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Abstract: Privacy amplification is an important step in the post-processing of quantum communica-
tion, which plays an indispensable role in the security of quantum key distribution systems. In this
paper, we propose a Cellular Automata-based privacy amplification algorithm, which improves the
speed of key distribution. The proposed algorithm is characterized by block iteration to generate
secure key of arbitrary length. The core of the algorithm in this paper is to use the property that
Cellular Automata can generate multiple new associated random sequences at the same time to
carry out bit operations for multiple negotiation keys in the meantime and calculate in turn, so as
to quickly realize the compression of negotiation keys. By analyzing the final key, the proposed
algorithm has the advantages of fast key generation speed and high real-time performance. At the
same time, the results of the NIST randomness test and avalanche test show that the algorithm has
good randomness performance.

Keywords: quantum key distribution (QKD); privacy amplification (PA); cellular automata (CA);
randomness test; avalanche test

1. Introduction

Quantum key distribution (QKD), based on the uncertainty principle and the No-
Cloning theorem, theoretically has higher security than the existing information security
schemes [1]. However, the generated key itself has no substantive information. Only
when it is encrypted by the encryption algorithm as a key can the information required
by both sides of the communication be transmitted [2–5]. The encrypted key needs to
be transmitted in the public channel, which inevitably leads to the risk of information
disclosure. In order to delete the leaked information from the negotiation key containing
the leaked information, Bennet et al. proposed an important privacy amplification step
in the post-processing of quantum communication [6,7], which realizes the unconditional
security of the quantum key distribution system by compressing the negotiation key into
an absolutely secure final key [8–10].

A common PA is to compress a string of keys through a universal hash function,
and then eliminate the information leaked to attacker Eve. In this way, the security key
can be obtained. The hash function is usually selected as the Toeplitz matrix, whose
element is 0 or 1 [11]. Some researchers use a variety of acceleration software methods
provided by fast Fourier transform (FFT) [12] to realize the privacy amplification algorithm
through CPU and GPU software [13]. Its experimental efficiency is relatively good and
can achieve a considerable processing rate. In [12], the researchers propose a FFT PA
scheme on commercial CPU platform. The long input weak secure key is divided into many
blocks, then PA procedures are parallel implemented for all sub-key blocks, and afterwards
the outcomes are merged as the final secure key, but FFT also needs to consume a lot of
computing resources. Moreover, for the practical quantum key distribution system, these
methods of using CPU software to realize the PA algorithm have hidden dangers in security.
There may be various unknown backdoors and vulnerabilities in this system, which greatly
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affect the work of quantum key distribution system. Therefore, researchers propose to use
a field programmable gate array (FPGA) platform to implement the privacy amplification
algorithm. The algorithm implemented by FPGA is a pure hardware logic circuit with low
security risks. In [14], Lu et al. proposed a PA algorithm implemented on FPGA platform.
By constructing the required Toeplitz matrix on FPGA and using the characteristics of
FPGA to calculate the Toeplitz matrix in parallel, they succeed in improving the running
speed of the algorithm and the maximum safe coding rate of the system. In addition, the
algorithm can also achieve any number of input key bits in a certain length, which is helpful
for the implementation of future PA algorithms [15]. In [16], Toeplitz matrix is divided into
several sub blocks, and FPGA is used to process the sub blocks in parallel to improve the
operation speed. However, it only considers the reconstruction of the Toeplitz matrix, and
does not involve the adequate processing of the negotiated key with the Toeplitz matrix.
In view of the high requirements of hardware resources and low computing speed of
Toeplitz matrix, researchers put forward some effective schemes to improve it. In [17], they
propose a privacy amplification algorithm based on LFSR to save storage space and speed
up operation process. For the storage of elements in the Toeplitz matrix, only one register
is needed, which greatly saves hardware storage resources. In [18], Bai et al. proposed
a PA algorithm based on Toeplitz matrix, which uses LFSR to save storage space and
speed up the privacy amplification process. The continuous state transformation of LFSR
is constructed. The results of each LFSR state are accumulated at the same time of LFSR
state transition. Repeat the above steps through block iteration to obtain the final key.
Because the operations of different accumulators are independent, the calculation of the
final key is parallel, and the speed of the algorithm can be improved. However, due to the
characteristics of its sequential transformation to produce the whole Toeplitz matrix, the
rate of generating the final key is still inevitably affected.

