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Abstract: Terrestrial robots are being employed in a variety of sectors and for a variety of objectives.
The purpose of this paper is to analyze and validate an analytical–numerical model of a robotic arm’s
behavior. The proposed robot was designed to replace human personnel who remove ammunition
or explosive devices. At the same time, the influence of the stiffness of the EOD robotic arm on the
position of the effector in a variety of geometric task configurations was investigated. In order to
obtain results relevant to the investigation, the angles of rotation under the load of each component
of the arm’s composition and the vertical movement of the effector were measured. The main
conclusions emphasize that a lower stiffness comes from the components of linear motors, which
act on the elements of the robotic arm, and they substantially influence the elastic behavior of the
arm. In addition, the constructive components of the arm have high rigidity compared to those of the
linear actuators.

Keywords: path planning; EOD robot; robotic arm; crawlers; stiffness

1. Introduction

Robotic explosive ordnance disposal (EOD) systems can carry out reconnaissance,
detection, disposal, and transport missions of explosives. As can be seen in [1–4], interven-
tion robots for artisanal pyrotechnic devices are influenced by the accuracy of the effector
mechanism. Additionally, their use in teleoperated mode implies that the information from
the sensors ensures a prediction of the final actuation position [2]. There are constructive
solutions for EOD robots equipped with a multitude of drive systems (excavator buckets
and manipulator arms [3] are very useful, especially for work area cleaning activities), but
the fact that they have too many drive systems may lead to the introduction of additional
positioning errors. The simultaneous operation of this equipment or its positioning causes
oscillations in the position of the robot’s center of gravity. Therefore, we consider that,
depending on the EOD-type missions, a robot must be built to perform only certain mis-
sions [4]. Because of fundamental modifications in command and control algorithms, EOD
robots can also become intervention robots in high-risk situations [5].

Structural changes allow intervention crews such as firefighters and anti-terror units
to intervene in disasters caused by fires [6,7]. From [8], it can be seen that the use of EOD
robots has become a priority for the protection of intervention personnel, especially in the
case of anti-personnel mines. Another aspect pursued in the realization of robots is the
simultaneous operation of the propulsion system and the actuation system, in order to
reduce intervention times, without compromising the accuracy of the final effector [9,10].
From a structural point of view, EOD robots are systems that consist of:
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• Sensors for environmental perception [11–13]: in addition to sensors for obstacle
detection, image sampling, and environmental conditions, simple sensors, such as po-
tentiometers, limit switches (especially for limiting the travel of robotic arm elements),
telemetry and current sensors, and temperature sensors for monitoring electronic
equipment, are also required on the robot.

• Execution elements for performing actions on the environment [14–19], which are com-
posed of linear, rotary, electric, hydraulic, or pneumatic motors; effector mechanisms
have different configurations of the gripping mechanism, so that they can safely grasp
the various objects, or even be able to operate “manually” on handcrafted devices. The
choice and assembly of the execution elements on the robot chassis must be simple
enough to reduce the preparation time of the intervention, and last but not least, the
choice of engine types (transmission, robotic arm) should be made taking into account
at least two parameters—current consumption and the load to be lifted/moved.

• Propulsion systems, which ensure the movement to the target and back and can
even perform rotations/elevations to supplement the shoulder of the degrees of
freedom of the robot; these propulsion systems may be on wheels, tracks, or mixed.
Regardless of the propellant solution chosen, performing the turn involves friction
with the ground, so for the present study, we considered that the most suitable is the
crawler propulsion system [20–23]. From the analysis of the references, there is another
important conclusion related to the stability in operation of the robot depending on
the specific pressure on the ground. In the case of using a wheeled propulsion system,
the sinking increases when the robotic arm lifts objects, at the position of the center of
gravity, meaning that the robot controller must make additional corrections as regards
the repositioning of the final effector.

It is important to mention that EOD robots intended for intervention in the disposal
and transport of explosives must not be excessively equipped with sensors as there is a risk
of damage during the execution of those missions [24,25].

