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Abstract: Spectrum sensing is a crucial technology for cognitive radio. The existing spectrum sensing
methods generally suffer from certain problems, such as insufficient signal feature representation,
low sensing efficiency, high sensibility to noise uncertainty, and drastic degradation in deep networks.
In view of these challenges, we propose a spectrum sensing method based on short-time Fourier
transform and improved residual network (STFT-ImpResNet) in this work. Specifically, in STFT, the
received signal is transformed into a two-dimensional time-frequency matrix which is normalized
to a gray image as the input of the network. An improved residual network is designed to classify
the signal samples, and a dropout layer is added to the residual block to mitigate over-fitting effec-
tively. We conducted comprehensive evaluations on the proposed spectrum sensing method, which
demonstrate that—compared with other current spectrum sensing algorithms—STFT-ImpResNet
exhibits higher accuracy and lower computational complexity, as well as strong robustness to noise
uncertainty, and it can meet the needs of real-time detection.

Keywords: spectrum sensing; residual network; short-time Fourier transform; cognitive radio

1. Introduction

With the advent of the 5G era, the lack of spectrum resources has become a realistic
problem that is inevitable [1,2]. Spectrum sensing is of vital importance to the optimization
of the utilization rate of spectrum resources, and has become the key technology in cognitive
radio [3]. In cognitive radio, the secondary user (SU) is allowed to access the spectrum
dynamically and randomly without interfering with the primary user (PU) [4]. The main
task of spectrum sensing is to explore spectrum holes [5] in order to increase the usage of
spectrum resources.

The traditional spectrum sensing methods can be broadly categorized into energy
detection (ED) [6,7], matched filter detection [8], cyclostationary feature detection [9],
waveform-based sensing [10], and covariance-based detection [11], etc. However, the pre-
defined threshold set by the traditional method has a dramatic influence on the detection
probability. With the continuous development of machine learning techniques, the method
of realizing spectrum sensing is migrating gradually from conventional statistical methods
to machine learning ones. Nowadays, deep learning methods are becoming more and more
popular to train spectrum sensing models to classify signals, which improves the detection
probability of spectrum sensing, and the model is optimized to approach the pragmatic
application level.

