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Abstract: Aiming at the problems of low path success rate, easy precocious maturity, and easily
falling into local extremums in the complex environment of path planning of mobile robots, this paper
proposes a new particle swarm algorithm (RDS-PSO) based on restart strategy and adaptive dynamic
adjustment mechanism. When the population falls into local optimal or premature convergence, the
restart strategy is activated to expand the search range by re-randomly initializing the group particles.
An inverted S-type decreasing inertia weight and adaptive dynamic adjustment learning factor are
proposed to balance the ability of local search and global search. Finally, the new RDS-PSO algorithm
is combined with cubic spline interpolation to apply to the path planning and smoothing processing
of mobile robots, and the coding mode based on the path node as a particle individual is constructed,
and the penalty function is selected as the fitness function to solve the shortest collision-free path.
The comparative results of simulation experiments show that the RDS-PSO algorithm proposed in
this paper solves the problem of falling into local extremums and precocious puberty, significantly
improves the optimization, speed, and effectiveness of the path, and the simulation experiments in
different environments also show that the algorithm has good robustness and generalization.

Keywords: restart strategy; adaptive adjustment; particle swarm optimization; spline interpolation

1. Introduction

With the development of robot technology, the environment is becoming more and
more complex, and people’s performance requirements for robots are also getting higher
and higher. In a complex environment to complete the task autonomously, navigation
technology is more important, and path planning is an important part of navigation
technology; a good planning algorithm not only can plan the shortest path, but the cost
of time, robot mechanical loss costs, maintenance costs, etc. also need to be reduced to
a minimum [1]. The formatter will need to create these components, incorporating the
applicable criteria that follow.

Researchers have been studying the path planning problem for many years, and have
been constantly exploring and improving, with some good results. For example, the A*
algorithm [2], Dijkstra [3] algorithm, RRT [4], etc. can achieve some good results in simple
environments, but with the increase in environmental complexity and requirements, there
will be problems such as larger computation and more memory occupation. With the
emergence of intelligent optimization algorithms, more and more researchers apply intelli-
gent optimization algorithms and their improved algorithms to path planning problems.
Liu Jingsen et al. [5] proposed a bat algorithm with reverse learning and tangent random
exploration mechanism, combined with cubic spline interpolation to define a smooth path
based on node coding. Sun Huihui et al. [6] started from the three types of reinforcement
learning motion planning methods based on value, strategy, and actor-critic, and deeply
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analyzed the characteristics and practical application scenarios of deep reinforcement learn-
ing planning methods, and experimentally proved that although intelligent optimization
algorithms such as gray wolf algorithm [7], ant colony algorithm [8], particle swarm al-
gorithm, and genetic algorithm [9] can initially solve the path planning problem, these
algorithms have their own shortcomings. The accuracy of the search cannot be guaranteed,
and it is easy to fall into the problem of local optimization.

The particle swarm algorithm, proposed by Kennedy and Eberhart in 1995 [10], is
widely used to solve various engineering problems because of its fast convergence speed,
ease of implementation, and few parameters for simple modeling [11–14]. However, it
also has defects such as precocious puberty, low precision, and easily falling into local
optimization. Thus, many improved algorithms have been proposed in recent years. In
Kang Yuxiang et al. [15], in view of the problems of precocious particle swarm algorithm and
low optimization accuracy, the speed update model was improved, the adaptive particle
position update coefficient was increased, and a greedy strategy was added to the algorithm
process. In Panda et al. [16], in view of the rapid loss of particle swarm diversity and the
problem of premature convergence, they proposed that the hybrid crossover algorithm
be combined with the particle swarm algorithm to enhance the ability to explore particles
and surrounding space. Ouyang Haibin et al. [17] proposed a hierarchical path planning
method based on the mixed genetic particle swarm optimization algorithm, which first used
the genetic algorithm improved by the artificial potential field method for primary path
planning, and then used the particle swarm algorithm to optimize the path for secondary
optimization. However, the method does not do a good job of fusing the two algorithms.
Song et al. [18] proposed a new path smoothing method. An adaptive fractional-order
velocity is introduced to enforce some disturbances on the particle. A new strategy is
developed to plan the smooth path for mobile robots through an improved PSO algorithm
in combination with the continuous high-degree Bezier curve. Miao et al. [19] proposed a
new particle swarm optimization method. The algorithm merges two strategies, the static
exploitation (SE, a velocity updating strategy considering inertia-free velocity) and the
direction search (DS) of Rosenbrock method, into the original PSO.