Depending on how they are organized on the robot chassis, they can help to create
a semi-autonomous/autonomous navigation system. This is very important because the
missions in which EOD robots will be involved can endanger the lives of human operators.
Therefore, a sensor system that allows the use of robots in optimal conditions will have
to contain the following sensors (not always in this configuration): LIDAR, GPS [26–29],
proximity (ultrasonic, IR), video cameras (monoculation/stereo), radar, displacement, force
sensor [30], inertial navigation system [31]. From the analysis of the very wide spectrum of
sensors that can be part of an EOD robot, it results that their value can exceed that of the
chassis and the robotic arm [32–35]. The advantages of using low-cost EOD robot solutions
lie mainly in the fact that they can be destroyed during missions. Additionally, the use of
relatively inexpensive hardware components guarantees a fast interconnection and does
not involve a complex and expensive infrastructure. The use of commercial components
allows the creation of families of EOD robots that work as a family, and the communication
system can be developed around XBee platforms.

As can be seen, we are dealing with a multitude of situations, which highlight two
things: the complexity of robotic EOD systems and the ability to intervene at low cost, as
these robots can be destroyed during missions. That is why we consider it opportune to
study how the rigidity of the robotic arm can influence the actuation accuracy of the final
effector.

The focus of this paper was to investigate and evaluate the validity of an analytical–
numerical model that was developed to describe how a robotic arm performs. The au-
thors set this goal because, in the literature, no references can be identified regarding the
evaluation of the positioning accuracy of the effector arm. The EOD robot proposed is
a teleoperated one, meaning that the navigation is performed by the operator, and the
crawler propeller is suitable for indoor/outdoor missions.

Meanwhile, this robot with elasticity in the arm is of the middle class, being able
to operate in different environments (unstructured) both indoors and outdoors. This
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indoor/outdoor operating capability is mainly due to the fact that it is a teleoperated robot.
Another factor that contributes to the increase in the operating capacity is the fact that
the propeller is a crawler thruster, having very good capacity for progression in the field.
It should be noted that the structure of the crawler propeller allows the robot to climb
obstacles and stairs.

The factors that led to the current study are as follows:

1. Conditions imposed by the type of crawler thruster or the existing track type [36–38]:
The fact is that the use of tracked vehicles leads to a specific pressure on the ground,
which can, among other things, facilitate a much quieter movement, especially if the
track is made of rubber; another good element to take into account is the analytical
model that describes the turning, meaning that we can obtain a prediction regarding
the effects due to the resistance to turning (diving, slipping, skidding). We consider
all of this to influence the actuation accuracy of the final effector.

2. Limitations due to the level of uncertainty associated with the different artisanal
pyrotechnic systems, which are usually unique, the reinforcement mechanisms, and
the way they are made, differing from case to case [39–41]. The uncertainties that
arise result from the analysis of data obtained by measuring various parameters:
temperature, pressure, wind direction/air currents, the evolution of the flame front,
the characteristics of the explosion, and the materials that can be caused by the blast.
In relation to the reinforcement mechanisms, following the scanning of artisanal
devices, it is not possible to obtain sufficient data to know how to orient the disruptor,
which can even lead to triggering the respective device; in general, these devices are
unique, with their designers trying to make them as complex as possible.

3. Material characteristics specific to the structure of the robotic arm [42,43]: from this
point of view, in order for the robot to be able to perform the tasks, and considering
the fact that the shape of the arm must be configured to pass electrical cables, the
motors, sensors, and frame must be made of rigid materials, which should be elastic
but not easy to break due to loads with additional weights.

The formulation of the task from the point of view of our own research refers to:

1. The possibility of slipping in the ball mechanism of each component element; the
guide system of the arm elements consists of a ball bearing encased in an endless
nut/screw system.

2. Establishing an analytical–numerical model for the calculation of direct and inverse
kinematics [44].

3. Testing and evaluation of the final effector positioning system for different geometric
configurations of the robotic arm.

Because the intervention preparation is short, this EOD robot system provides an
optimum solution in terms of operational and maintenance expenses. In contrast, the
instability of the final effector positioning leads to relatively long operating times. Therefore,
the present study aimed to highlight these instabilities, based on the study of the elasticity
of the robotic arm. The robot must intervene in the removal of pyrotechnic devices without
causing further damage, in order to replace human personnel.

The accuracy of the positioning of the effector considers:

- The elasticity of the component elements;
- Deviations and inertia from the drive system.