At present, some commonly used machine learning methods such as support vector
machines (SVM), artificial neural networks (ANN), long-term and short-term memory
networks (LSTM), and convolutional neural networks (CNN) have achieved partial success
in spectrum sensing. Chen et al. [12] proposed a SVM-based spectrum sensing algorithm
to recognize the PU signal by training SVM classifiers based on the energy vectors sampled
from SU. Supervised learning and unsupervised learning algorithms such as the naive
Bayes classifier, SVM, and hidden Markov model are compared in terms of classification
accuracy in [13], in which the experimental results show that the performance of the
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SVM algorithm exceeds previous ones. However, as the SVM algorithm uses the time-
consuming quadratic programming to solve support vectors, it exhibits high computational
complexity in the training process, along with relatively low detection efficiency. Some
researchers have proposed new spectrum sensing methods based on ANN and its variants,
and also combinations with traditional methods. Tang et al. [14] used energy detection
and cyclostationary characteristics to train an ANN model for spectrum sensing, which
combines the advantages of energy detection and cyclostationary feature detection while
keeping a low computational complexity. The normal likelihood estimation scheme is
employed in [15] to input the signal energy detected by the energy detection method to
the ANN spectrum sensing model, and the experimental results were better than those
provided by the straightforward energy detection methods. In [16], the decision level fusion
is introduced to ANN during the spectrum sensing of cooperative users. The decision of
each SU achieves the global decision in the fusion center, which improves the detection
probability and reduces the false alarm probability in the meantime. However, although
the sample data amount increases, the training process is still prone to over-fitting due to
the simple design of the network structure, which limits the accuracy of ANN algorithms.
To this end, many researchers empower the communication signal recognition tasks by
deep learning techniques, regarding signal recognition as a classification problem. Dong
et al. [17] extracted both cyclostationary and energy features from noise signals and PU
signals, respectively. These features are input to the CNN spectrum sensing model, and the
detection can be made by judging whether the frequency band was occupied. However,
these features are insufficient to accurately describe the real environment. Subsequently, Pan
et al. [18] proposed a cognitive radio spectrum sensing method for orthogonal frequency
division multiplexing (OFDM) signals based on the integration of deep learning and
the cyclic spectrum. This method analyzed the cyclic auto-correlation characteristics
of OFDM signals and the cyclic spectrum obtained by the time domain smoothing fast
Fourier transform accumulation algorithm as the input of the CNN model. However,
this algorithm is not generalized, as the model is merely tailored to OFDM signals. Wu
et al. [19] established a signal modulation recognition model based on CNN-LSTM, which
can identify as many as 12 types of signal modulation modes simultaneously. CNN was
used to extract the characteristics of the signal space automatically, and then the LSTM
network was exploited to extract the time correlation of the extracted signal. The authors
in [20] proposed a deep belief network architecture, which achieves better data transmission
through the selected path. A spectrum detection network based on deep learning is
proposed in [21] to identify the channels; it achieved good results in a low signal-to-noise
ratio scenario. Nevertheless, this method is only suitable for specific scenarios, and is not
generalized as well. Chen et al. [22] proposed an STFT-CNN spectrum sensing method that
utilizes short-time Fourier transform (STFT) to preprocess the signal to make full use of the
time-frequency domain information of the signals, and designed a CNN network to classify
the signal. This method is a milestone in spectrum sensing. However, the CNN network
only contains a single convolution layer, which limits the ability of feature learning. The
network’s performance can be improved by increasing the network depth, especially for
low signal-to-noise ratio (SNR) spectrum signals. However, introducing excessive network
layers leads to network degradation. Specifically, the classification accuracy increases
with the deepening of the network layers at the beginning. As the network continues to
deepen, the accuracy drops sharply after reaching the saturation point. The reason for the
network degradation is that with the deepening of the network, the gradient correlation
between the shallow network and deep network becomes weak, and a loss of information
occurs. To capitulate, traditional spectrum sensing methods have a low utilization rate of
signal features with limited feature information extracted, and have a lot of space for the
improvement of the accuracy of the spectrum sensing.

In view of the aforementioned issues, we propose a novel spectrum sensing method,
named STFT-ImpResNet, based on STFT and an improved residual network (ResNet).
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Specifically, the signal samples are preprocessed by STFT, and an improved ResNet
(ImpResNet) is designed to classify the signal samples.

The main contributions of our paper are as follows:

• We combined Short-time Fourier transform and a residual network innovatively, and
proposed STFT-ImpResNet for spectrum sensing. To the best knowledge of the authors,
this is the first time that a combination of STFT and ResNet has been introduced to
spectrum sensing.

• We customized a deep learning network structure to achieve a good trade-off between
accuracy and computational cost in the context of spectrum sensing. We especially
simplified ResNet by replacing the fully connected layer with a global average pooling
layer to integrate global information. In addition, a dropout layer was added into the
improved residual block to prevent over-fitting effectively.

• We conducted comprehensive experiments which demonstrate that the proposed
STFT-ImpResNet algorithm outperforms the existing spectrum sensing algorithms on
low signal-to-radio datasets.

The remainder of this paper is organized as follows: In Section 2, we explain the
system model of spectrum sensing. The proposed STFT-ImpResNet Spectrum Sensing
Algorithm is elaborated in Section 3, followed by the extensive experiments in Section 4
which validate the superiority of STFT-ImpResNet in the balance of accuracy and detection
efficiency. Finally, we conclude this work in Section 5.

2. System Model

In cognitive radio networks, spectrum sensing can be transformed into a binary
hypothesis test problem. The binary sensing model can be represented as follows:

H0 : x(n) = w(n)
H1 : x(n) = s(n) + w(n)

(1)

where x(n) represents the received signal, s(n) denotes the signal emitted by PU, ω(n) is
the noise, and H0 and H1 represent the hypotheses of signal-containing noise only, and that
containing both the signal emitted by PU and noise, respectively.

