end-users’ perceived QoE under
three different topology scales. It presents the performance comparison of the proposed RL-
based solution with the OSPF protocol in terms of the customers’ satisfaction represented
by SSIM and VMAF, network throughput and packet loss rate and delay variation for the
generated traffic.

SSIM and VMAF correlate well with the customer perception and allow an efficient
calculation reflecting the clients’ QoE. It can be seen from Figure 4 the obtained SSIM values
for DASH video with the proposed RL-based solution maintained a high score in all the
three topologies, representing almost an excellent viewing behaviour. The average SSIM
values produced with the proposed scheme reaches 98% under the three networks. In the
case of the OSPF protocol, QoE was reduced to the range between good and fair for the
middle and large scale networks. However, with Abilene, the OSPF-based approach tends
to have a slightly similar viewing experience to the RL-based solution. In addition, Figure 5
illustrates the average VMAF scores for DASH video with both schemes. It can be observed
that RL-based solution improved the user-perceived quality, specifically under Geant and



Electronics 2022, 11, 2441 14 of 20

Cernet networks, and presents high scores (an average of 93 under all networks) leading to
an excellent viewing experience.

(a) (b)

(c)

Figure 4. SSIM values for DASH video under low traffic loads in three different topologies. (a) Abi-
lene; (b) Geant; (c) Cernet.

Figure 5. VMAF values for DASH video under low traffic loads in three different topologies.

Table 3 shows that the RL-based solution produced a lower packet loss rate for the
background traffic compared to the OSPF-based approach. With respect to the OSPF proto-
col, UDP traffic experiences higher data loss as the topology changes the scale from a small
to a large network. For instance, the generated traffic between H7–H35 introduced a 0.10%
loss rate in the OSPF-based approach since 128 packets were dropped out of 127,551. In
comparison, the RL-based solution decreased the loss rate as only 28 packets were dropped
out of 127,551, leading to a 0.022% loss rate. It can be observed that the improvement
of packet loss rate with the RL-based solution occurs in all of the client-server applied
in the experiment under various topology scales. However, The RL-based solution may
impose delay since complexity lies in the dynamic selection of the optimal path for video
transmission introduced by the RL agent, which forces the UDP traffic to take another route.
In this experiment, the average packet jitter between client and server is monitored with
our solution compared to the OSPF-based approach. As expected, it can be clearly noticed
that the OSPF-based scheme presented less jitter in almost all of the client-server routes
under various network topologies.
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Table 3. The number of packets dropped and average jitter during video transmission for the
low background traffic load under three topologies (includes random client-server from each net-
work topology).

Network Topology Abilene Geant Cernet

Client-Server H5–H1 H10–H4 H15–H6 H18–H9 H7–H35 H22–H19

OSPF-based appraoch Packets dropped (out of 127,551) 39 73 84 117 128 57
Average packet jitter (in ms) 0.008 0.017 0.013 0.015 0.022 0.004

RL-based solution Packets dropped (out of 127,551) 45 41 29 1 28 51
Average packet jitter (in ms) 0.010 0.015 0.018 0.017 0.008 0.019

Figure 6 demonstrates the throughput of DASH video streaming when the network
encounters low traffic loads. As noticed, the throughput drops with the OSPF-based
scheme due to the increase in the packet loss rate. Although, in all the three topologies,
both approaches present almost a similar performance, between 0–50 s. However, as
the video streaming transmission continues, with the low background traffic running on
the network, the throughput drops and remains stable at 2.8 Mbps for the OSPF-based
approach. At this point, the customer faces re-buffering events because of throughput
decrease situations that reduce the client QoE. Contrariwise, the results reveal a higher
throughput with the proposed RL-based solution and the stability achieved at more than
3.5 Mbps in all the three topologies. The RL agent repeatedly interacts with the SDN
Infrastructure Plane, avoids paths with a high data loss rate, and prioritises paths with large
available bandwidth, enhancing network throughput and providing a better video quality.

(a) (b)

(c)

Figure 6. Network throughput during video transmission under low traffic loads in three different
topologies. (a) Abilene; (b) Geant; (c) Cernet.