The working conditions of EOD robots are often difficult. Their intervention takes
place in unstructured environments, full of obstacles and bumps. All these generate special
maneuverability conditions, which in turn affect the operational stability of the final effector.
The literature provides algorithms for kinematic and dynamic analysis of robotic arms
in ideal conditions or for operation in structured environments. From the measurements
performed on the arm in different operating configurations, we found that the return to the
“0” position is the same. This led us to test each component of the arm separately, in order
to obtain information about the manufacturing games and those that appeared as a result
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of the operation. Based on this information, we started to study the robotic arm from an
analytical, numerical, and experimental point of view. We considered that the resulting
analytical model will allow the introduction of a new algorithm in the robot controller,
which would allow the smooth (not to be discontinuous) operation of the robotic arm.

This paper is organized into six sections. Section 2 describes the mechanism under
analysis. Section 3 deals with the analytical–numerical models of the robotic arm. Section 4
presents the results of the analytical–numerical simulation using the finite element method,
for the analytical determination of the arm behavior for different geometric configurations,
and of the tasks of the gripper. Section 5 presents the synthesis of the analytical–numerical
analysis and compares this with the data obtained experimentally. Section 6 presents the
conclusions and the potential for further development of the proposed method to improve
the positioning accuracy of the robotic arm, depending on the degree of elasticity of the
components and the assembly when it is subjected to the direct action of different tasks in
the regime, static and dynamic.

2. Mechanism Description—EOD Robot with Robotic Arm

The studied robot is an EOD robot used for monitoring and interventions of artisanal
pyrotechnic devices (Figure 1).
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Figure 1. The analyzed EOD robot.

From a functional point of view, the robot consists of a chassis, a crawler propulsion
system, robotic arms, and an effector mechanism. To perform the tests, the composition of
the robot also includes a hook on which the working weights of 0.555 kg, 1 kg, and 5 kg, or
combinations thereof, will be weighed (Figure 2).
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Figure 2. The analyzed EOD robot and the hook for positioning the working weights.

The configuration that we considered aims to highlight the vertical displacements of
the effector. These displacements were analyzed for several cases, with different loads and
different angles of rotation of the robotic arm drive motors.

3. Geometric Description of the Working Configurations of the Robotic Arm

For the geometric representation in Figure 3, we have the following explanations: The
articulation of arm 1 with the robot chassis is denoted by O1, that between arms 1 and 2 is
denoted by O2, and that between arms 2 and 3 is denoted by O3. The rest of the notations
bear the index finger.
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At point B3, vertical displacement is measured using a laser displacement sensor.
Figures 4–6 show the robot’s arms separately with their local system.
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Table 1 shows the coordinates of the centers of mass of the arms, the positions of
the joints between the arms and between the arms and the linear motors, the point of
application of the force, and the point where the displacement is measured.

Table 1. Coordinates of points of interest in relation to the local coordinate systems.

Arm No. 1 Arm No. 2 Arm No. 3

x y x y x y

O1 500 0 O2 400 0 O3 400 0
A1 80.94 65 A2 90.5 −51 A3 44.8 −31.4
B1 −50 −44 B2 −128 0 B3 300 −44
C1 230.12 −2.4 C2 165.5 −1.3 C3 230.12 −2.4

The angular positions of the coordinate systems related to the arm components are
measured with respect to the fixed coordinate system, the positive direction being the
trigonometric one (Figure 7).
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Figure 7. Schematic representation of the angular measuring system.

Below are five working configurations, which are presented in Table 2, each of which
is characterized by the angles of the arms to the general reference system; as an example, a
generic representation is presented in Figure 8.

Table 2. The angles of the three elements of the robotic arm, corresponding to the working configurations.

Working Configuration Arm No. 1 Arm No. 2 Arm No. 3

Configuration 1 115.6 15.4 0.2
Configuration 2 104.7 15.7 0
Configuration 3 0.1 5.6 0.1
Configuration 4 74.8 5.8 0.4
Configuration 5 58.6 6.0 0.4
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Figure 8. Three-dimensional representation of the robotic arm, for which arm 3 was determined to
remain in a horizontal position. These inclinations of arms 1 and 2 while keeping arm 3 in a horizontal
position are intended to allow the measurement of the vertical displacements of the effector element,
measured by means of a laser sensor. The angular orientation of the different working configurations
can be found in Table 2.
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4. Analytical Modeling

For the analytical model, the arm is considered as a planar mechanism, with three
degrees of freedom (Figure 9).
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Figure 9. The representation of the two fixed and mobile coordinate systems is necessary for the
schematic description of the analytical calculation algorithm.