In this paper, a particle swarm optimization algorithm (PSO) based on parameter and
restart strategy improvement is proposed, and it is applied to the path planning problem.
We named the proposed algorithm RDS-PSO, where R represents restart strategy, D rep-
resents dynamic adjustment, and S is for spline interpolation. The uniform distribution,
inverted S-type inertia weight coefficient, cubic spline interpolation function, and enhanced
control learning factor are introduced in the PSO algorithm, and a restart strategy is added
to enhance the global optimization performance of the algorithm. Finally, its effectiveness
was verified in an experimental environment with obstacles. Experimental results show
that, compared with other path planning algorithms, the proposed RDS-PSO can achieve
better results in both complex and simple environments.

2. RDS-PSO Algorithm
2.1. Standard Particle Swarm Algorithm

The PSO algorithm is a population-based optimization problem heuristic strategy
proposed by Kennedy and Eberhard in 1995. The core of the PSO algorithm is to share
information through individuals in the group, so that the motion of the entire group is
transformed from disorder to order in the solution space problem, so as to obtain the
optimal solution of the problem. The result of each optimization problem is performed by
Equations (1) and (2). The first term of the velocity update Formula (1) is the inertia part,
which indicates that the next move of the particle is influenced by the size and direction of
the velocity of the last flight, and the inertia weight w determines how much information
is inherited from the previous generation, thus balancing the global and local search; the
second term indicates that the subsequent move of the particle is influenced by the particle’s
own historical experience, and the closer the particle is to its own historical best position,
the smaller the difference between the second term and the smaller the velocity. From
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Formula (2), it can be seen that the next step position distance is also smaller, which at this
time is conducive to local search; the third term indicates that the next action of the particle
is influenced by the best particle in the group, the same as the second part, the farther the
particle is from the best position in the group, the larger the difference; at this time the
speed is larger, the step length in Formula (2) is also larger, which is conducive to global
search. Therefore, the next step of the particle is determined by three parts: the inertial part,
its own historical experience, and the group historical experience.

Particle velocity update formula:

Vt+1
id = wVt

id + c1r1(Pbestt
id − xt

id) + c2r2(Gbestt
id − xt

id) (1)

Position update formula:
xt+1

id = xt
id + Vt+1

id (2)

where Vt
id is the speed at which the ith particle flies; t is the number of iterations; d denotes

dimensionality; c1 and c2 are the learning factor; r1 and r2 are random numbers within [0, 1]
to enhance randomness; Pbestt

id indicates the best position of particle i in the t iteration;
Gbestt

id represents the best position of the particle population in the t iteration; and w is the
inertia weight coefficient that adjusts the search space searchability.

2.2. Improved Particle Swarm Algorithm
Inertia Weights

Adaptive tuning parameters have always been the focus of research on PSO algorithms.
The change of inertia weight w affects the position of particles, the larger the value of w,
the stronger the global search ability, the weaker the local search ability. Several studies
show that the dynamic adjustment of w can improve the convergence and search accuracy
of PSO. The value of w can vary linearly during a PSO search [20] or dynamically as an
adaptability function based on PSO performance [21]. Since the fixed and simple linear
decrement strategy is not conducive to the global search of particles, this paper proposes
an adaptive and dynamic weight adjustment method, that is, the inertial weight based
on the sin function is introduced in the linear decrement strategy, which makes w take a
larger value in the early iteration period, which strengthens the algorithm’s global search
capability; at the same time, it takes a smaller value in the later stage, and strengthens the
algorithm’s local search capability.

The improved inertia weight formula is:

w = wmax − (wmax − wmin) sin(
π ∗ t

2Itmax
)

2
(3)

where wmax is the maximum inertia weight, wmin is the minimum inertia weight, Itmax is
the maximum number of iterations, and t is the current number of iterations.