In this paper, we propose a PA algorithm based on Cellular Automata (CA) and block
structure. CA is used to generate a pseudorandom sequence with good random character-
istics. The sequence performs a bit operation with the negotiation key and accumulates in
blocks, so as to realize the function of compressing the longer key into the final key. Unlike
the algorithm of dynamically generating Toeplitz matrix using LFSR, CA does not need
to generate random sequences bit by bit like LFSR. Due to the characteristics of CA, it can
generate many new random sequences in parallel, which improves the operation speed
and can generate keys of any length. The National Institute of Standards and Technology
(NIST) randomness test [19] and avalanche test show that the final key generated by the
algorithm also has good randomness performance and a good avalanche effect [20,21].

The rest of this paper is organized as follows. Section 2 introduces some relevant
principles used in this paper, including privacy amplification and Cellular Automata.
Section 3 introduces the algorithm and its implementation proposed in this paper. Section 4
is the analysis of the experimental results. Finally, Section 5 is presented.

2. Preliminary Work
2.1. Principles of PA

The privacy amplification process is that the communication parties Alice and Bob use
the negotiation key obtained in the quantum key distribution process to carry out security
compression to obtain a relatively short final key, so as to eliminate the information that may
be leaked in the traditional channel and achieve unconditional security. The eavesdropper
Eve can hardly obtain any information about the key after the privacy amplification step,
and the secure key used by Alice and Bob has sufficient security [22].

From the perspective of information theory, the process of PA can be regarded as
the technology of extracting highly confidential shared information, security key, from a
large number of shared information that is only partially secure but at risk of disclosure.
Let Alice and Bob share a random variable W, such as a random bit string with a length
of n, from which the eavesdropper Eve obtains the relevant random variable V. Due to
the influence of interference factors, it can obtain at most t (t ≤ n) bits of information
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about W, that is, H(W|V) ≥ n− t. In addition, to satisfying this constraint and possibly
some further constraints, Alice and Bob usually do not know the specific details of the
distribution of random variables. Alice and Bob hope to publicly select a compression
function g : Sn[0, 1] → Sr[0, 1](n > r), so that Eve’s partial information about W and
its complete information about the compression function g can obtain the information
k = g(V). Because the k is almost evenly distributed, the eavesdropper cannot obtain the
information about W from k [23]

I(k : g, V) ≈ 0 (1)

Therefore, the key obtained after the PA algorithm can be safely used as the encryp-
tion key.

2.2. Cellular Automata

Cellular Automata is a special grid dynamic model. Its characteristics are discrete
in time, space and state, and the rules that change the state have local characteristics in
time or space. CA is the general name of a kind of model or framework [24,25]. CA is
defined as a dynamic system that changes in the discontinuous time dimension in the unit
space composed of discontinuous and finite elements under certain rules. Specifically, CA
consists of four main parts: cell space, state, neighborhood and rule, which are recorded as
A = (Ld, S, N, f ) [26]. Where A denotes CA, Ld denotes cell space and d is the dimension
of space, S denotes the finite discrete state set of CA, N denotes the neighborhood vector
and f denotes the local conversion function.

2.2.1. Elementary Cellular Automata

Elementary Cellular Automata (ECA) is the simplest form of CA [27]. Its state number
k = 2, neighborhood radius r = 1, and local transformation function f is expressed as

si
t+1 = f (st

i−1st
i s

t
i+1) (2)

The input quantity of the local conversion function is three state quantities, and each
state quantity can have two choices, i.e., 0 or 1, so there are eight possible state combination
modes, namely 000, 001, 010, 011, 100, 101, 110 and 111. The combination of each input state
must correspond to two output states of 0 or 1. Confirm the corresponding output of each
input state combination to obtain the truth table of CA, which corresponds to the rules of
an ECA. Since there are 8 state combinations of ECA, each of which can correspond to two
outputs, there are totally 28 = 256 truth tables and 256 rules. Rule space is a collection of
these 256 rules. Assign corresponding serial numbers to these 256 combinations, and record
the 8-bit binary number in the right column of each combination table as decimal number
to obtain the rule number, which is any integer between 0 and 255. Arrange the above eight
possible combination modes in binary increasing order, and calculate the corresponding
output state at the same time to obtain the truth table of the local conversion function.
Table 1 shows the truth table of rule No. 150 (the binary representation of 150 is 10010110).