6.2. The Impact of High Traffic Load on Client Satisfaction

This part illustrates the impact of high traffic load on the end-users’ perceived QoE
under three different topology scales. The same performance comparison and the same
video sample utilised under low traffic were applied; however, the bandwidth of the
background traffic that is introduced in the three networks using the Iperf tool is increased.
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As the high traffic load operates, the network gets overloaded, which causes traffic
flows to exhibit data losses. Nevertheless, SSIM and VMAF results indicate that our pro-
posed solution performs better than the OSPF-based approach despite the user-perceived
quality dropping to good under Cernet and Abilene topologies. The results with the
middle-scale network shows an excellent user perceived QoE (see Figure 7). In this case, the
viewing experience is affected when the network topology increases. DASH video stream-
ing without the RL-based solution reveals a massive decrease in the users’ perceived final
video quality, and according to the VMAF and SSIM results, Geant and Cerent users display
bad quality viewing behaviour as depicted in Figures 7 and 8, respectively. However, it can
be seen in Figure 9a that under small-scale network, the end-user perceived fair viewing
experience. As observed, the client satisfaction represented by QoE is dropped with both
schemes under large-scale network. However, the results suggest that the obtained QoE of
end-users increases with the proposed RL-based solution.

Figure 7. VMAF values for DASH video under high traffic loads in three different topologies.

(a) (b)

(c)

Figure 8. SSIM values for DASH video under high traffic loads in three different topologies. (a) Abi-
lene; (b) Geant; (c) Cernet.
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(a) (b)

(c)

Figure 9. Network throughput during video transmission under high traffic loads in three different
topologies. (a) Abilene; (b) Geant; (c) Cernet.

The results in Table 4 show that the RL-based solution produced a low data loss rate
for the generated traffic compared to the OSPF-based approach. It is noticeable that the
proposed solution draws advantages when applied on small and middle-scale networks;
for instance, the generated traffic under the two networks indicated that the OSPF-based
approach reported a high loss rate. Hence, the OSPF protocol cannot resolve the network
congestion by rerouting the traffic flows. In contrast, the proposed solution showed a
dramatic decrease in the loss rate in these networks. Although the RL-based solution
offers better performance in terms of data loss rate under Abilene and Geant, however,
considering the results in Table 4 OSPF-based approach imposes lower jitter for almost
all the traffic between client-server of both networks. In a large-scale network, the results
indicate an improvement in both packet loss rate and delay variation.

Table 4. The number of packets dropped and average jitter during video transmission for the
high background traffic load under three topologies (includes random client-server from each net-
work topology).

Network Topology Abilene Geant Cernet

Client-Server H5–H1 H10–H4 H15–H6 H18–H9 H7–H35 H22–H19

OSPF-based appraoch Packets dropped (out of 178,572) 1176 193 1264 1809 196 641
Average packet jitter (in ms) 0.009 0.010 0.017 0.011 0.017 0.011

RL-based solution Packets dropped (out of 178,572) 826 123 100 122 146 297
Average packet jitter (in ms) 0.022 0.026 0.025 0.007 0.008 0.008

The network throughput under high traffic loads is illustrated in Figure 9. As observed,
the video streaming throughput decreases with the OSPF-based approach because the
network gets congested and the links are highly experiencing data loss; the throughput
value hits a massive drop and reaches even below 1 Mbps under all networks. With the
proposed RL-based solution, on the other hand, the throughput value significantly increases
and hits 4 Mbps under Cernet topology, even if the network size increases, as depicted in
Figure 9c; therefore, the client maintains a better viewing experience.
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7. Conclusions

In this work, a new reinforcement learning-based routing framework for multimedia
traffic over SDN has been proposed. The presented approach aims to provide an accept-
able QoE for customers in transmitting video on an SDN network. By enhancing QoE,
the customer can see the precise and accurate video frames transmitted from the video
streaming provider side. The proposed method leverages the capabilities of SDN paradigm
to monitor and gather network statistics to calculate the optimal path. Moreover, the RL
agent learns to choose a path with minimum packet loss ratio, end-to-end delay, and jitter
and prioritises bandwidth to enhance end-user QoE. Based on the experiment results, the
RL-based solution outperforms the OSPF-based approach and produces an excellent and
good customers’ perceived QoE when low and high traffic loads are introduced under
various realistic network topologies (i.e., Abilene, Geant, and Cernet). The obtained QoE
of DASH video streaming significantly degraded without the proposed solution and the
MOS indicates bad quality when high traffic loads existed. Furthermore, the RL-based
scheme increased network throughput and decreased packet loss rate under both traffic
loads, which resulted in an excellent user-perceived QoE for middle-scale topology under
high traffic loads. To further improve the proposed solution scheme, future work needs to
consider integrating QoE metrics with network QoS requirement parameters and utilising
Deep Reinforcement Learning for routing decisions’ enhancement.
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