The relationship between the coordinates of a point relative to the fixed coordinate
system and that of a robot arm (Figure 9) is{

x f ix = xO + xmob · cos α− ymob sin α

y f ix = yO + xmob · sin α + ymob cos α
, (1)

With the help of this relation, the coordinates of the points of interest with respect to
the fixed coordinate system can be determined.

Assuming a rigid solid behavior of the robotic arm components, the connecting forces
in the joints and the axial forces in the motors can be calculated for the five configurations
(Figure 10).

For the situation where the weights of the motors are evenly distributed between the
joints, the equilibrium equations for arm 3 and the effector are given by{

∑ Fx = 0 : RO3x + Fm3 · n23x = 0
∑ Fy = 0 : RO3y − Gm

2 − G3 − G + Fm3 · n23y = 0
,

∑ MO3z = 0 : Fm3 ·
[
n23y ·

(
xA3 − xO3

)
− n23x ·

(
yA3 − yO3

)]
−Gm

2 ·
(
xA3 − xO3

)
− G3 ·

(
xC3 − xO3

)
− G ·

(
xO4 − xO3

)
= 0

(2)

where
→

n23 =
(xA3−xB2)·

→
i +(yA3−yB2)·

→
j√

(xA3−xB2)
2
+(yA3−yB2)

2 .

It follows from the equation of moments Fm3 and the values of the connecting force
components in joint O3 that

Fm3 =
Gm

2 ·(xA3−xO3)+G3·(xC3−xO3)+G(xO4−xO3)
n23y ·(xA3−xO3)−n23x ·(yA3−yO3)

RO3x = −Fm3 · n23x
RO3y = Gm

2 + G3 + G− Fm3 · n23y

, (3)
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Figure 10. Representation of how the arms of the robot were isolated to perform the analytical
calculations.

For arm 2, the static equilibrium equations are

∑ Fx = 0 : −RO3x − Fm3 · n23x + Fm2 · n12x + RO2x = 0,
∑ Fy = 0 : −RO3y − Fm3 · n23y + Fm2 · n12y + RO2y

−Gm
2 −

Gm
2 − G2 = 0

,

∑ MO3z = 0 : Fm3 ·
[
n23y ·

(
xB2 − xO2

)
− n23x ·

(
yB2 − yO2

)]
−Gm

2 ·
(
xA2 − xO2

)
− G3 ·

(
xB2 − xO2

)
− G2 ·

(
xC2 − xO2

)
+Fm2 ·

[
n21y ·

(
xA2 − xO2

)
− n12x ·

(
yA2 − yO2

)]
+RO3x ·

(
yO3 − yO2

)
− RO3y ·

(
xO3 − xO2

)
= 0

(4)

where
→

n12 =
(xA2−xB1)·

→
i +(yA2−yB1)·

→
j√

(xA2−xB1)
2
+(yA2−yB2)

2 .

The axial force in linear motor 2 results from the equilibrium equation at times

Fm2 =
Fm3[n23y(xB2−xO2)−n23x(yB2−yO2)]

n12y(xA2−xO2)−n12x(yA2−yO2)

+
Gm

2 (xB2−xO2)+G2(xC2−xO2)+
Gm

2 (xA2−xO2)
n12y(xA2−xO2)−n12x(yA2−yO2)

+
−RO3x(yO3−yO2)+RO3y(xO3−xO2)

n12y(xA2−xO2)−n12x(yA2−yO2)

(5)
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and {
RO2x = RO3x + Fm3 · n23x − Fm2 · n12x
RO2y = RO3y + Fm3 · n23y − Fm2 · n12y + Gm + G2

, (6)

For arm 1, the static equilibrium equations are similar to those for arm 2:

∑ Fx = 0 : −RO2x − Fm2 · n12x + Fm1 · n01x + RO1x = 0 ,
∑ Fy = 0 : −RO2y − Fm2 · n12y + Fm1 · n01y + RO1y

−Gm
2 −

Gm
2 − G1 = 0

∑ MO1z = 0 : −Fm2
[
n12y

(
xB1 − xO1

)
− n12x

(
yB1 − yO1

)]
−Gm

2
(

xA1 − xO1

)
− Gm

2
(
xB1 − xO1

)
− G1

(
xC1 − xO1

)
+Fm1

[
n01y

(
xA1 − xO1

)
− n01x

(
yA1 − yO1

)]
+RO2x

(
yO2 − yO1

)
− RO2y

(
xO2 − xO1

)
= 0

(7)

where
→

n01 =
(xA1−xB0)

→
i +(yA1−yB0)

→
j√

(xA1−xB0)
2
+(yA1−yB0)

2 .