Table 1. Truth table of ECA (No. 150).

st
i−1st

i st
i+1 st+1

i

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
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If we take an ECA with a length of 8 bits as an example, we set the initial value of CA
to 10101010, and the rules adopted are like rule No. 150 shown in Table 1. In the first clock
cycle, we give the initial value to the CA. In the second clock cycle, the 8-bit CA is updated
according to the set rules. The neighborhood objects of the first bit of the CA are bit 8 and
bit 2, that is, s2

1 = f (s1
8s1

1s1
2), get the status 010 and update it to 0 according to the truth table.

The second bit update is also done the same way to get the status 101, which is updated to
1 according to the truth table. The third bit gets the status 010 and updates it to 0. Four to
eight bits get 101, 010, 101, 010 and 101 respectively and update it to 1, 0, 1, 0 and 1. Finally,
after a round of updating, the CA gets 8 bits, and the new state is 01010101.

2.2.2. Pseudorandom Sequence

True randomness is a phenomenon that has no definite cause and effect, and only feels
the result but cannot see (that is, the existing human cognitive system cannot perceive and
measure) the cause, which is completely incomprehensible. At present, the randomness
widely used in various fields is usually generated by chaotic systems, such as Duffing
oscillator [28]. Chaos is a phenomenon that determines cause and effect, but cannot be
accurately calculated and predicted by mathematics. The reason is that the initial value is
sensitive and the model is complex, which belongs to certain, understandable, but imprecise
predictive control.

The true random sequence can only come from natural phenomena, which are very
difficult to generate in practical application, so the pseudorandom sequence generated by
an artificial method is widely used [29,30] in the field of sequence cipher. The key problem
of sequence cipher is to produce a long unpredictable key sequence.

Pseudorandom number generation by CA has been an active field of research in
cryptography, one of the underlying motivations stemming from the advantages offered by
CA when considered from a VLSI viewpoint: CA are simple, regular, locally interconnected,
and modular [31]. These characteristics make them easier to implement in hardware than
other models. The pseudorandom sequences generated by CA can be divided into the
following three categories.

• Stationary type. No matter what the initial value of CA is, after a certain period of
evolution, it will eventually enter a stationary state, that is, the state values of all cells
are the same, and the evolution of this type of CA has no randomness.

• Periodic type. The CA will enter the periodic structure after a certain period of time.
The evolution of this type of CA will remove some randomness, but also retain some,
which can be applied to image processing.

• Chaotic type. CA will enter a random or chaotic aperiodic state after a certain period
of evolution. The evolution of this type of CA has good randomness.

In this paper, the type of pseudorandom sequence generated by CA is chaotic. For
ECA, a chaotic pseudorandom sequence can be generated according to the truth table rule
No. 150. When we choose chaotic CA, we can’t see any regular pattern in the space-time
pattern, and the pattern is much richer than that of a single CA. From the Figure 1, we can
see that its CA sequence has strong randomness. Using this characteristic, we can produce
a pseudorandom sequence with better performance.

The pseudorandom sequence generator using CA needs to assign an initial value to
the CA before it starts running. The initial value of the first CA of length N can be generated
randomly or fixedly according to the specific application, as hash function application,
selecting the first N bits of irrational numbers e and π or the first N bits of

√
2 and

√
3.
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Figure 1. Pseudo chaotic spatiotemporal map of ECA (No. 150).

2.3. NIST Randomness Test

Randomness detection usually uses the method of probability and statistics to detect
whether the detection sequence conforms to some characteristics of random sequence, so
as to judge whether it is random [30]. Theoretically, if the detected sequence fails to pass
the randomness test, it can be determined that the sequence is not random. On the contrary,
if the detected sequence can pass a certain randomness test, it is uncertain whether the
sequence is random, that is, passing the randomness test is a necessary and insufficient
condition for the randomness of the sequence. Because the detection items in each detection
method are usually designed according to the characteristics of random sequence. In fact,
any set consisting of a limited number of test items cannot cover all aspects of randomness.
However, in practical application, if the design of the test is sufficient to meet the specific
requirements of the random sequence, and the tested sequence can pass the test, the
randomness of the sequence is regarded as qualified.

