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Abstract: Aiming to solve the problems of false detection, missed detection, and insufficient detec-
tion ability of infrared vehicle images, an infrared vehicle target detection algorithm based on the
improved YOLOv5 is proposed. The article analyzes the image characteristics of infrared vehicle
detection, and then discusses the improved YOLOv5 algorithm in detail. The algorithm uses the
DenseBlock module to increase the ability of shallow feature extraction. The Ghost convolution
layer is used to replace the ordinary convolution layer, which increases the redundant feature graph
based on linear calculation, improves the network feature extraction ability, and increases the amount
of information from the original image. The detection accuracy of the whole network is enhanced
by adding a channel attention mechanism and modifying loss function. Finally, the improved per-
formance and comprehensive improved performance of each module are compared with common
algorithms. Experimental results show that the detection accuracy of the DenseBlock and EIOU
module added alone are improved by 2.5% and 3% compared with the original YOLOv5 algorithm,
respectively, and the addition of the Ghost convolution module and SE module alone does not in-
crease significantly. By using the EIOU module as the loss function, the three modules of DenseBlock,
Ghost convolution and SE Layer are added to the YOLOv5 algorithm for comparative analysis, of
which the combination of DenseBlock and Ghost convolution has the best effect. When adding three
modules at the same time, the mAP fluctuation is smaller, which can reach 73.1%, which is 4.6%
higher than the original YOLOv5 algorithm.

Keywords: target detection; infrared; deep learning; YOLOv5 algorithm

1. Introduction

With the gradual development of deep learning research, in-depth research in the field
of computer vision constitutes not only a new change and development for people’s daily
lives, but also gives prospects for development in war and military training [1]. Among
these prospects, the infrared imaging detection system is often used to detect and track local
targets in military reconnaissance, to collect enemy military intelligence, and to provide
guidance information for individual soldiers or conventional weapons to quickly obtain
battlefield intelligence. In recent years, land-vehicle reconnaissance technology is the key
research direction of battlefield control and surveillance capacity building, because in the
actual combat environment [2,3], the ground environment is very complex. Vehicle targets
may have the characteristics of occlusion, overlap, blur, etc., and so through infrared vehicle
detection technology, ground vehicle targets and deployment can be more effectively found,
which is conducive to the control of the battlefield and the overall situation.

In terms of infrared vehicle detection, in 2013, Iwasaki et al. proposed an algorithm
to detect vehicle position and motion by using thermal imaging obtained with an in-
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frared imaging sensor [4]. The algorithm specifies the vehicle position by applying a
pattern-recognition algorithm according to the change of pixel values. The algorithm uses
Haar-like features in each frame of the image, adopts a correction program for vehicle
misidentification. The two detections can be combined to obtain vehicle position and
motion information, and the vehicle detection accuracy is 96.3%. In 2017, Tang Tianyu
proposed an improved aerial vehicle detection method based on Faster R-CNN, which
was evaluated on the Munich vehicle dataset and the collected vehicle dataset, which
improved accuracy and robustness compared with existing methods [5]. In 2018, Liu
Xiaofei proposed a new method for ground-vehicle detection in aerial infrared images
based on convolutional neural network [6], and experiments on four different scenarios
on the NPU_CS_UAV_IR_DATA dataset showed that the proposed method was effective
and efficient for the identification of ground vehicles. The overall recognition accuracy
rate could reach 91.34%. In 2019, Lecheng Ouyang et al. [7] aimed at solving the problem
of the low accuracy of traditional vehicle target-detection methods in complex scenarios,
by combining them with the current hot development of deep learning. The YOLOv3
algorithm framework is used to achieve vehicle target detection, and by using the PASCAL
VOC2007 and VOC2012 datasets, the images containing vehicle targets are screened out to
form the VOC car dataset, and the target detection problem is transformed into a binary
classification problem. Compared with the traditional target detection algorithm, the recog-
nition accuracy of this method can reach 89.16%, and the average operating speed is 21FPS.
In 2020, H. Li et al. proposed an incremental learning infrared vehicle-detection method
based on (single-hot multiBox detector (SSD) for problems related to the lack of details in
infrared vehicle images [8], the difficulty in extracting feature information, and low detec-
tion accuracy. This detection method can effectively identify and locate infrared vehicles,
compared with the results of infrared vehicle detection using incremental datasets and
non-incremental datasets. Experimental results show that the use of incremental datasets
has significantly improved the error detection and missed detection of infrared vehicles,
and the mAP has increased by 10.61%. In the same year, Mohammed Thakir Mahmood
et al. proposed an infrared image vehicle-detection system by using YOLO’s computer,
combined with YOLO to propose an infrared-based technology [9]. Compared with the
machine learning technique of K-means++ clustering algorithm, multi-object detection
using convolutional neural networks, and the deep learning mechanism of infrared images,
the method can run at a speed of 18.1 frames per second, with good performance. In 2022,
Zhu Zijian et al. proposed a small target detection method for aerial infrared vehicles based
on parallel fusion network [10]. An improved YOLOv3 algorithm based on cross-layer
connection is proposed, which can accurately detect small targets of infrared vehicles in
the background of complex motion, and achieve higher detection accuracy in the case of
low false alarm rate, of which the false alarm rate is only 0.01% and the missed detection
rate is only 1.36%.