From the equilibrium equation in moments, we can obtain the axial force in linear
motor 1:

Fm1 =
Fm2[n12y(xB1−xO1)−n12x(yB1−yO1)]

n01y(xA1−xO1)−n01x(yA1−yO1)

+
Gm

2 (xB1−xO1)+G1(xC1−xO1)+
Gm

2 (xA1−xO1)
n01y(xA1−xO1)−n01x(yA1−yO1)

+
−RO2x(yO2−yO1)+RO2y(xO2−xO1)

n01y(xA1−xO1)−n01x(yA1−yO1)

(8)

and {
RO1x = RO2x + Fm2 · n12x − Fm1 · n01x
RO1y = RO2y + Fm2 · n12y − Fm1 · n01y + Gm + G1

, (9)

5. Numerical Modeling

The five geometric configurations of the robotic arm were modeled with FEM, using
ANSYS software. In the first approach, “Bound”-type contacts were used between elements
of the same arm or motor, and “Revolute”-type connections were used to shape the joints
between the arms (Figure 11).

In place of the linear motors, we used elastic elements with an axial stiffness of
500 N/mm. As the elongations measured in the direction of the linear motors lead to a
small vertical displacement of the final effector (gripper), under the action of the weight
force the linear motors were replaced with linear springs in both the analytical and finite
element models. We performed this calculation artificially, as the rigidity of these springs is
reduced compared to that of the linear motors, and this allowed us to produce a model of
the elasticity, obtained between the motor joints. Additionally, in the analytical–numerical
model, we introduced the imperfections from the joints.

On the linear motor, there is a steel rod, with a diameter of 3 mm, used for stroke
limiters. This rod was no longer represented, as it was not important to the elasticity of the
system. As the geometric configuration does not allow the mounting of the displacement
sensor between the axes of the joints, the solution in Figure 12 was adopted.

Figure 13 shows a discretization of the robotic arm for the case of geometric configura-
tion 1. In total, 185,530 elements and 357,152 nodes were used.

The base was restricted in movement, and two concentrated forces were applied to
the effector tanks 400 mm from the joint between arms 2 and 3 (the point of application of
the force is O4).

The static analysis resulted in the displacements for each case, and the results of the
numerical analysis are presented in Figures 14–18, with the voltages and all the quantities
of interest.
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Figure 11. In this figure, we show the representation (cross-section) of a linear motor. A brushless
DC motor drives the screw. By means of the worm gear–worm wheel, the movement is transmitted
to the ball screw that acts on the nut, removing or bringing the left joint closer to the right one.
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Figure 12. The robotic arm opening control system, which is composed of a magnetic rod to limit the
stroke of the linear motor; it moves between the two magnetic sensors to control the stroke of the
linear motor, so that the power supply of the motor can be stopped.
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6. Experimental Results

The elasticity of the robotic arm with three degrees of freedom was analyzed experi-
mentally, analytically, and numerically. For the experimental part, three masses were used:
1.5 kg, 5 kg, and 6.5 kg, which were applied to the effector of the robotic arm. Depending on
the mass and the geometric configuration considered, vertical displacement of the effector
was found, which was measured with the Baumer Electric CH-B501 laser displacement
sensor.

HBM WA 200mm inductive displacement sensors were mounted between the fixed
and movable parts of the linear motors. The sensors were connected to the QUANTUMX
MX840B data acquisition bridge. Figure 19 shows the robot in the first position (configu-
ration 1). The angles of the robot’s arms and the operating platform were measured with
a robot.

The procedure for performing the experiments consisted of the following algorithm:

• The operation of the arm drive motors was checked independently and simultaneously.
• The load-bearing platform (chassis side with propeller) was in contact with the ground

to ensure working conditions similar to those in the area of operations.
• To ensure that the center of gravity of the robot, at rest, was the same, 10 lifts were

performed from the ground, and then the item was dropped from a height of 100 mm,
finding that the games in the track, which is made from rubber, and the track tension
system had a margin of error of 0.5 mm.
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• Inductive displacement sensors were set to zero before each experimental determination.
• In the position corresponding to working configuration 1, with the laser sensor

mounted, a forced vibration was induced around the final effector to check if the
assembly returns to the initial position.