As can be seen from the above Figure 1, this improved strategy makes the inertia
weights show an inverted S-shaped decreasing trend throughout the iterative process,
keeping larger values in the early part of the process for a longer time, decreasing faster in
the middle, and keeping smaller values in the later part of the process for a longer time.
This can balance the global search and local search well.

2.3. Learning Factors

As important parameters in PSO, learning factors c1 and c2 have the effect of regulating
the performance of the algorithm, which determines the influence of the particle’s own
historical experience and group experience on the particle motion trajectory, reflecting the
information exchange between particles. c1 and c2 are too large or too small to facilitate
particle search [22]. This paper adopts the power function to perform symmetric treatment
of c1 and c2. The specific formula is as follows:

c1 = αew (4)
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c1 = βe−w (5)

In order to achieve the symmetry effect, after several experiments, the two coeffi-
cients in the equation are taken as α = 0.83 and β = 2. In the improved learning factor
Formulas (4) and (5), it can be found that c1 is decreasing while c2 is increasing. The early
focus on individual information exploration is a feasible solution. The later stage focuses
on the rapid convergence of global information, which not only makes PSO have good
learning ability in the optimization process, but also turns the inertia weight and learning
factor into a variable, which is convenient for practical application and also strengthens the
uniformity in the process of algorithm optimization.

Figure 1. Inertia weight curve graph.

2.4. Cubic Spline Interpolation

In the simulation experiment, it was found that the path of the classical PSO program
has many turning points, the path is not smooth enough, and the dynamic characteristics
are poor during sharp turns. Thus, it is necessary to further improve the algorithm to make
the algorithm more in line with the dynamic adaptability requirements of the robot.

Cubic spline interpolation is a piecewise interpolation method that can be fitted by
multiple interpolation intervals based on cubic polynomials to form a smooth curve, and
the robot movement path fitted with the cubic spline interpolation method is smoother.

The definition and algorithm of cubic spline interpolation are as follows:
In the interval [a, b], there are n + 1 data nodes (x1, y1), (x2, y2), . . . (xn, yn) that are

called cubic spline functions if the following conditions are met.
Each interval (xi, xi+1), where i = 0, 1, . . . , n, satisfies the second cubic polynomial:

fi(x) = ai + bi(x− xi) + ci (x− xi)
2 + di(x− xi)

3 (6)

The function and its first and second derivatives are continuous at the interpolation
point.

f (x) commonly uses endpoint conditions that can satisfy the following three requirements:

• Free boundary: the second derivative at the endpoint is zero.
• Fixed limitation: the range value of the differential function from the beginning to the

end is specified.
• Non-node boundary: the third derivative at the 2nd to the last node is continuous.

The Algorithm 1 process is:
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Algorithm 1 Triple spline interpolation

1: For each of these intervals it is necessary to satisfy:
2: Si(x) = ai + bi(x− xi) + ci (x− xi)

2 + di(x− xi)
3

3: S′i(x) = bi + 2ci (x− xi) + 3di(x− xi)
2

4: S′′i (x) = 2ci + 6di(x− xi)
5: Input parameters x, y Interpolation point n.
6: Calculate step size: hi = xi+1 − xi
7: for i = 1: n − 1
8: Substituting the parameters into the above matrix equation
9: A system of linear equations with m as the unknown is obtained
10: Solve the matrix equation to find the quadratic differential value mi
11: Find a, b, c, d.
12: In the interval (xi, xi+1), the Equation (6) is obtained.
13: end

2.5. Particle Coding

The junction of each segment is termed a path node, and the spline curve of each
segment is distinct. Cubic spline interpolation is a segmental interpolation method. The
cubic spline curve is first-order continuous in nature and second-order continuous at the
node; the number of path nodes denotes the maximum number of turns in the entire path;
in the most challenging instance, obstacles can be avoided after 3 to 4 turns. As a result, the
particle encoding in this paper is based on path nodes.

Assuming that there are path nodes (xm1, xm1), (xm2, xm2), . . . , (xmm, xmm), the co-
ordinates of the start point and end point are (xs, xs), (xt, xt), and n interpolation points
are obtained on the interval (xs, xm1, xm2, . . . , xt) and (ys, ym1, ym2, . . . , yt) by cubic spline
interpolation, and the coordinates of the interpolation points are (x1, x1), (x2, x2), . . . ,
(xm, xm). Finally, the line consisting of the path nodes, interpolation points, and the start
and end points are the robot motion path we require.