Existing technologies have proven that the YOLOv3 algorithm has a good recognition
performance for infrared vehicles [11–17]; however, on the basis of the YOLOv3 algorithm,
in order to further improve the extraction ability of small targets, the YOLOv5 algorithm is
generated [18–20]. In 2021, Kasper–Eulaers used the YOLOv5 algorithm to detect heavy
trucks in winter rest areas, and the results showed that the trained algorithm could detect
the front cabin of heavy trucks with high confidence. This article will also use the vehicle as
an identification object for experiments under the improved YOLOv5 model. In the same
year, Wu et al. combined local FCN and YOLOv5 to the detection of small targets in remote
sensing images [20]. The application effects of R-CNN, FRCN, and R-FCN in image feature
extraction are analyzed, and the high adaptability of the YOLOv5 algorithm to different
scenarios is realized, and the proposed YOLOv5 algorithm + R-FCN detection method is
compared with other algorithms. Experimental results show that the YOLOv5+R-FCN
detection method has better detection ability among many algorithms.

Although the above literature has proven the applicability and advanced nature of the
existing YOLOv3 and YOLOv5 infrared vehicle-detection algorithms, there is no unified
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and efficient detection method for the problems of false detection, missed detection, and
detection accuracy in the multi-target and small target scenarios in the infrared vehicle
images, so this paper proposes an infrared vehicle target detection algorithm based on
improved YOLoOv5. The algorithm uses the EnseBlock module to improve the missed
detection rate and detection accuracy through the dense characteristics between the feature
layers. The use of Ghost convolutional layers to replace ordinary convolutional layers
reduces the amount of parameters under the same characteristics, reduces the size of
the model, and increases the amount of information in the original image. By adding
channel attention mechanisms and changing the loss function, the inter-channel features
are interrelated, and the anchor frame description is more accurate, which enhances the
detection accuracy of the overall network, reduces the rate of missed detection, and is
experimented and verified on the public infrared vehicle dataset.

2. Infrared Vehicle Image Data and Characteristic Analysis
2.1. Dataset Introduction

The dataset is derived from the public dataset used in the Space Cup competition [21],
consisting of 16,000 images of infrared vehicles captured by drones equipped with infrared
cameras. The dataset contains images of a single infrared vehicle target, as well as multi-
target images. Some of the images contain false targets similar to vehicle targets, whereas
others have the phenomenon of vehicles obscured by complex environments. Therefore,
this dataset can be used for multi-target detection, as well as detection under complex
ambient occlusion. At the same time, the pixel ratio of the ground truth of the detection
target is between 0.04 and 0.1 in the training set, and most of them are small targets, due to
the blurry edge characteristics of infrared images. Most target recognition is difficult, so it
is a relatively complete dataset in general. Part of the dataset image is shown in Figure 1.

Figure 1. Dataset partial image example. (a) Single target. (b) Multi-target. (c) Single target in
complex environment. (d) Multi-target in complex environment.

2.2. Image Characteristic Analysis

The images in the dataset are infrared vehicle images, which are single-channel
grayscale images from 0 to 255. For this kind of image, a three-dimensional coordinate
system is used to visualize the gray value information of the entire image. The xoy plane
is used as the image plane, and the value of the z axis represents the gray value of the
corresponding coordinate pixel. Secondly, the grayscale histogram is used for data analysis,
reflecting the frequency of each gray level in the image. In the histogram, the abscissa is
the gray level and the ordinate is the frequency of the gray level in the image, as shown in
Figure 2.

As can be seen from Figure 2a, when the drone is closer to the target, its characteristics
are apparent. The target image can be seen in the original image, and the target three-
dimensional grayscale plot in Figure 2b is significantly higher than that of the background
image, and the frequency of pixels is close to the actual target gray value in the grayscale
histogram. Figure 2c is less high, making it easier to detect such a target. In Figure 2d,
when the target shooting distance is far away, and the target is in a complex environment,
the gray value of the three-dimensional grayscale plot Figure 2e is relatively more chaotic.
The pixel frequency is similar to the actual target gray value in the grayscale histogram.
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Figure 2f is higher, so that the target is easily submerged in the background of the similar
gray value, and the detection is more difficult.

Figure 2. Image Characteristic analysis. (a) Original image. (b) 3D grayscale plot. (c) Grayscale
histogram. (d) Original image in complex environment. (e) 3D grayscale plot. (f) Grayscale histogram.

Because the drone shoots at a distance, the infrared vehicle pixels in the figure account
for a relatively small proportion of the entire image, as shown in Figure 2d, where the
ground truth of a single target vehicle occupies 0.04% of the entire image in the training set.
Therefore, the image has the characteristics of both infrared grayscale images and small
targets, and is accompanied by the influence of multi-target and false targets. As shown
in Figure 2d, target 4 is a false target, which increases the difficulty of infrared vehicle
detection and not only reduces the accuracy of the detection algorithm, but also the feature
extraction quality of the target detection network will be affected by different data content,
resulting in a certain randomness of the training model. That is, for the training sets and
verification sets for different images, the detection probability of the infrared vehicle target
will fluctuate randomly within a certain range.