Detection probability Pd and false alarm probability Pf are essential indicators for the
evaluation of the spectrum sensing model, and are described by the following equation:

Pd = P{H1|H1}
Pf = P{H1|H0}

(2)

3. STFT-ImpResNet Spectrum Sensing Algorithm

Essentially, STFT implements a universal time-frequency domain transformation that
is infeasible for any deep learning networks to learn based on limited datasets. From this
viewpoint, STFT is equivalent to a deep learning network layer transformation based on
infinite signal samples from the real world. By adding STFT as the first step before the
ResNet network, the whole STFT-ImpResNet method becomes equivalent to combining
a universal rule-based network layer and data-dependant neural network layers into a
composite one. Therefore, the resulting STFT-ImpResNet will have better learning ability
due its greater number of network layers, whilst also being less prone to over-fitting because
of the universal characteristics of STFT. In other words, STFT-ImpResNet is equivalent to
fine-tuning the universal time-frequency transformation network using ResNet. Because
fine-tuning universal network models often produces superior performance for general
classification tasks [23,24], while niche approaches succeed using networks trained from
scratch, we designed this STFT-ImpResNet structure.
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3.1. Short-Time Fourier Transform

Most of the existing spectrum sensing methods based on deep learning generate two-
dimensional gray images by directly truncating and splicing one-dimensional received
signals. This method is simple yet efficient, but lacks signal frequency domain information.
In order to further improve the performance of the spectrum sensing model under low
SNR, and to extract the time-frequency information of the received signal more effectively,
this paper utilizes short-time Fourier transform to preprocess the signal. Two-dimensional
gray images are generated by the time-frequency analysis of the received one-dimensional
signals, which can fully reflect the frequency domain characteristics of the signal, and are
supposed to exhibit strong robustness and noise immunity [25].

STFT decomposes the one-dimensional time-domain signal into equal-length short
segments implemented by a window function. Then, discrete Fourier transform (DFT) is
performed on each short segment in order to obtain the spectrum signals.

The short-time Fourier transform of discrete signals is defined as

STFTx(t, ω) =
L−1

∑
n=−∞

x(n)g(n− t)e−jmω (3)

g(n) represents the window function, and the selection of different window func-
tions will also bring some differences. A rectangular window has the highest frequency
resolution, but the spectrum leakage is serious. Compared with a rectangular window,
a Hanning window has a stronger ability to reduce spectral leakage, but it is poor in
frequency resolution compared with a Hamming window [26]. A Hamming window is
adopted in this proposed method, as since it has good performance in frequency resolution
and reducing spectrum leakage. However, the analysis of signal characteristics will not
produce significant differences with the change of window function.

The spectrogram of the signal is expressed as follows:

SPx(t, ω) = |STFTx(t, ω)|2 (4)

Using the spectrum sensing model, the received signal sample is simplified as follows:

X = [x(1), x(2), · · · x(n)] (5)

The plural matrix is obtained by the STFT transformation of the received signal
sample X. The matrix is normalized to generate a gray image as follows:

Xs =
[

xS
(1), xS

(2), · · · xS
(n)
]

(6)

3.2. Improved ResNet

As early as 2016, He et al. [27] proposed ResNet, constructing residual blocks by adding
identity mappings as a shortcut connection to CNN. ResNet overcomes the problems
of network convergence and network degradation caused by increasing the number of
network layers in CNN [28]. He et al. compared the training error and test error of 20-layer
and 56-layer “plain” networks on CIFAR-10. When the network is deepened from 20 layers
to 56 layers, the test error is expected to decrease in theory. However, it is evident from
the experimental results that the test error increases while the training error also increases
as the depth of the network layer grows. Therefore, the reason for the increase of the test
error is not over fitting, but network degradation. To solve this issue, the modification of
the network structure is more viable compared to simply increasing the network depth.