2.6. Evaluation Function

In the path planning problem, two conditions are generally satisfied to determine
whether a path is optimal or not: (i) it cannot collide with an obstacle; (ii) the path is
required as short as possible.

The fitness function F constructed in this article is shown in Equation (7), where L
represents the planned path length, and its mathematical expression is Equation (8), where
(xi, xi) is the coordinate of the i interpolation point, and a is a weight coefficient set to 100,
which is used to exclude illegal paths. P is a barrier avoidance constraint function that is
used to determine the safety distance; the calculation formula is shown in (9), where Rm is
the radius of the m-th obstacle, m is the number of obstacles, and c, d is the obstacle’s center
coordinate; the smaller the value of P, the higher the final path’s safety factor.

F = L× (1 + a× P) (7)

L =
n

∑
i+1

√
(x(i+1) − xi)

2 + (y(i+1) − yi)
2 (8)

P =
m

∑
m=1

(MAX(1−

√
((xi − c)2 − (yi − d)2)

Rm
, 0)) (9)

2.7. Restart Strategy

A restart strategy is introduced under the above improvement circumstances in order
to increase the algorithm’s optimization abilities and overcome the problems of local
optimization and precocious puberty. Huberman et al. were the first to use the restart
technique to a stochastic optimization algorithm in 1997 [23]. It has become a standard
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strategy in stochastic optimization algorithms, and it is frequently used to boost algorithm
performance [24]. By reinitializing the generation of fresh potential particles, you can avoid
getting into a local ideal scenario.

In this paper, an iteration threshold is set in the process of the algorithm. If the
optimal solution is not improved in the process of successive H-generation iterations, the
optimal solution will be retained at this time and reinitialized into the next iteration. The
improvement strategy enables the algorithm to effectively jump out of the local optimum,
enhance the global search capability of the algorithm, and avoid premature maturity of
the algorithm.

2.8. RDS-PSO Algorithm

Through the above comprehensive improvements, the inverted S-type inertia weights
better balance the global and local search ability of the algorithm, and the dynamic learning
factor not only strengthens the learning ability of the algorithm in the optimization process,
but also combines the inertia weights and the learning factor into one variable, which is
convenient for practical applications. On this basis, the cubic spline interpolation method
is introduced to smooth the path, which improves the defect of the unsmooth path and
enables the robot to better adapt to the real environment. For the problem that PSO is
prone to falling into local optimum and premature maturity, a restart strategy is introduced
by combining the above improved parameters, and the improved strategy enhances the
algorithm’s optimization-seeking ability and improves the problems of premature maturity
and falling into local optimum. We call the proposed algorithm RDS-PSO.

The basic steps of the RDS-PSO algorithm are as follows.
Step 1: The number of path nodes and the number of interpolation points are de-

termined according to the specific environment, and the starting and ending points
are determined.

Step 2: Set the parameters, initialize the population and particle velocity, and initialize
the population distribution.

Step 3: The coordinates of the interpolation points in the x and y directions are
calculated for each particle using the cubic spline interpolation method.

Step 4: Calculate the adaptation value using Equation (7)
Step 5: The parameters are updated according to Equations (1)–(5), respectively, and

update the local optimal value Pbestt
id and the global optimal value Gbestt

id and save it.
Step 6: According to Equation (9), we confirm whether the updated particle inter-

sects with the obstacle, and apply algorithm 1 to obtain a path consisting of path nodes,
interpolation points, and start-end connections after the update.

Step 7: In the iteration process, determine whether the restart condition is met. If the
restart condition is met, the optimal path is kept at this time, reinitialized, and steps 1 to 6
are executed again; if not, the number of iterations is increased by 1 until the maximum
number of restarts is reached, the algorithm ends, and the path is output.

The specific flowchart is shown in Figure 2.



Electronics 2022, 11, 2339 7 of 14

Figure 2. Flowchart of the RDS-PSO algorithm.