3. Improved Algorithm for YOLOv5
3.1. Model Improvement Ideas

The improvement of neural networks is an important field in neural networks [22,23],
based on a baseline, adding, replacing, and deleting the middle layer on the original
network, improving the loss function, optimizer, and related parameters, or combining
other target processing techniques. Its purpose is to fuse and optimize various neural
networks to improve the positioning accuracy, classification accuracy, classification speed
and model size of the data.

The improved algorithm uses the main module of DenseNet to increase the extraction
ability of shallow features by linking the dense superposition between the feature layers; it
replaces the ordinary convolution layer with the Ghost convolution layer, to improve the
network redundant feature-extraction ability and increase the amount of information in the
original image by extracting the redundant feature map obtained by linear calculation of
input images based on different parameters. By adding the channel attention mechanism,
the features between the channels can be correlated with each other to improve the detection
accuracy of the network layer and change the loss function to more accurately describe
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the relationship between the prediction box and the real box, and enhance the detection
accuracy of the overall network anchor frame.

3.2. Dense Convolutional Network (DenseNet)

The Dense Convolutional Network (DenseNet) has four main advantages, namely
alleviating the gradient disappearance problem, enhancing feature propagation (retain low-
latitude features), promoting feature reuse, and greatly reducing the number of parameters.
When the CNN layers get deeper, the path from output to input will become longer, which
will cause a problem: the gradient will probably disappear when it is backpropagated to
the input through such a long path, DenseNet proposes a very simple way to make the
network deep and the gradient does not disappear by establishing dense connections to
reuse features. To solve this problem, the following is the schematic diagram of DenseBlock,
as shown in Figure 3.

Figure 3. Schematic diagram of the DenseBlock structure.

As can be seen from Figure 3, the output of each layer is connected to the input of
the latter layer, for an L layer network, there will be connections. For each layer, all the
previous feature layers are the inputs of the current layer, and the feature layers are the
subsequent inputs, forming a full interlink, and the feature maps extracted by each layer
can be used by subsequent layers.

DenseNet consists of four DenseBlocks and the connected translation layers. The
text additionally extracts DenseBlock as a pluggable module for acquiring and connecting
denser image features at the beginning of the network structure, but due to its own
characteristics, the number of output channels is determined by the number of input
channels, module layers, and the learning multiple, which cannot be freely defined. The
robustness is poor, and specific parameters need to be adjusted to join the network as
a module.

3.3. End-Side Neural Networks (GhostNet)

In CNN models, redundancy in feature maps is very important, but few people
consider the problem of redundancy in feature maps in the model structure design. In
2021, He Kaiming et al. proposed a novel Ghost module that can use fewer parameters to
generate more feature maps. In the Ghost module, the feature map generated by the linear
operation is called the Ghost feature maps, and the feature map manipulated is called the
intrinsic feature maps. Obviously, the Ghost module’s computation is significantly reduced
compared to using conventional convolution directly. From another point of view, it can be
considered that the feature map obtained by convolution has been enhanced, similar to the
data augmentation. The Ghost convolutional structure is shown in Figure 4 below.



Electronics 2022, 11, 2344 6 of 20

Figure 4. Schematic diagram of Ghost convolutional structure.

3.4. Squeeze-and-Excitation Networks (SENet)

Squeeze-and-Excitation Networks (SENet) constitute a new image recognition struc-
ture announced by the autonomous driving company Momenta in 2017, which improves
accuracy by modeling correlations between feature channels and enhancing important
features. This structure is the winner of the 2017 ILSVR competition, with a top 5 error rate
of 2.251%, 25% lower than the first place in 2016. SENet strengthens the characteristics of
important channels and weakens the characteristics of non-important channels, which has
obtained good results. The SE layer structure is shown in Figure 5 below.

Figure 5. Schematic diagram of the structure of the SE layer.

3.5. EIOU Loss

YOLOv5 uses a combination of IOU Loss, GIOU Loss, and CIOU Loss, although CIOU
considers the overlapping area, center point distance, and aspect ratio of bounding box
regression. However, the difference in aspect ratio reflected by v in the formula is not the
true difference between the width and height and its confidence, so it sometimes hinders
the effective optimization similarity of the model. In response to this problem, in 2021,
Yi-Fan Zhang, Weiqiang Ren, Zhang Zhang, etc. took apart the aspect ratio on the basis
of CIOU, proposed EIOU Leoss, and added Focal and Efficient IOU Loss for Accurate
Bounding Box Regression.

The formula for the loss function EIOU Loss is as follows:

LEIOU = LIOU + Ldis + Lasp

= 1 − IOU + ρ2(b,bgt)
c2 + ρ2(w,wgt)

Cw2 + ρ2(h,hgt)
Ch

2
(1)

The EIOU formula consists of three parts, namely the overlap loss, the center point
distance loss, and the width and height loss. The first part of the overlapping area loss is the
definition of the IOU itself: the area where the prediction box and the real box are combined
with the area ratio intersection, and the second part continues the center distance loss in
CIOU, that is, the Euclidean distance ratio between the prediction box and the real box
contains the square of the diagonal distance of the minimum external box of the prediction
box and the real box. The third part innovatively uses the Euclidean distance of the width
and height difference between the target box and the real box divided by the square of the
width and height of the minimum external box.