Randomness detection uses the method of probability and statistics to describe the
randomness of the sequence generated by random number generator or cryptographic
algorithm. Different detection items describe the gap between the detected sequence and
the real random sequence from different angles. Hypothesis testing is usually used for
randomness testing. Hypothesis test is to put forward some hypotheses on the population
when the population distribution is unknown or only know its form, but not its nature, so as
to infer some properties of the population, and then judge the hypotheses according to the
samples. The randomness hypothesis test is that if one aspect of the real random sequence
is known to conform to the specific distribution, it is assumed that the sequence to be
tested is random, and the sequence to be tested is on this side. In practical application, the
surface should also conform to the specific distribution. The common method to measure
randomness is the p-value method. The NIST suite includes multiple randomness tests,
each of which is a returning p-value. When p ≤ 0.01, it indicates that the sequence has
not passed the corresponding test, and when 0.01 < p ≤ 1, the sequence has passed the
corresponding test. The higher the p-value, the better the randomness of this sequence [19].

3. Proposed Algorithm

No matter how the designer optimizes it, the PA based on Toeplitz matrix needs to
find a balance between resource consumption and time consumption, which will inevitably
be greatly affected by the Toeplitz matrix itself required by the compression function. There-
fore, we use CA, a tool that can generate pseudorandom sequences with good randomness,
to replace Toeplitz matrix and realize the compression process from negotiation key to
final key, so as to improve the speed of PA algorithm. Based on this idea, we propose a
high-speed PA algorithm with memory-saving using CA.
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Table 2 gives some notations involved in the algorithm. Figure 2 depicts the process of
the proposed PA algorithm.

Table 2. Notations.

Notation Definition

T Negotiation key
n Length of negotiation key
TMi The i-th group negotiation key
M Group length of negotiation key
K Number of groups negotiating key
Nj The j-th block negotiation key
N Length of Cellular Automata
C Reciprocal of key compression rate and number of blocks
Hi Final key obtained by group i
H Final key
m Length of zero complement in negotiation key T

Figure 2. Schematic diagram of PA algorithm.

As can be seen from Figure 2, n bits negotiation key T is firstly divided into K groups
[TM1, TM2, · · · , TMK] with length M. After dividing the negotiation key, process the group
negotiation key in turn. For example, for the group negotiation key TM1 with length M, we
further divide it into C blocks and each block with length N. To make M satisfy M = C×N,
it is necessary to add a zero sequence of m = M× K− n bits after the original negotiation
key T. The core of the algorithm is to use CA to generate multiple pseudorandom sequences
with good randomness at the same time, and successfully compress the group negotiation
key of length M into the final key H1 of length N through operation. After obtaining the
result of the final key, we use the idea of iteration to take the current N bits final key H1
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as the initial value of CA used in the next group, the same algorithm is used to obtain the
next N bits final key. The above steps are repeated until all the group negotiation keys are
processed and the final required K× N bits final key H is generated. Figure 3 shows the
processing flow of the algorithm. The specific process of the algorithm will be described in
detail below.

Figure 3. Flow chart of PA algorithm.

Step 1: Set the parameters according to the requirements, such as the length N of CA
and the reciprocal C of the compression rate of the final key. After setting the parameters,
divide the received n bits negotiation key T into small groups with length M. The last TMk
may not meet the requirement of length M. If the length does not meet the requirement, we
will add a sufficient number of zeros m in the last group to make it meet the requirement
of length.

Step 2: Initialize CA and set its running rules. In order to make the pseudorandom
sequence generated by CA have good randomness, we need to adopt appropriate rules.
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Our algorithm selects rule 150 shown in Table 1 among the 256 rules of ECA. Under this
rule, the sequence space-time map generated by CA has obvious chaotic characteristics. As
for the choice of the initial value of CA, we select the fixed first N bits of e, π,

√
2 or
√

3.
Step 3: We further divide the group negotiation key TM1 with length M into blocks

with length N, and then we combine these blocks with the N bits sequence generated by
CA to perform bit and operation. The specific operation is that the first N length block
TM11 is combined with the initial value of the CA IV, denoted as s1

i , i = 1, 2, · · · , N and
the result is put into the N bits accumulator. After the first block operation, using the
characteristics of the CA, we can update the N bits data of the CA at the same time, and
the updated result s2

i , i = 1, 2, · · · , N performs bit and operation with the negotiation key
of the next N length block TM12. The result is also put into the N bits accumulator and
performs modulo-2 addition with the previous result. Repeat the above steps until the C
blocks M length negotiation key is calculated, we can take the value of the accumulator as
the final key H1. Using the idea of iteration, we take the result of the final key H1 as the N
bits initial value of the next CA, repeat the above process again, and finally complete the
calculation of the last group to obtain the final key HK.