3. Experiments and Analysis of Results
3.1. Experimental Environment and Parameter Settings

The RDS-PSO algorithm and the standard particle swarm algorithm (PSO), the Im-
proved PSO (RandWPSO-SP) based on random inertia weights and cubic spline interpola-
tion [25], and the improved particle swarm optimization algorithm (IPSO) proposed in the
literature [26] were experimentally compared and analyzed to verify the effectiveness and
advancedness of the proposed algorithm in solving the robot path programming problem.
This evaluates the algorithm’s performance in terms of path planning for robots.

In order to ensure the objectivity and fairness of the experiment, all algorithms use the
same software and hardware platform for experimentation, the simulation environment
is Windows 10, Core i5, CPU (2.4 GHz), memory 12 GB, programming environment
MATLAB R2019b. In order to ensure the authenticity of experimental data, 30 independent
experiments on each algorithm, the experimental data were averaged.

In the simulation experiment, the parameters of the four algorithms, such as pop-
ulation size and maximum number of iterations, were consistent with Itmax = 100,
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Npop = 150, In the standard PSO, the inertia weights and learning factors, w = 0.9,
c1 = 1.5, c2 = 1.5, RandPSO-SP and the same parameter settings in this algorithm are
consistent, wmax = 0.9, wmin = 0.4, the number of cubic spline interpolation points is set to
100, and the boundary is non-node boundary. Among them, the learning factor regulation
parameters in the algorithm of this paper are α = 2, β = 0.83.

In order to verify the universality of the algorithm in the path planning problem, the
simulation experiment is carried out on MATLAB.

3.2. Experiments in Map 1

There are many obstacles in map 1, where obstacles are represented by blue circles. As
can be seen from Figure 3, compared with the other three algorithms, the RDS-PSO of this
algorithm has a shorter path, the least inflection point, and because the obstacles are more
scattered, the best path is almost straight, and the other paths are smoother, which is due to
the use of cubic spline interpolation, so the path is smoother.

Figure 3. Comparison of path planning.

The iterative process of RDS-PSO is shown in Figure 4, and it can be seen that the
algorithm has performed two restarts and finally found the optimal path because the
algorithm has added a restart strategy. When the algorithm stagnates, it can be considered
that the algorithm falls into local optimization; at this time, a new randomly distributed
particle is added, combined with the inverted S-type inertia weight and the learning
factor improvement method to improve the algorithm search ability, and also uses the
characteristics of PSO convergence speed to shorten the iteration time; and restart multiple
times to find the optimal path to achieve the purpose of jumping out of the local optimal.

The fastest convergence of IPSO in iterative Figure 5 is due to the addition of enhanced
learning factors, but it can be seen in Table 1 that the algorithm is less robust and difficult
to jump out when it falls into local optimality. RandWPSO-SP and PSO converge at
the same rate, converging around 10 generations, but the optimal path was not found.
RandWPSO-SP is too random; although the perturbation is obvious, it is easy to miss
the optimal solution, and when the particles converge, it is not easy to jump out of the
local optimal.
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Figure 4. RDS-PSO iteration.

Figure 5. Iteration of three algorithms.

The data in Table 1 are the path results obtained by running the algorithm indepen-
dently for 30 times in map 1, and an accuracy rate is introduced in the table as an evaluation
index to judge the stability of the algorithm, that is, to find the optimal solution or the
suboptimal solution is to find the correct path. It can be seen from the table that the average
path length, the worst path, and the average simulation run time of the RDS-PSO are better
than the other three algorithms, and the four algorithms have found the optimal path, but
the RDS-PSO has the highest accuracy rate, only once did not reach the optimal value,
which is due to the introduction of the restart strategy. When it falls into the local optimal,
you can find a new solution in time, combined with the improved inverted S-type inertia
weight and symmetric learning factor to enhance the search ability while improving the
convergence speed. In this way, many optimizations are sought in a short period of time,
which greatly enhances the optimization ability of the algorithm, and the optimization
results are more stable.
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Table 1. Comparison of algorithm performance.