In summary, EIOU Loss describes the image overlapping area, the center point dis-
tance, the true difference between the length and width of the sides, solves the blurry
definition of aspect ratio based on CIOU, and adds Focal Loss to solve the sample imbal-
ance problem in BBox regression.
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3.6. Improved YOLOv5 Network

To describe improvement ideas, the improvement of the YOLOv5 network in this
paper is mainly divided into four parts:

1. For the image input network layer, the DenseBlock module is used to strengthen
the extraction of strong correlation features for shallow images, and reduce the im-
age correlation features lost in the initial stage of the network through multi-layer
dense networks.

2. For the backbone network, the Ghost convolution layer is used to replace the first
two general convolution layers, which increases the feature redundancy, reduces the
computation amount of the overall network, and increases the detection speed.

3. For the feature extraction network, the channel attention mechanism is introduced by
using the SE network layer, which strengthens the network detection capability on
the basis of the integration of image channel features.

4. For the loss function, the latest EIOU is used to replace the original CIOU of YOLOv5,
which improves the accuracy of the description relationship between the prediction
box and the GT box, and improves the network binding ability.

The four improved modules in this article are pluggable modules as shown in Figure 6.
The corresponding modules can be selected and added to the target detection network
according to the needs.

Figure 6. Improved YOLOv5 network.

4. Experiments on Improved Algorithms for Each Module
4.1. Training Environment Configuration

The specific experimental parameters are configured as shown in Table 1.

Table 1. Experimental parameter configuration.

Parameter Disposition

Operating system Linux
Redaction language Python 3.8

CUDA version 10.2
Pytorch 1.8.1
YOLOv5 6.0

GPU TITAN RTX
CPU Intel i9-10900K

Internal storage 125.8GB
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4.2. Experiments with Dense Convolutional Networks (DenseBlock)

In the experiment, first, the parameter adjustment experiment is carried out for each
improved module in the text, and then a single improved network is compared with
YOLOv5s. Finally the improved modules are synthesized and compared with the original
network and the current mainstream target detection network.

4.2.1. Experimental Parameters

Under the dataset, optimize the parameter settings of the DenseBlock module, i.e.,
Grow_rate and layers. Grow_rate represents how many feature layers are connected to the
previous feature layer and how many are connected to the back. The layers represent how
many DenseBlock dense link layers are used.

The DenseBlock module has the characteristics of the number of input channels and
parameter settings that determine the number of output channels, so there are two sets of
parameter settings for matching the number of channels before and after the experiment,
as shown in Table 2.

Table 2. DenseBlock module experimental parameter table.

Parameter Settings 8-3 16-1

Training times 100 100
Recognition rate(mAP) 0.616 0.602

Model size(mb) 14.43 14.43
Inference time(ms) 4.8 4.5

4.2.2. Training Results

The training results for different parameter selections are shown in Figure 7.

Figure 7. Comparison results of DenseBlock parameters. (a) Target loss. (b) Accuracy rate. (c) Recalling
rate. (d) mAP value.

From Figure 7a, it can be seen that the target loss value of the 8-3 experimental
group is lower than that of the 16-1 experimental group. That is, the target anchor frame
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classification is more accurate, and from Figure 7b,d, it can be seen that the detection
accuracy of the 8-3 experimental group in the first 20 epochs is lower than that of the 16-1
experimental group, but with the increase of the number of trainings. When the epoch
reaches more than 40 times and the experimental result tends to stabilize, the detection
accuracy of the 8-3 experimental group is higher. As can be seen from Figure 7c, there is no
significant difference in recall rates.

For the parameter growth_rate and num_layers used in the DenseBlock module, due
to the limitation of input and output channels, a total of 2 parameter combinations were
used for comparative experiments. It can be seen that under the premise of the same model
size, the DenseBlock module with more dense layers and lower learning rate has an obvious
performance advantage, but it is worth mentioning that the training time of adding the
DenseBlock module is longer, the training configuration requirements are higher, and the
amount of computation is greater.

4.2.3. Testing Results

The detection results before and after adding the DenseBlock module are shown in
Figures 8–10.

Figure 8. YOLOv5s detection map. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

Figure 9. 8-3 DenseBlock detection results. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

Figure 10. 16-1 DenseBlock detection results. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

As can be seen from Figures 8–10, whether the 8-3 experimental group or the 16-1
experimental group, the average confidence in detecting infrared small target vehicles is
higher than that of the original algorithm, and the experimental group of 8-3 performed
better than the experimental group of 16-1. This shows that the DenseBlock module with
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8-3 parameters is more suitable for the detection of this dataset, and this parameter group
is used in the comprehensive module of subsequent experiments.

4.3. Experiments with End-Side Neural Networks (GhostNet)
4.3.1. Experimental Parameters

According to the feature map redundancy of the Ghost convolutional layer, it can be
inferred that the deep feature map is not suitable for feature redundancy inference by using
linear calculation. Therefore, the replaced convolutional layers are close to the input layer,
which are the backbone network convolutional layers. The parameter settings such as the
number of Ghost convolutional layers replaced, training time, and recognition rate in the
experiment are shown in Table 3.

Table 3. Ghost module experimental parameter table.