The structure of the standard residual block is shown in Figure 1a. Given network
input x and the expected output H(x), if x is directly transmitted to an intermediate
result, then the output through the convolution layer is F(x) = H(x) − x, rather than
learning the output H(x) without shortcut connections. The optimization of the former
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is simpler than that of the latter because the residual feature output map is the first order
difference of output and input signals, resulting in a one-order smaller magnitude than the
straightforward output. Specially, when the output of the convolution layer is zero, the
identity mapping H(x) = x can be obtained.
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The residual block designed in this work is the residual bottleneck block. As compared
with the standard residual block, the bottleneck residual block adds 1 × 1 convolution be-
fore and after the feature extraction convolution layer, which requires less input dimension
of the weight layer, and thus reduces the amount of parameter calculation. The structure of
the residual bottleneck block is depicted in Figure 1b.

The structure of the improved residual block (ImpRB) designed in this work is il-
lustrated in Figure 2. In ImpRB, the ReLU activation function is interposed after each
convolution layer, and the three linear regression activation functions have a stronger
ability to extract feature information than a single linear regression activation function.
In order to further improve the extraction efficiency of the network, batch normalization
(BN) is introduced, which accelerates the convergence process of the network, rendering
a more robust training of the whole network. With limited training data, the spectrum
sensing model is prone to over-fitting, especially when deepening the network. Therefore,
we additionally integrate the dropout layer in the proposed ImpRB structure.
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The principle of dropout is briefed as follows: some hidden nodes are randomly
ignored during the training process in order to reduce the number of intermediate features,
and a new hidden layer is constructed. Therefore, the network model of each training
batch is different, which increases the orthogonality of each layer to prevent over-fitting,
and improves the generalization ability of the model. Moreover, the dropout layer only
participates in the network training process instead of the network testing process, such
that it will not affect the detection efficiency. The network models of the standard network
and dropout network are shown respectively in Figure 3a,b.
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The feed-forward operation of a standard neural network is represented as follows:

zi
(l+1) = wi

(l+1)yi
l + bi

(l+1)

yi
(l+1) = f (zi

(l+1))
(7)

When the dropout finishes, the expression of the dropout network becomes

rj
(l) ∼ Bernoulli(p)

ỹ(l) = r(l) ∗ y(l)

zi
(l+1) = wi

(l+1)ỹ(l) + bi
(l+1)

yi
(l+1) = f (zi

(l+1))

(8)

where rj
(l) is the 0/1 vector randomly generated by the Bernoulli function and used as an

activation function of neuron y(l), in which some neurons are randomly set to 0 by setting
dropout rates; ỹ(l) represents the neuron after dropout; zi

(l+1) indicates the neuron to be
activated in layer l + 1; yi

(l+1) is the output neuron in layer l + 1; f (·) is the activation
function; and wi

(l+1) and bi
(l+1) denote the weight and bias of layer l + 1 respectively.

When the number of input and output channels is equal, the shortcut connection is
identity mapping, and the output of the residual module is

H(x) = f (z) + x (9)

The output of layer l of the residual network is

Hl (x) = f (zl) + xl (10)

In order to train the network, the signal samples in Xs are labeled as

Y = {(xS
(1), y(1)), (xS

(2), y(2)), · · · (xS
(n), y(n))} (11)
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In the above formula, n is the number of samples in the dataset and y(·) is the spectrum
status label, y(·) ∈ (0, 1). When the spectrum is idle, y(·) = 0; when the spectrum is
occupied, y(·) = 1. The ImpResNet structure is shown in Figure 4.
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The signal samples pass through one-dimensional convolution first, and then enter
the ImpRB. Multiple improved residual blocks are superimposed to enhance the ability of
feature extraction. After residual learning, the fully connected layer (FC) is replaced by
global average pooling (GAP) [29]. GAP was chosen because it takes the average of each
feature map which can integrate global spatial information. Compared with FC, GAP does
not require a large number of training parameters, thereby reducing the risk of over-fitting.
The output dimensions of the GAP are equal to the number of categories, and thus the
resulting vector can be fed directly into the Softmax layer, which maps the outputs of
multiple neurons into the interval of (0,1) to realize the classification of samples.