Algorithm Longest Path Shortest
Path

Average
Path

Average
Time (s) Accuracy

PSO 12.89 15.34 13.6 29.86 47%
IPSO 12.9 15.85 13.96 30.7 57%

RandWPSO-SP 12.89 15.45 13.47 29.46 60%
RDS-PSO 12.89 13.16 12.94 29.10 94%

3.3. Experiments in Map 2

In the experimental map 2, the environment is more complex. With continuous
obstacles, there is less room at the beginning, fewer paths to choose from, and it is easier to
fall into local extremums; therefore, the ideal path must span a tighter area.

As can be seen in Figures 6 and 7, the path prepared after two RDS-PSO restarts is the
shortest and smoothest. As can be seen in Figure 8, RandWPSO-SP has multiple jumps
out of the native extremum, which is due to the addition of random inertia weights, which
strengthens particle randomness. While the ultimate designing path is also shorter, the
shortest path is not found, indicating that the algorithmic rule is ineffective in improving
performance. Around the twentieth generation, IPSO and PSO merged. IPSO discovered
a more robust path, owing to the employment of linear decreasing inertia weights and
unified learning factors to improve algorithmic rule search performance. However, the
convergence speed is swift, and the algorithmic rule search performance is improved.

Table 2 shows the path results of the four algorithms running independently 30 times
in map 2. It can be seen from the table that the optimal solutions of the four algorithms
are the same, but the worst solutions are very different, reflecting the difference in the
optimization ability of the algorithms. Compared with experimental map 1, experimental
map 2 is more complex, so the accuracy of the four algorithms is reduced. The average
time of RDS-PSO is slightly longer, which is caused by the restart mechanism, but the
average path length and accuracy rate are the best of the four algorithms, indicating that
the optimization performance and robustness of the algorithm have been greatly improved.

Figure 6. Comparison of path planning.
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Figure 7. RDS-PSO iteration.

Figure 8. Iteration of three algorithms.

Table 2. Comparison of algorithm performance.

Algorithm Longest Path Shortest
Path

Average
Path

Average
Time (s) Accuracy

PSO 13.25 16.45 14.2 26.9 20%
IPSO 13.28 14.58 14.00 26.2 40%

RandWPSO-SP 13.29 15.24 14.03 25.76 50%
RDS-PSO 13.25 14.13 13.58 29 80%

3.4. Experiments in Map 3

Considering the diversity of actual obstacles, if all types of obstacles are expanded
into circles, the feasible route may disappear, so this paper designed a third map for
experimentation, as shown in Figures 9 and 10 below.
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Figure 9. Path planning of RDS-PSO in map 3.

Figure 10. Path planning of RDS-PSO in map 3.

In experimental map 3, slender strips of various sizes are set up to evaluate the
algorithm’s universality and stability. Where-type barriers are used to see if the algorithm
will fall into a state of local optimality. The final path fully avoids obstructions, is not
“misled” by the center section of the gate, and chooses the best path, as can be seen from
the planned route. The algorithm successfully avoided the obstacle, found the best path,
and the path is also very smooth, as shown in Figure 10. Figure 10 enlarges the map range
and sets up a continuous overlapping long bar obstacle. The starting point to the end point
requires multiple turns, increasing the difficulty of planning. This report also confirms the
search performance, ubiquity, and trustworthiness.

4. Conclusions

In this paper, an improved particle swarm algorithm combined with cubic spline inter-
polation is proposed to solve the robot path planning problem. For the “precociousness” in
the basic PSO and some improved algorithms, the search ability is poor, it is easy to fall
into local extremums, and it is difficult to jump out, resulting in problems such as search
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stagnation. First of all, the key parameters of PSO are improved, a new inverted S-type
inertia weight and symmetric learning factor are introduced, and these three parameters are
unified into one variable, which is convenient for practical application, improves the global
optimization ability of the algorithm, and also improves the uniformity in the process of
algorithm optimization, and enhances the search performance of the algorithm. At the
same time, combined with the characteristics of the fast convergence speed of the particle
swarm algorithm, a restart strategy is introduced, and when the algorithm search is stalled,
it is reinitialized with random particles, which makes it easier for the algorithm to jump out
of the local extremum, and also solves the problem of not being able to find a solution due
to “precocious puberty”. On this basis, the path nodes in the cubic spline interpolation are
encoded as individual particles, so that the PSO and cubic spline interpolation method are
combined with the robot path planning to plan a smooth path. An experimental compari-
son of four algorithms was carried out in two environments, and RDS-PSO was tested in
complex environments, and the experimental results showed that the RDS-PSO improved
algorithm in this paper had better solution performance under the same time, the shortest
path of planning, the highest success rate, and the more stable algorithm, which proved the
effectiveness and superiority of the improved algorithm in path planning problems.
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2. Yildirim, M.Y.; Rüştü, A. A Comparative Study of Optimization Algorithms for Global Path Planning of Mobile Robots. Sakarya