Ghost Convolutional
Replacement Quantity 1 2 3 4

Training times 100 100 100 100
Recognition rate(mAP)

Model size(mb)
0.64 0.655 0.613 0.599

14.05 13.99 13.71 12.57
Inference time(ms) 4.2 4.3 4.4 4.4

4.3.2. Training Results

The training results for different parameter selections are shown in Figure 11.

Figure 11. Comparison of the number of GhostConv replacements. (a) Confidence loss. (b) Accuracy
rate. (c) Recalling rate. (d) mAP value.

From Figure 11a, it can be seen that the Ghost experimental group replacing the
two convolution layers had lower target loss values during training, and it can be seen
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from Figure 11b that the detection accuracy of the 4-2 experimental group was higher in
the 30 epochs after the training results tended to stabilize. From Figure 11c,d, it can be
seen that the recall rate and detection accuracy of the 4-2 experimental group in a total of
100 epoch training are always higher than that of other experimental groups, and the gap
is noticeable.

For a single Ghost module, although the model size is effectively reduced with the
increase of the number of substitutions, after replacing three ordinary convolution layers,
the recognition rate shows a downward trend. That is, too much feature map redundancy
harms the detection accuracy, and in terms of model size and inference time, the more Ghost
convolutional replacements, the smaller the model, and the slower the inference time.

When replacing two convolution layers, the network recognition rate shows a peak
due to the increase of the redundancy feature map, which proves that the redundancy
of the feature map is not always positive for the recognition rate, at the same time, the
inference time is faster, and the model size increases less. It is the best choice to replace the
two convolution layers, so the subsequent Ghost modules use a replacement number of
two Ghost convolutional modules by default.

4.3.3. Testing Results

After adding the corresponding Ghost module, the test result is shown in Figure 12.

Figure 12. Ghost convolutional test results. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

From the comparison of Figures 8 and 12, it can be seen that the network that joins
the Ghost convolution can accurately detect the vehicle target, and the detection accuracy
has been improved in each scene. Among the two targets in scene 1, the detection accuracy
was the highest, increasing by 26% and 50% respectively.

4.4. Experiments with the Squeeze-and-Excitation Layer (SE Layer)

In the SE layer, the module position of the SE layer is optimized by parameter re-
duction, and the more suitable module position and parameters have been pre-selected
according to the previous experiments. See Table 4 for experimental parameters.

Table 4. SE module experimental parameter table.

Module Position and
Parameters Before SPPF After SPPF Reduction = 16 Reduction = 4

Training times 50 50 50 50
Recognition rate (mAP)

Model size (mb)
0.661 0.655 0.612 0.667
14.67 14.67 14.67 14.47

Extrapolation time (ms) 4.5 4.4 4.4 4.4

4.4.1. Training Results

The training results for different parameter selections are shown in Figures 13 and 14.
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Figure 13. SE reduction parameter comparison results. (a) Target loss. (b) Accuracy rate. (c) Recalling
rate. (d) mAP value.

Figure 14. SE module position comparison result. (a) Target loss. (b) Accuracy rate. (c) Recalling rate.
(d) mAP value.

From Figure 13a, it can be seen that the target loss value is higher when the reduction
parameter is taken with reduction = 16. From Figure 13b–d, it can be seen that the totality
is relatively stable after 40 epochs, and the experimental group with a parameter of 16 has
a higher detection accuracy. As can be seen from Figure 14a,b, the target loss values of the
two experimental control groups are similar. The detection accuracy is generally similar.
As can be seen from Figure 14c,d, the overall mAP value of the target detection in the
pre-SPPF experimental group was higher due to the higher recall rate in the pre-SPPF
experimental group.

In terms of attention parameters, try where different SE layers are added, and finally
select SPPF before and after doing the comparison experiment. It can be seen that the SE
module is more suitable before the SPPF, according to the analysis of the role of SPPF can
be obtained. The SE module for the high-level features of the channel attention mechanism
is more biased toward the image features before the pooling layer rather than the semantic
features after the pooling layer. At the same time, according to the comparison of reduction
parameters, the SE model with a reduction of 4 performs prominently in a single epoch
but is not stable overall, whereas the overall trend results with a parameter of 16 perform
better. That is to say, increasing the decline rate of the hidden layer channel can improve
the detection rate of the image attention mechanism. Finally, the parameter reduction of
16 is selected according to the image.

4.4.2. Testing Results

When the SE module is added to the SPPF and the reduction parameter is selected 16,
the detection results are shown in Figure 15.



Electronics 2022, 11, 2344 13 of 20

Figure 15. SE layer detection results. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

Compared with Figures 8 and 15, the average detection accuracy of the network with
the addition of an attention mechanism is significantly improved in each scene.

4.5. Experiments with EIOU

For the replacement loss function, because YOLOv5 used a total of GIOU, DIOU,
and CIOU, three kinds of loss functions, along with the development of the loss function
research, now YOLOv5 mainly uses CIOU. This article uses EIOU to replace CIOU. For
improved models, replacement loss function increases the detection recognition rate, so
the subsequent experiments are all replaced with EIOU loss functions. Training results are
shown in Figure 16 below.

Figure 16. EIOU detection results. (a) Target loss. (b) Accuracy rate. (c) Recalling rate. (d) mAP value.