The input-output mapping of the whole network is

FD(xi, {W}) = ŷ(i) ∼= y(i) (12)

Cross-entropy is adopted as a loss function in the algorithm, formulated as follows:

L = −
[

N

∑
i=1

y(i) log ŷ(i) + (1− y(i) log(1− ŷ(i))

]
(13)

The training dataset selects m pairs from the training dataset:

Ytraining = {(xS
(1), y(1)), (xS

(2), y(2)), · · · (xS
(m), y(m))} (14)

The test dataset adopts n-m pairs of test data:

Ytest = {(xS
(m+1), y(m+1)), (xS

(m+2), y(m+2)), · · · (xS
(n), y(n))} (15)

The spectrum sensing algorithm based on STFT-ImpResNet is elaborated in Algorithm 1.
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Algorithm 1: STFT-ImpResNet Spectrum Sensing

Input: Received signal samples X; maximum number of iterations IterMax
Output: Pd and Pf
1. Preprocess the received signal samples X into training dataset Ytraining and test dataset Ytest
2. Initialization: iteration counter i = 0 and random weight W
3. Gradient descent training of training dataset in ImpResNet

Repeat
Update ŷ(i) according to Equation (12);
Substitute ŷ(i) into Equation (13).

Until IterMax reached
4. Inference: apply the trained ImpResNet model to the online dataset and output the

classification results
5. Calculate the detection probability and the false alarm probability

4. Experimental Result Analysis
4.1. System Simulation

The training dataset and test dataset in this work are generated by QPSK system
simulation. The transmitted signal is modulated by the in-phase carrier and orthogonal
carrier after serial-parallel conversion, and the QPSK signal is obtained after addition. The
QPSK signal is transmitted to users and demodulated after going through the Rayleigh
channel and white Gaussian noise. During demodulation, the QPSK signal forms two
identical signal channels through the power separator, and then a coherent demodulation
is performed. After the sampling decision and parallel-series conversion, I and Q signals
are obtained. The signal samples are transformed by STFT to generate datasets for network
training. The simulation flow of the QPSK system is summarized in Figure 5.
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The datasets are generated with the sampling length of 512, with a window length of
32 and a carrier frequency of 40 kHz. The SNR range of the mixed-SNR dataset is between
−25 and −1 dB at the interval of 2 dB. Under each SNR sample, 100 samples are generated
as the training dataset and 50 samples are generated as the validation dataset. The low-SNR
dataset is fixed at −19 dB, where 1000 received signal samples are collected for training
purposes and 100 received signal samples are collected for validation purposes. The noise
is white Gaussian noise (WGN) with the noise power of 1 dBW, and the number of noise
samples generated at each SNR is kept the same as the number of signals.

4.2. Experimental Configuration

In order to verify the performance of the STFT-ImpResNet spectrum sensing algo-
rithm proposed in this work, simulation experiments were carried out. The simulation
environments are given as follows: MATLAB R2020b, Intel® Core® CPU i5-11300H and
NVIDIA® GeForce MX450. We used stochastic gradient descent (SGD) with a mini-batch
size of 128, and the initial learning rate was set to 0.001.
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4.3. Experimental Results

In the following experiments, we adopt network accuracy commonly used by scholars
to evaluate the performance of algorithms, where the accuracy refers to the proportion of
“Ture Positive” and “Ture Negative” in all classification cases in spectrum sensing [30].

4.3.1. Effects of Dropout Rates

Given dropout rates of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7, which are feasible settings in
practice, the network accuracy of different dropout rates was tested under the mixed-signal
SNR dataset.

The experimental results shown in Table 1 show that when the network is the basic
residual network and the dropout rate is 0, the accuracy in the training dataset is 100%.
However, due to the large number of network parameters, over-fitting occurs and the
validation accuracy is only 93.2%. Compared with the baseline network, the validation
accuracy of the network with dropout is improved. However, when the dropout rate is large,
there are too many lost neurons, resulting in a decrease of validation accuracy, implying an
under-fitting phenomenon. When the dropout rate is 0.4, the validation accuracy reaches
the maximum of 99.4%, which not only prevents the network from over-fitting but also
prevents the sample from losing the most representative features.

Table 1. Classification accuracy of different dropout rates.