• For the experimental determinations of the displacements, the data acquisition was
started, and, later, the weights that load the effector were added manually, placing
them on the plate without shock. After stabilizing the signals, recording stopped
(Figure 20). All data purchases were recorded with a frequency of 300 Hz.
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Figures 21–26 show the variation in the axial displacement between the fixed and the
moving part of the linear motors and the vertical displacement of the effector for the three
cases of loading the effector for configuration 1, determined experimentally.

The beginning and end of the signal are truncated in the graphs, detailing the area
co-responsible for the occurrence of displacement when applying weights. The variations
in the displacements that appear before the one due to the application of the weight were
produced by the manual action of the experimenter on the plate caught by the effector.

For the other configurations, the variations are similar, so the data of interest are presented
in tabular form. After stabilizing the values over time, the displacements were mediated,
resulting in the centralized values in Tables 3 and 4, for the five working configurations.

Table 5 shows the results obtained for the five geometric configurations and three
load cases, neglecting the weights of the arms and motors, using Relations (3), (5), and (8).
Please note that the negative value is a motor tension request, and the positive value is a
compression request.
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displacements after the application of the weight were calculated in the time interval (1.3, 1.4) s.
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to the operator who held the plate rod with one hand and applied the weight to the plate with the
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Figure 25. Time variations of axial deformations for the mass of 6.5 kg. The variation in the displace-
ment when applying the two weights can be noticed. Approximately at time 0.27 s, a mass of 5 kg
was applied, and at time 0.34 s, a mass of 1.5 kg was added.
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Table 3. Experimentally determined values of arm angles, for the five configurations, without a mass
added to the effector and with a mass added.

Arm Angle 1 Arm Angle 2 Arm Angle 3

Without Mass With Mass Without Mass With Mass Without Mass With Mass

Configuration 1

1.5 kg 115.6 115.5 15.4 15.2 0.2 0.1

5 kg 115.6 115.2 15.4 14.7 0.2 −1.2

6.5 kg 115.6 115.0 15.4 14.5 0.2 −1.7

Configuration 2

1.5 kg 104.7 105.7 15.7 15.1 0 −0.2

5 kg 104.7 105.3 15.7 14.6 0 −0.9

6.5 kg 104.7 105.2 15.7 14.6 0 −1.2
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Table 3. Cont.

Arm Angle 1 Arm Angle 2 Arm Angle 3

Without Mass With Mass Without Mass With Mass Without Mass With Mass

Configuration 3

1.5 kg 89.9 89.7 5.6 5.4 0.1 −0.1

5 kg 89.9 89.6 5.6 5.1 0.1 −1.4

6.5 kg 89.9 89.3 5.6 5.0 0.1 −1.6

Configuration 4

1.5 kg 74.8 74.7 5.8 5.6 0.4 −0.1

5 kg 74.8 74.3 5.8 5.2 0.4 −1.1

6.5 kg 74.8 74.2 5.8 5.0 0.4 −1.7

Configuration 5

1.5 kg 58.6 58.4 6.0 5.8 0.4 0.2

5 kg 58.6 58.1 6.0 5.4 0.4 −1.0

6.5 kg 58.6 58.0 6.0 5.2 0.4 −1.5

Table 4. Experimentally determined values of axial displacements in linear motors, and the vertical
displacement of the effector, for the five configurations, after applying the masses to the effector.

Table Loaded on
Effector (kg)

Motor 1
(mm)

Motor 2
(mm)

Motor 3
(mm)

Vertical Effector
Movement (mm)

Configuration 1

1.5 0.026 8.268 × 10−4 7.732 × 10−4 2.025

5 0.0602 0.0074 0.0025 10.23

6.5 0.0726 0.0063 0.0027 13.45

Configuration 2

1.5 0.0121 5.2591 × 10−5 6.3923 × 10−5 2.11

5 0.034 0.0024 0.0025 8.22

6.5 0.0441 0.0096 0.0019 11.47

Configuration 3

1.5 0.0142 0.0031 0.0019 2.88

5 0.0336 0.0079 0.00023 12.05

6.5 0.042 0.008 0.0001 14.31

Configuration 4

1.5 0.0136 0.0049 0.0002 3.02

5 0.034 0.0019 0.00068 12.70

6.5 0.032 0.0053 0 15.56

Configuration 5

1.5 0.0011 0.002 0 5.04

5 0.0027 0.0025 0 9.50

6.5 0.0038 0.0027 0.0002 11.43

From the geometric analysis of the experimental determinations, the vertical displace-
ment of the effector under the action of gravity can be interpreted (in the case of arms with
a rigid solid behavior) as being due to the rigid rotation of the robot arms due to the axial
elasticity of the linear motors. Table 6 shows a comparison of the displacement of the point
on the effector targeted by the laser sensor calculated based on the rotation of the arms and
the one measured experimentally.