As can be seen from Figure 16, compared with CIOU, the recall value increases and
the object loss value decreases in the detection results by using EIOU, and the mAP value
of the EIOU group in the overall model detection is significantly improved.
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5. Modular Combination Improved Algorithm Experiment
5.1. Improved YOLOv5 Network Experiment

In order to improve the detection effect of the comprehensive improved model, the
single module is compared, and they are added to the original YOLOv5 algorithm in pairs.
The results are shown in Tables 5 and 6. Refer to [24,25] for a graphical representation of
the optimization results. Convert the mAP column in Table 5 to a histogram as Figure 17
shows and convert the mAP column in Table 6 to a histogram as Figure 18 shows.

Table 5. Comparison table of results for individual module.

Improved Modules YOLOv5s Ghost Convolution DenseBlock SE Module

Number of trainings 100 100 100 100
Recognition rate(mAP) 0.685 0.650 0.713 0.660

Model size(mb) 14.07 13.99 14.43 14.67
Extrapolation time(ms) 4.2 4.3 4.8 4.4

Table 6. Comparison table of results for the synthesis improved module.

Network Structure YOLOv5s Dense + Ghost + SE Dense + Ghost Ghost + SE Dense + SE

Number of trainings 100 100 100 100 100
Recognition rate(mAP) 0.685 0.731 0.73 0.753 0.685

Model size(mb) 14.07 14.80 14.36 14.59 15.15
Extrapolation time(ms) 4.2 8.5 5.0 4.5 8.6

Figure 17. Single-module mAP histogram.

Figure 18. Comprehensive improvement of mAP histogram.

5.1.1. Training Results

Figure 16 shows the comparison between the detection accuracy of the DenseBlock, Ghost
convolution and SE modules and the detection accuracy of the original YOLOv5 algorithm.

The characteristics and applicable scenes of each module can be drawn from Figure 19,
and from Figure 19a, the confidence loss of the DenseBlock module is significantly lower
than that of other modules. That is, the module is more effective in improving the detection
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accuracy and stability of the target. As can be seen from Figure 19b,c, although the SE mod-
ule can improve the recognition accuracy, it will lead to a decrease in the recall rate; from
Figure 19d, when used alone, the DenseBlock module has the most obvious improvement,
but the mAP value of Ghost convolution and SE module does not improve significantly. A
combination of these modules and the comprehensive improvement comparison chart is
shown in Figure 20.

Figure 19. Comparison of results of single-module training. (a) Target loss. (b) Accuracy rate.
(c) Recalling rate. (d) mAP value.

As can be seen from Figure 20a,b, the target loss value and anchor-frame loss value
after the combination of DenseBlock, Ghost Convolution and SE module are the lowest.
As can be obtained from Figure 20c, the accuracy of the three module combinations is also
the highest. In Figure 20d, although the recall rate after the combination of DenseBlock,
Ghost convolution, and SE module is not the highest. It has the smallest fluctuation
after 40 epochs and is more stable. As can be seen from Figure 20e, although the mAP
value is not significantly improved when using the Ghost convolution and SE module
alone, the combined effect is obvious. There is a mutual inhibition effect between the
DenseBlock module and the SE module, resulting in no obvious difference between the
superimposed effect of the two and the original algorithm. From the analysis of the module
principle, SE is a hybrid single-layer, multi-channel information feature used to improve the
detection ability. At the same time, the use of the DenseBlock module with multiple feature
layers in series makes the feature complexity increase instead of decrease, reducing the
detection accuracy. Compared with other improvements, the comprehensive improvement
in detection ability has improved the detection stability, while maintaining the lowest
target loss value and the best detection effect. However, in some cases where the model
detection speed is required to be high, or the size and computing power of the model are
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limited by the installed equipment, using the Ghost + SE improvement module with similar
comprehensive improvement effect may be an option.

Figure 20. Comprehensive improvement comparison chart. (a) Target loss. (b) Anchor-frame loss;
(c) Accuracy rate. (d) Recalling rate. (e) mAP value.
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5.1.2. Testing Results

The results of the improved network for infrared vehicle target detection are shown in
Figures 21–25.

Figure 21. YOLOv5 detection map. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

Figure 22. Dense + Ghost detection diagram. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

Figure 23. Dense + SE detection diagram. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

Figure 24. Dense + Ghost detection diagram. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.
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Figure 25. Dense + Ghost + SE detection diagram. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

It can be seen from Figures 21–25 that for the two small targets in scene 1, the de-
tection accuracy of Dense + Ghost is improved by 18% and 46%, respectively, compared
with the original YOLOv5. Dense + SE is improved by 16% and 43%, respectively, and
Dense + Ghost is respectively improved by 18% and 46%. Dense + Ghost is improved by
20% and 51%, and Dense + Ghost + SE is improved by 18% and 52%, respectively. In
the objectives of scene 2 and scene 3, the combination of the two modules is improved
compared to the original YOLOv5, and the detection effect of the Dense + Ghost + SE
combination is not much different from that of the two combinations. At the same time,
in scene 4, the Dense + Ghost + SE modules detect the target vehicle that is not detected
by other modules. In general, the Dense + Ghost + SE modules combination has better
detection performance for small targets, and has a higher probability to detect targets that
could not be found in the previous network due to low accuracy.