Dropout Rate Training Accuracy (%) Validation Accuracy (%)

0 100 93.2
0.1 100 95.7
0.2 100 97.7
0.3 100 98.5
0.4 100 99.4
0.5 100 98.2
0.6 100 96.4
0.7 100 94.3

4.3.2. Effect of the Network Structure

In this experiment, we compare the spectrum sensing model accuracy of ResNet with
different structures and CNN. The number of kernels in the residual network and the size of
the convolution kernels in the residual module are changed to construct different residual
network structures. On the mixed-SNR dataset, we select the residual network with the
number of filters of 8 and 10, and the sizes of convolution kernel of 3 × 3 and 5 × 5, and
the classification accuracy of networks with five different structures, as shown in Figure 6.
The network parameters of ResNet1, ResNet2, ResNet3, ResNet4 and CNN are listed in
Table 2.
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Table 2. Network parameter.

Number of Kernels Kernel Size 20-Layer Accuracy

ResNet1 8 3 × 3 99.4%
ResNet2 8 5 × 5 97.8%
ResNet3 10 3 × 3 96.7%
ResNet4 10 5 × 5 96.3%

CNN 8 3 × 3 92.6%

It is evident that the accuracy of the four residual networks is higher than that of the
baseline CNN with the same number of network layers. For instance, when the network
depth is 20, the classification accuracy of ResNet with four structures is 6.8%, 5.2%, 4.1% and
3.7% higher than that of CNN, respectively. The accuracy of CNN tends to saturate as the
network depth grows, and there is a drastic degradation after the network exceeds 26 layers.
The accuracy of CNN is as low as 53.2% at 50 layers, while the accuracies of ResNets with
four structures are 41.4%, 40.6%, 40.0% and 39.1% higher than CNN, respectively. Because
CNN adopts a large number of activation functions in the process of network deepening,
the original data is transformed nonlinearly, which makes the model unable to realize linear
transformation. Therefore, the introduction of identity mapping is particularly necessary.

By comparing the accuracy of ResNet with different structures, it can be seen that the
increase of the filter number and convolution kernel size will lead to lower accuracy eventu-
ally. This is because increasing the number and size of convolution kernels will increase the
calculation of parameters. It can be seen that Resnet1 has the highest classification accuracy
of 99.4% on the layers of 20. Therefore, the spectrum sensing model proposed in this work
selects the ResNet1 network with the 20 network layers.

4.3.3. Effect of Sampling Points

This subsection compares the change of detection probability along with SNR of the
STFT-ImpReNet spectrum sensing model with various numbers of sampling point N. The
experimental results are shown in Figure 7.
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The experimental results show that the more sampling points there are, the higher
the detection probability of the algorithm. However, the number of sampling points
will also affect the detection efficiency. The larger the number of sampling points is, the
longer the training time and detection time are. The growth trend is not obvious when the
number of sampling points reaches 512 and continues to increase. This is because excessive
sampling points will reduce the relevance of the information before and after sampling,
and it is difficult for the network to learn more effective correlation information. Based on
preliminary experiments, the sampling point N of the spectrum sensing model proposed in
this work is set to be 512 as the optimum.
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4.3.4. Comparison of Efficiency

The proposed STFT-ImpResNet, STFT-CNN [22] and SVM [12] methods all need
network training in order to establish a spectrum sensing model before detection, while
the ED [7] method can detect signals directly without training. The detection efficiency of
four methods is compared under the low SNR dataset (see Section 4.1 for the generation of
the dataset), and the results in Table 3 report the detection probability Pd, the false-alarm
probability Pf , training time and detection time of different methods, respectively.

Table 3. Comparison of the detection efficiency.

Pd Pf Training Time (s) Detection Time (ms)

STFT-ImpResNet 0.99 0.04 29.186 12.52
STFT-CNN 0.91 0.3 33.143 13.95

SVM 0.6 0.42 15.646 19.03
ED 0.36 0.33 - 2.93

The offline training time and online detection time of the STFT-ImpResNet spectrum
sensing model are shorter than those of CNN, because the identity mapping in the ImpRes-
Net accelerates the convergence speed of the network and shortens the training time. Due
to the low computational complexity of the ImpResNet algorithm, the detection time of
STFT-ImpResNet is shorter than that of SVM.