For configurations 1, 3, and 4, there is a concordance between values. An acceptable
situation was found for configuration 4. Unsatisfactory results were obtained for configura-
tion 2. If the axial deformations of the experimentally determined motors are considered,
with the observation that linear motor 1 is stretched, the measured quantity is added to
the distance between its joints, motors 2 and 3 are compressed, and the measured value
decreases, as shown in Table 7.
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Table 5. Axial forces in linear motors, calculated analytically with Relations (3), (5), and (8).

Weight
(kg)

Fm1
(N)

Fm2
(N)

Fm3
(N)

Configuration 1

1.5 −185.5 252.4 114.4

5 −441.1 535.6 381.3

6.5 −550.7 657 495.6

Configuration 2

1.5 −196.4 223.4 113.5

5 −439.1 474.2 378.3

6.5 −543.1 581.6 491.8

Configuration 3

1.5 −229.6 222 136.8

5 −485.2 469.2 455.9

6.5 −594.7 575.2 592.7

Configuration 4

1.5 −268.5 211.3 137.1

5 −550.1 446.6 456.9

6.5 −670.8 547.4 594

Configuration 5

1.5 −325.3 217.5 136.5

5 −652.6 459.7 454.9

6.5 −792.9 563.5 591.4

Table 6. Effector displacement calculated based on experimentally determined angles of the robot
arms. All calculations were performed based on rigid solid rotations of the robot arms.

Weight
(kg)

Analytical Displacement Determined on the
Basis of Experimental Values (Table 4) of Axial

Displacements in Linear Motors (mm)

Experimentally Measured
Displacement (mm)

Configuration 1

1.5 1.49 2.03

5 10.55 10.23

6.5 13.78 13.45

Configuration 2

1.5 7.37 2.11

5 13.48 8.22

6.5 14.82 11.47

Configuration 3

1.5 2.44 2.88

5 11.34 12.05

6.5 13.11 14.31

Configuration 4

1.5 4.24 3.02

5 13.19 12.7

6.5 17.95 15.56

Configuration 5

1.5 3.35 5.04

5 13.79 9.5

6.5 18.26 11.43

It is noted that the elasticity of the motors does not explain the movement of the
effector. The elasticity of the entire robotic arm is due to both the elasticity of the entire
system and the play in the joints. If the direction of the motor’s elastic elements with an
axial stiffness of 500 N/mm is considered, on the basis of Table 5, it is possible to calculate
the changes in the lengths of the resulting displacements presented in Table 8.
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Table 7. Effector displacement calculated based on the axial deformation of the experimentally
measured motors.

Weight
(kg)

The Displacement Determined
Analytically Based on the Variation in
the Angles of the Arms, the Angular

Values Being Measured (mm)

Experimentally Measured
Displacement (mm)

Configuration 1

1.5 0.203 2.03

5 0.519 10.23

6.5 0.602 13.45

Configuration 2

1.5 0.085 2.11

5 0.272 8.22

6.5 0.389 11.47

Configuration 3

1.5 0.143 2.88

5 0.303 12.05

6.5 0.364 14.31

Configuration 4

1.5 0.144 3.02

5 0.292 12.7

6.5 0.293 15.56

Configuration 5

1.5 0.024 5.04

5 0.042 9.5

6.5 0.056 11.43

Table 8. Effector displacement calculated on the basis of the axial deformations of the motors,
considering them as elastic elements.

Weight
(kg)

The Displacement Determined
Analytically Based on the Variation in the
Angles of the Arms, the Angular Values

Being Measured (mm)

Experimentally Measured
Displacement (mm)

Configuration 1

1.5 3.622 2.03

5 9.679 10.23

6.5 12.252 13.45

Configuration 2

1.5 2.716 2.11

5 8.133 8.22

6.5 10.433 11.47

Configuration 3

1.5 3.076 2.88

5 10.375 12.05

6.5 13.439 14.31

Configuration 4

1.5 1.816 3.02

5 7.976 12.7

6.5 10.553 15.56

Configuration 5

1.5 0.189 5.04

5 4.853 9.5

6.5 6.792 11.43
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There is a good match of the results for configurations 1, 2, and 3 and a poor match
for configurations 4 and 5. Table 9 shows the comparative analytical, numerical, and
experimental results for the displacement of the point on the effector and the displacement
measured near the measuring point of the laser sensor.