6. Conclusions

The article analyzes the characteristics of infrared vehicle images, starting from the
four improvement modules of DenseBlock, Ghost Convolution, SE Module, and EIOU. The
original YOLOv5 network is improved, and experiments are carried out on the effect of
each module. The advantages and disadvantages of each module are analyzed, and the
two combinations are compared and analyzed, and the following conclusions are drawn:

1. When the module is used alone, the accuracy of DenseBlock and EIOU modules are
significantly improved, and the Ghost convolution and SE modules are not signifi-
cantly improved, which is almost the same as the original network, or even lower.

2. When the module is used in combination, in addition to the combination of Dense-
Block module and SE module, the other combinations have obvious improvement
effects. When using three modules at the same time, the target loss value is the lowest,
the accuracy rate is the highest, and the mAP value is the most stable.

3. For a small target with occlusion, whether it is the original YOLOv5 or the two–
two combination module, it has not been detected, and the phenomenon of missed
detection has occurred. When using three modules at the same time, the occlusion
targets can be effectively detected, and the rate of missed detection can be reduced.

4. When using the improved algorithm in this paper, the insertion-extraction module
can be adjusted according to different task requirements. For example, the DenseBlock
module can be added to the detection target requiring higher stability. If a higher
detection probability is required, the SE module can be added to the neck layer of the
improved network. If higher detection speed is required, DenseBlock or SE module
can be removed.

Combined with the experimental results and conclusions, the next steps are clarified:

1. Although the missed target is detected, the confidence is not high, and the network
needs to be further optimized.

2. In the actual scene, the infrared vehicle target is not only interfered by the background
of vegetation, buildings, etc., but also by smoke and electromagnetic interference,
resulting in the degradation of the image quality. How to extract the vehicle target in
the complex interference environment is a challenge for future work.



Electronics 2022, 11, 2344 19 of 20

Author Contributions: Conceptualization, Y.F. and Q.Q.; methodology, Y.F.; software, Q.Q.; valida-
tion, S.H.; Y.L. and J.X.; formal analysis, Y.F.; resources, F.C.; data curation, Q.Q.; writing-original
draft preparation, S.H.; writing-review and editing, M.Q.; supervision, M.Q.; funding acquisition, Y.F.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Key Basic Research Projects of the Basic Strengthening
Program, grant number 2020-JCJQ-ZD-071.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, J.; Hong, S.; Baek, J.; Lee, H. Autonomous vehicle detection system using visible and infrared camera. In Proceedings of the

2012 12th International Conference on Control, Automation and Systems, Jeju, Korea, 17–21 October 2012; pp. 630–634.
2. Chen, D.; Jin, G.; Lu, L.; Tan, L.; Wei, W. Infrared Image Vehicle Detection Based on Haar-like Feature. In Proceedings of the

2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China,
12–14 October 2018; pp. 662–667.

3. Liu, Y.; Su, H.; Zeng, C.; Li, X. A Robust Thermal Infrared Vehicle and Pedestrian Detection Method in Complex Scenes. Sensors
2021, 21, 1240. [CrossRef] [PubMed]

4. Iwasaki, Y.; Kawata, S.; Nakamiya, T. Vehicle detection even in poor visibility conditions using infrared thermal images and
its application to road traffic flow monitoring. In Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering;
Springer: New York, NY, USA, 2013; pp. 997–1009.

5. Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle detection in aerial images based on region convolutional neural networks and
hard negative example mining. Sensors 2017, 17, 336. [CrossRef] [PubMed]

6. Liu, X.; Yang, T.; Li, J. Real-time ground vehicle detection in aerial infrared imagery based on convolutional neural network.
Electronics 2018, 7, 78. [CrossRef]

7. Ouyang, L.; Wang, H. Vehicle target detection in complex scenes based on YOLOv3 algorithm. IOP Conf. Ser. Mater. Sci. Eng.
2019, 569, 052018. [CrossRef]

8. Li, L.; Yuan, J.; Liu, H.; Cao, L.; Chen, J.; Zhang, Z. Incremental Learning of Infrared Vehicle Detection Method Based on
SSD. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China,
28–31 October 2020; pp. 1423–1426.

9. Mahmood, M.T.; Ahmed, S.R.A.; Ahmed, M.R.A. Detection of vehicle with Infrared images in Road Traffic using YOLO
computational mechanism. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 022027. [CrossRef]

10. Zhu, Z.; Liu, Q.; Chen, H.; Zhang, G.; Wang, F.; Huo, J. Infrared Small Vehicle Detection Based on Parallel Fusion Network. Acta
Photonica Sin. 2022, 51, 0210001.

11. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

12. Zhang, X.; Zhu, X. Vehicle Detection in the aerial infrared images via an improved YOLOv3 network. In Proceedings of the 2019
IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 19–21 July 2019; pp. 372–376.

13. Li, Z.; Zhou, F. FSSD: Feature fusion single shot multibox detector. arXiv 2017, arXiv:1712.00960.
14. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
15. Han, J.; Liao, Y.; Zhang, J.; Wang, S.; Li, S. Target Fusion Detection of LiDAR and Camera Based on the Improved YOLO Algorithm.