Step 4: After all the negotiation keys are calculated, we can get the final key with K
blocks length of N, and we combine it into a final security key H. Because the final key
of the algorithm is obtained in blocks, using this feature, we can output the final result of
the privacy amplification process in real time, which improves the data throughput of the
hardware implementation.

We summarize the proposed PA algorithm as follow:

n + m = K×M (3)

H0 ← IV (4)

Hj = g(TMj, Hj−1) =
C⊕

l=1

TMjl&al , j = 1, 2, · · · , K (5)

al = (sl
1sl

2 · · · sl
N), l = 1, 2, 3, · · · , C (6)

a1 = (s1
1s1

2 · · · s1
N)← Hj−1, l = 1, j = 1, 2, · · · , K (7)

sl
i = f (sl−1

i−1sl−1
i sl−1

i+1), sl−1
0 = sl−1

N , sl−1
N+1 = sl−1

1 , l 6= 1, i = 1, 2, · · · , N (8)

H = {H1, H2, · · · , HK} (9)

The proposed PA algorithm can be regarded as an (M, N)-family of hash functions as
follows. We associate a hash function h such that for any message TMj of binary length M,
h(TMj) is defined as

⊕C
l=1 TMjl&al .

The ε−balanced hash function is defined [11] as follows.

Definition 1. A family of hash functions is called ε−balanced if

∀T 6= 0, c, Prh(h(T) = c) ≤ ε.

Theorem 1. For any values of N and M the above defined family of hash functions is ε−balanced
for ε ≤ 1

2N .

Proof. To show that the family is ε−balanced, notice that any non-zero message TMj of
length M and any string c of length N, h(TMj) = c iff

⊕C
l=1 TMjl&al = c. Since al generated

by ECA under rule 150 has random characteristics, the vector TMj assumes this value c with
probability of 1

2N , and therefore Pr(h(TMj) = c) happens with at most this probability.
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4. Experimental Results

The amount of computing resources consumed, the rate of generating the final key, the
randomness of generating the final key, and the sensitivity to the change of the input key
are four important indicators to evaluate the performance of a PA algorithm. In addition,
we will also test the influence of the initial value of CA on the experimental results. In order
to evaluate the algorithm we proposed in this paper, we carried out simulation experiments
on Matlab R2020a platform, and analyzed the experimental results with [12,18] in these
four aspects.

The computer used in this simulation experiment is configured as AMD Ryzen 5
5600 h with Radeon graphics 3.30 GHz, 16.0 GB memory and win11 operating system.

4.1. Analysis of Memory

The length of the negotiation key is usually long enough, due to the finite scale
effect [32,33]. However, with the increase of the length of the negotiation key, the memory
of Toeplitz matrix based PA will increase, and the storage of Toeplitz matrix elements is
an obstacle.

If the algorithm in [12] is used, the privacy amplification process is carried out by
dividing the Toeplitz matrix into several sub matrices and using FFT fast operations on
these sub matrices. Using this method, we need to store the information with the size of
2(K× N + M) bits.

If the method in [18] is used and the Toeplitz matrix is generated by LFSR, we need to
store the N bits LFSR state and N bits accumulator, and need 2× K× N bits to complete
the whole PA process, 2(K × N + N) bits in all. However, when N is large, finding the
irreducible polynomial of length N is a troublesome problem.

In our algorithm, the state of CA changes iteratively by itself. When the size of CA
is N, only N bits need to be stored, and we need K × N bits to store the final key. With
only (2 + K)× N bits, the whole PA process can be completed without looking for the
irreducible polynomial required by LFSR.

4.2. Analysis of Final Key Generation Rate

In order to verify the advantages of this scheme, we will compare the key generation
rates of different schemes under the same conditions. Firstly, we set several different
negotiation key lengths from 0.64 million bits to 5.12 million bits, which is convenient for
calculation. The compression ratio N/M is set to 0.1, the length of CA is set to 128 bits,
the length of LFSR is the same as that of CA [18], and the size of sub block meets the
requirements of each algorithm.

The experimental results are shown in Figure 4. We can see that under the experimental
conditions we set, the time consumption of the PA algorithm using CA is almost half that
of the block LFSR algorithm [18] and a quarter of that of the FFT algorithm [12]. It can
be seen that under certain conditions, the proposed PA algorithm has advantages in key
generation rate and algorithm execution speed.