Table 9. Effector displacement calculated based on the axial deformations of the motors, considering
them as elastic elements by the analytical method, and numerically and experimentally measured
displacements.

Weight
(kg)

Analytical Displacement
Determined by Engine Elasticity

not Determined Analytically (mm)

Analytically Determined
Displacement Based on

Numerically Determined
Engine Elasticity (FEM) (mm)

Experimentally
Measured

Displacement (mm)

Configuration 1

1.5 3.622 3.052 2.03

5 9.679 11.26 10.23

6.5 12.252 13.227 13.45

Configuration 2

1.5 2.716 3.349 2.11

5 8.133 11.163 8.22

6.5 10.433 14.512 11.47

Configuration 3

1.5 3.076 4.133 2.88

5 10.375 13.778 12.05

6.5 13.439 17.91 14.31

Configuration 4

1.5 1.816 4.11 3.02

5 7.976 13.17 12.7

6.5 10.553 17.81 15.56

Configuration 5

1.5 0.189 4.51 5.04

5 4.853 15.05 9.5

6.5 6.792 19.56 11.43

There is a better match between the numerically calculated and experimentally deter-
mined values for configurations 1 to 4.

7. Conclusions

Elasticity manifested in all the components of the robotic arm, but with preponderance
in the axial direction of the linear motors, in the articulation area between the motor and
the robotic arm. The significant influence of the movement of the effector under the action
of some weights was due to the games in the joint. After the experimental and theoretical
analysis, the joints were untied, and a play was noticed that was mainly due to wear, which
varied between 0.1 and 0.3 mm. The largest deviation was found in the joint between arms
2 and 3. These deviations led to positioning errors of the robotic arm. The transition from
the positive to the negative quadrant of the vertical oscillations of the final effector had an
arbitrary law of motion. Another aspect is the deformation of the robotic arm in space.

The calculations omitted the elasticity of the chassis and the locomotion system, which
also influences the movement of the effector. In the analytical and numerical calculations,
the geometry in the joint area was considered to be perfectly cylindrical, that is, any wear
that was unevenly distributed in the joints was omitted. The high axial stiffness of the
linear motors was noticeable.

Although there are substantial uncertainties in current theoretical and computational
models regarding the prediction of the evolution of the elastic state of mechanical elements
for mobile robots, the simulation responded quite well to the real conditions. Regarding
the deviations, the following can be concluded:
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• It was observed following the experimental research that, in certain situations, if the
effector was loaded with a certain force of weight, after its removal, the effector did
not return to the initial position, which confirms the presence of deviations in the
joints of the robotic arm;

• Due to these deviations, estimating the evolution of the effector element is difficult in
certain operating conditions: certain arm openings and certain loads;

• The effects of deviations can be remedied by performing maintenance operations.

Many of the limitations of the existing solution have already been mentioned; in
addition to these, we consider that limitations may also occur due to the abilities of
EOD robot operators. Additionally, in the next article, we will present an analysis of the
free vibrations of the robotic arm. The study will follow the data that will be obtained
experimentally for multiple work configurations with and without loads.

For the study of free vibrations, the experimental analysis formula will be completed
with accelerometers placed on each component of the robotic arm. After that, our attention
will be directed toward the investigation of the dynamic response that occurs when a
certain mass is manipulated by a robotic arm. One of our goals is to determine what
types of structural modifications may lead to a reduction in the amplitude of vibrations
experienced by the robotic arm. Another area of research may be the investigation of the
dynamic reaction of the robotic arm when it is loaded with a weight.

In order to continue our research on the functioning of the robotic arm, we will
investigate the effect of vibrations on the positioning accuracy of the end effector. We will
also examine the dynamic reaction to the movement of a loaded arm with a weight on a
fixed platform. If the weight is an explosive artisanal device and the level of the vibration
amplitude is high, it can detonate. The final investigation will be to analyze the operation
of the arm while moving the robot.
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