Mathematics 2018, 6, 213. [CrossRef]
16. Deng, Z.; Yang, R.; Lan, R.; Liu, Z.; Luo, X. SE-IYOLOV3: An Accurate Small Scale Face Detector for Outdoor Security. Mathematics

2020, 8, 93. [CrossRef]
17. Zhang, X.; Zhu, X. Moving vehicle detection in aerial infrared image sequences via fast image registration and improved YOLOv3

network. Int. J. Remote Sens. 2020, 41, 4312–4335. [CrossRef]
18. Wang, Z.; Wu, L.; Li, T.; Shi, P. A Smoke Detection Model Based on Improved YOLOv5. Mathematics 2022, 10, 1190. [CrossRef]
19. Kasper-Eulaers, M.; Hahn, N.; Berger, S.; Sebulonsen, T.; Myrland, Ø.; Kummervold, P. Short Communication: Detecting Heavy

Goods Vehicles in Rest Areas in Winter Conditions Using YOLOv5. Algorithms 2021, 14, 114. [CrossRef]
20. Wu, W.; Liu, H.; Li, L.; Long, Y.; Wang, X.; Wang, Z. Application of local fully Convolutional Neural Network combined with

YOLO v5 algorithm in small target detection of remote sensing image. PLoS ONE 2021, 16, e0259283. [CrossRef] [PubMed]
21. The Third “Aerospace Cup” National Innovation and Creativity Competition Preliminary Round, Proposition 2, Track 2, Optical

Target Recognition, Preliminary Data Set. Available online: https://www.atrdata.cn/#/customer/match/2cdfe76d-de6c-48f1
-abf9-6e8b7ace1ab8/bd3aac0b-4742-438d-abca-b9a84ca76cb3?questionType=model (accessed on 15 March 2022).

22. Jiang, B.; Ma, X.; Lu, Y.; Li, Y.; Feng, L.; Shi, Z. Ship detection in spaceborne infrared images based on Convolutional Neural
Networks and synthetic targets. Infrared Phys. Technol. 2019, 97, 229–234. [CrossRef]

http://doi.org/10.3390/s21041240
http://www.ncbi.nlm.nih.gov/pubmed/33578700
http://doi.org/10.3390/s17020336
http://www.ncbi.nlm.nih.gov/pubmed/28208587
http://doi.org/10.3390/electronics7060078
http://doi.org/10.1088/1757-899X/569/5/052018
http://doi.org/10.1088/1757-899X/928/2/022027
http://doi.org/10.1109/CVPR.2016.91
http://doi.org/10.3390/math6100213
http://doi.org/10.3390/math8010093
http://doi.org/10.1080/01431161.2020.1717666
http://doi.org/10.3390/math10071190
http://doi.org/10.3390/a14040114
http://doi.org/10.1371/journal.pone.0259283
http://www.ncbi.nlm.nih.gov/pubmed/34714878
https://www.atrdata.cn/#/customer/match/2cdfe76d-de6c-48f1-abf9-6e8b7ace1ab8/bd3aac0b-4742-438d-abca-b9a84ca76cb3?questionType=model
https://www.atrdata.cn/#/customer/match/2cdfe76d-de6c-48f1-abf9-6e8b7ace1ab8/bd3aac0b-4742-438d-abca-b9a84ca76cb3?questionType=model
http://doi.org/10.1016/j.infrared.2018.12.040


Electronics 2022, 11, 2344 20 of 20

23. Shi, M.; Wang, H. Infrared Dim and Small Target Detection Based on Denoising Autoencoder Network. Mob. Netw. Appl. 2020, 25,
1469–1483. [CrossRef]

24. Alrasheedi, A.F.; Alnowibet, K.A.; Saxena, A.; Sallam, K.M.; Mohamed, A.W. Chaos Embed Marine Predator (CMPA) Algorithm
for Feature Selection. Mathematics 2022, 10, 1411. [CrossRef]

25. Sharma, A.K.; Saxena, A. A demand side management control strategy using Whale optimization algorithm. SN Appl. Sci. 2019,
1, 870. [CrossRef]

http://doi.org/10.1007/s11036-019-01377-6
http://doi.org/10.3390/math10091411
http://doi.org/10.1007/s42452-019-0899-0

	Introduction 
	Infrared Vehicle Image Data and Characteristic Analysis 
	Dataset Introduction 
	Image Characteristic Analysis 

	Improved Algorithm for YOLOv5 
	Model Improvement Ideas 
	Dense Convolutional Network (DenseNet) 
	End-Side Neural Networks (GhostNet) 
	Squeeze-and-Excitation Networks (SENet) 
	EIOU Loss 
	Improved YOLOv5 Network 

	Experiments on Improved Algorithms for Each Module 
	Training Environment Configuration 
	Experiments with Dense Convolutional Networks (DenseBlock) 
	Experimental Parameters 
	Training Results 
	Testing Results 

	Experiments with End-Side Neural Networks (GhostNet) 
	Experimental Parameters 
	Training Results 
	Testing Results 

	Experiments with the Squeeze-and-Excitation Layer (SE Layer) 
	Training Results 
	Testing Results 

	Experiments with EIOU 

	Modular Combination Improved Algorithm Experiment 
	Improved YOLOv5 Network Experiment 
	Training Results 
	Testing Results 


	Conclusions 
	References