However, other factors will affect the execution speed of the algorithm and the gener-
ation rate of the key. Therefore, we then changed the conditions of the compression rate
to 0.1, 0.2 and 0.5, respectively, and observed the impact of different compression rates on
several algorithms (the length of the experimental negotiation key is 1.28 million bits). The
results are shown in the Table 3.

Table 3. Effect of compression rate on algorithm running time.

Compression Ratio FFT(s) [12] LFSR(s) [18] CA(s)

0.1 9.41 5.23 2.25
0.2 9.32 5.21 2.21
0.5 9.18 5.05 2.10
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Figure 4. Final key generation rate comparison of LFSR scheme [18], FFT scheme [12] and proposed
scheme when N/M = 0.1.

It can be seen from the table that the change of compression rate has little impact on
several algorithms, because the change of compression rate will affect the size of the data
to be processed, but the change of data size does not account for the overall negotiation key
size, so the compression rate only has a slight impact on the execution time of the algorithm.

Finally, we investigate the effect of block length on the running time of the algorithm.
Due to the influence of algorithm design, we only compare the block LFSR and CA algo-
rithms. The block length of negotiation key in the two scheme is that of the length of CA
and LFSR. Observe the effects of different lengths of CA and LFSR on the operation speed
of the two algorithms (the length of the experimental negotiation key is 1.28 million bits
and the compression rate is 0.1). The results are shown in the Table 4.

Table 4. Influence of block length on algorithm running time.

Block Length LFSR(s) [18] CA(s)

64 4.83 2.46
128 5.11 2.21
256 6.18 2.13
512 8.45 2.29

It can be seen that with the increase of the length of pseudorandom sequence gen-
erators such as CA and LFSR, the execution time of the PA algorithm using CA changes
slightly, while the time consumption of the block LFSR PA algorithm [18] increases with the
increase of the block length, which shows that the PA algorithm using CA is less sensitive
to the block length. The CA with appropriate length can be selected according to the actual
needs, while the LFSR can only select the LFSR with a fixed range to meet the appropriate
length due to the difficulty of finding the higher-order primitive polynomial and the high
sensitivity to the change of block length. We can find that the PA algorithm using CA has
advantages in this aspect.

4.3. Randomness Analysis of Final Key

For the randomness analysis of the final key, we choose to use NIST test tools [19] to
analyze the final binary key.

We set the length of the negotiation key to 1.28 million bits and the compression rate
to 0.1. We test the final key generated by CA with the length of 64 bits, 128 bits and 256 bits,
respectively, and analyze the influence of CA with different length on the randomness of
the key. The results are shown in the Table 5 below.
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Table 5. NIST randomness test.

Test Items 64 Bits 128 Bits 256 Bits

Frequency 0.350485 0.534146 0.739918
Block Frequency 0.739918 0.534146 0.522325
Cumulative Sums 0.422325 0.350485 0.911413
Runs 0.122325 0.350485 0.122325
Longest Run 0.911413 0.350485 0.535446
Rank 0.422325 0.534146 0.594134
FFT 0.739918 0.350485 0.613309
NonOverlapping Template 0.750485 0.739918 0.991468
Overlapping Template 0.534146 0.754686 0.834526
Approximate Entropy 0.035174 0.122325 0.066882
Serial 0.522325 0.739918 0.650485
Linear Complexity 0.911413 0.350485 0.534146

From the data analysis shown in the Table 5, the longer the length of CA, the more
binary digital sequences can be represented by it, so the randomness of the pseudoran-
dom sequences generated by it is stronger. When it is applied to the PA algorithm, the
randomness of the final key generated by it with the length of CA is also similar to the
pseudorandom sequence of CA. With the increase of the length of CA, the randomness of
the final key increases slightly. It can be seen that although the three lengths of CA based
PA algorithms have different sizes in each NIST test project, on the whole, the p value of
CA with large length is greater than that of CA with shorter length.

Moreover, because our algorithm uses the iterative structure, the initial value of the
next CA is determined by the accumulation of the previous register, rather than the contin-
uous transformation of the first initial value of the CA, which strengthens the correlation
between the iterative block structures.