The computational complexity of SVM is O
(
n + n3) [31], and the computational

complexity of CNN is O(n∑L
l=1 F2

l K2
l QlQl−1), where L represents the number of network

layers, Fl , Kl , and Ql are the size of the output feature map, the size of the convolution
kernel, and the number of output channels in the layer L, respectively.

ImpResNet adds identity mapping to CNN, but the identity mapping neither adds
additional parameters nor increases computational complexity. In the meanwhile, the
identity mapping can directly connect different layers, while the computational complexity
of CNN needs to be accumulated in each layer. Therefore, the order of algorithm complexity
of the four methods is SVM > CNN > ImpResNet > ED.

Compared with SVM and ED, STFT-ImpResNet needs a longer training time, but
the training process takes only one time and does not need to be updated frequently. In
addition, our algorithm takes only 12.52 ms to carry out an inference of a sample, which
can meet the needs of real-time detection.

4.3.5. Effect of Noise Uncertainty

In this subsection, we compare the detection probability of datasets processed by
traditional methods (cut and splice) [32] with those after STFT under different noise power.
Introducing a into noise model as noise uncertainty coefficient, such as a ≥ 1, if the noise
power does not fluctuate, the noise uncertainty coefficient is 1 according to [33]. In order
to further illustrate the robustness of the proposed algorithm to noise uncertainty, extra
experiments were conducted, and the noise considered in the experiment is additive white
Gaussian noise (AWGN).

The results in Figure 8 show that when SNR = −19 dB and the noise power is 1 dBW,
1.2 dBW and 1.5 dBW, the detection probabilities of STFT-ImpResNet are 0.945, 0.945 and
0.94, respectively, which implies high robustness to the noise uncertainty. Meanwhile, the
detection probabilities of the truncating and splicing spectrum sensing model are 0.71,
0.675, and 0.635, respectively, which are greatly affected by the noise power. STFT can
effectively suppress noise and improve SNR. Therefore, time-frequency analysis of signal
samples with STFT is not only able to improve the detection probability of the system but
also improve the robustness of the spectrum sensing model to noise uncertainty.
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4.3.6. Comparison of ROC

In order to further evaluate the detection performance, we aligned corresponding Pd
and Pf pairs in all of the 1000 spectrum sensing cases, forming the Receiver Operating
Characteristics (ROC) curves by comparing the proposed STFT-ImpResNet method with
the STFT-CNN [22], SVM [12] and ED [7] under−19 dB. As shown in Figure 9, the proposed
STFT-ImpResNet algorithm exhibits a higher detection probability than the other three
algorithms under the same Pf . The detection probability of STFT-ImpResNet is 0.945 when
Pf = 0.01, which is 0.17, 0.565 and 0.884 higher than STFT-CNN, SVM and ED, respectively.
Given Pd = 1, the false-alarm probability of STFT-ImpResNet and STFT-CNN is 0.2 and 0.8,
respectively. The detection probability of STFT-ImpResNet is the highest among the four
algorithms given any Pf . It can be safely concluded that the proposed STFT-ImpResNet
outperforms the performance of state-of-the-art methods on real scenario datasets.
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5. Conclusions

In this work, we innovatively incorporate STFT and ResNet into a spectrum sensing
neural network. The traditional feature extraction method relies on a one-dimensional
signal, ignoring the time-frequency characteristics, which limits feature extraction ability.
The proposed method has higher robustness to noise uncertainty than the traditional one.
In order to prevent over-fitting, the dropout layer is also added to the design of the residual
block, together with global average pooling instead of a fully connected layer to integrate
global information. In the meantime, the ImpResNet designed in this paper can effectively
prevent the degradation of CNN under a deep network. The experimental results show
that the proposed STFT-ImpResNet remarkably outperforms state-of-the-art spectrum
sensing methods in terms of detection probability, false-alarm probability and detection
efficiency, and the proposed algorithm achieves an excellent trade-off between accuracy and
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efficiency. Future work may include exploring the role of residual networks in cooperative
spectrum sensing.
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