4.4. Avalanche Analysis of Final Key

Avalanche effect is an ideal characteristic of hash algorithm. Avalanche effect means
that even the smallest change in the input (for example, reversing one binary bit) will lead
to drastic changes in the results generated by the algorithm. Strict avalanche criterion is
the formalization of avalanche effect. The criterion points out that when any input at the
input is reversed, each bit in the output has a 0.5 probability of changing [30]. In order to
amplify the influence of interference on eavesdropper Eve, we need the final key to have
good avalanche characteristics. If the key does not show a certain degree of avalanche
characteristics, we can think that its randomness is poor.

Therefore, we conduct an avalanche test on the final key obtained by our algorithm.
The length of the negotiation key we use is 1.28 million bits, the compression rate is 0.1,
and the length of CA is 128 bits. Change the input 1, 2, 3, 4 and 5 binary bits, respectively,
and observe the percentage of the number of bits of the final key flipped in the total length.
The corresponding results are given in the Table 6.

Table 6. Avalanche effect test.

Input Flip (Bit) Output Flip Scale

1 49.9%
2 49.6%
3 49.6%
4 49.8%
5 49.6%
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As can be seen from Table 6, due to the iterative structure used in the algorithm, the
overall connection of the final key is strong. The reversal of one input can cause the reversal
of about 50% of the digit value of the whole final key. From the data in the table, we can
get that the final key generated by the PA algorithm proposed in this paper has a good
avalanche effect.

4.5. Influence of CA Initial Value

In this paper, CA is used to replace LFSR in the process of privacy amplification. For
the chaotic CA used in this paper, its initial value sensitivity and complex system model
are the sources of its randomness. Therefore, we need to test the influence of the initial
value changed in a wide range on the experimental results to ensure that the proposed
algorithm is universal for most of the initial value selection.

Avalanche effect reflects randomness to a certain extent and is more intuitive. We
conduct avalanche test on the final key obtained from different CA initial values. We can
change the initial value by changing the proportion R of 1 s in the CA initial values. In this
experiment, the selected R is 0.1, 0.5 and 0.9, respectively. The length of the negotiation
key we use is 1.28 million bits, the compression rate is 0.1, and the length of CA is 128 bits.
Change the input 1, 2, and 3 binary bits, and observe the percentage of the number of bits
of the final key flipped in the total length. The corresponding results are given in Table 7.

Table 7. Influence of CA initial value.

Proportion of 1 s (R) Input Flip (Bit) Output Flip Scale

0.1 1 49.8%
2 49.7%
3 49.9%

0.5 1 49.9%
2 49.6%
3 49.6%

0.9 1 50.0%
2 49.8%
3 49.7%

From Table 7, we can see that the avalanche effect is still good and still tends to be
close to the strict avalanche criterion when the final key generated by the proposed PA
algorithm changes the initial value of CA in a large range. We can get from it that the initial
value selection of CA has little effect on the final key generated by the proposed algorithm.

5. Conclusions

In this paper, a high-speed PA algorithm for QKD system is proposed. CA is used to to
construct a hash function for the secure key distribution. Different from using LFSR-based
PA to establish Toeplitz matrix by sequential shift, the algorithm proposed in this paper
uses CA, which can simultaneously iterate the sequence of N bits CA length, and calculate
the input of a multi bits negotiation key at the same time, the speed of the algorithm is
then improved. This algorithm also uses the idea of block iteration to process the overall
negotiation key block by block, and strengthen the correlation of each block generated key
through iteration. Finally, the analysis results show that the algorithm saves hardware
memory resources and improves the running speed. The final shared key also has good
randomness performance.

The algorithm proposed in this paper can carry out the parallel processing of multi
bits negotiation key input, and it improves the speed. However, when processing the
block negotiation keys, we still need to wait for the update and iteration of the CA itself,
and the waiting time will slow down the running speed of the algorithm. Therefore, in
order to further improve the generation rate based on the algorithm in this paper, when
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the hardware resources are sufficient, we can choose the improved scheme of exchanging
resources for time, that is, increasing the number of CA. When the initial values are the
same, at the same time, the multi block negotiation key is processed in parallel to improve
the speed of the algorithm.

The security of a classical cryptosystem depends on the security of the key. The key
can be distributed by the QKD system in this paper. The key of block cipher and public
key cipher is usually very short, ranging from 128 bits to 4096 bits, the last corresponding
bits of the final key can be used as the key. Another advantage of this algorithm is that the
key generated in real time can be directly used as the encryption key of the classical stream
cipher system, so as to achieve the effect of One-Time-Pad.

In addition, the CA can be implemented in FPGA to further improve the processing
efficiency, which will be studied in the future.
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