Univ. J. Sci. 2021, 25, 417–428. [CrossRef]
3. Wang, H.; Yin, P.; Zheng, W.; Wang, H.; Zuo, J. Path planning of mobile robots based on improved A* algorithm and dynamic

window method. Robotics 2020, 42, 346–353. [CrossRef]
4. Tan, B.; Luo, J.; Luo, Y.; Hu, C.; Zhuo, J.; Bai, Z.; Tian, J. Robot path planning for improved RRT algorithm. J. Chongqing Univ.

2022, 25, 1–13. Available online: http://kns.cnki.net/kcms/detail/50.1044.N.20220301.1410.005.html (accessed on 19 June 2022).
5. Liu, J.-S.; Ji, H.-Y.; Li, Y. Robot path planning based on improved bat algorithm and cubic spline interpolation. Acta Autom. Sin.

2021, 47, 1710–1719. [CrossRef]
6. Sun, H.; Hu, C.; Zhang, J. Deep Reinforcement Learning Methods for Motion Planning of Mobile Robots. Control Decis. 2021,

36, 1281–1292.
7. Wang, Y.; Jiang, X. Robot path planning using a hybrid grey wolf optimization algorithm. Comput. Eng. Sci. 2020, 42, 1294–1301.
8. Li, T.; Zhao, H. Path Optimization of Mobile Robot Based on Evolutionary Ant Colony Algorithm. Control Decis. 2022. [CrossRef]
9. Xie, C.; Ying, L.I. Path planning of mobile robot based on improved algorithm. J. Chongqing Univ. 2021, 44, 140–148.
10. Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
11. Wang, X.; Wu, H.; Miao, Y.; Zhu, H. A Hybrid Routing Protocol Based on Naïve Bayes and Improved Particle Swarm Optimization

Algorithms. Electronics 2022, 11, 869. [CrossRef]
12. Zhu, S.P.; Keshtegar, B.; Seghier, M.E.A.B.; Zio, E.; Taylan, O. Hybrid and enhanced PSO: Novel first order reliability method-based

hybrid intelligent approaches. Comput. Methods Appl. Mech. Eng. 2022, 393, 114730. [CrossRef]
13. Tian, S.; Li, Y.; Kang, Y.; Xia, J. Multi-robot path planning in wireless sensor networks based on jump mechanism PSO and safety

gap obstacle avoidance. Future Gener. Comput. Syst. 2021, 118, 37–47. [CrossRef]
14. Zhao, Q.; Li, C.; Zhu, D.; Xie, C. Coverage Optimization of Wireless Sensor Networks Using Combinations of PSO and Chaos

Optimization. Electronics 2022, 11, 853. [CrossRef]

http://doi.org/10.16984/saufenbilder.800067
http://doi.org/10.13973/j.cnki.robot.190305
http://kns.cnki.net/kcms/detail/50.1044.N.20220301.1410.005.html
http://doi.org/10.16383/j.aas.c180855
http://doi.org/10.13195/j.kzyjc.2021.1324
http://doi.org/10.3390/electronics11060869
http://doi.org/10.1016/j.cma.2022.114730
http://doi.org/10.1016/j.future.2020.12.012
http://doi.org/10.3390/electronics11060853


Electronics 2022, 11, 2339 14 of 14

15. Kang, Y.; Jiang, C.; Qin, Y.; Ye, C. Robot Path Planning and Experiment with an Improved PSO Algorithm. Robot 2020, 42, 71–78.
[CrossRef]

16. Panda, A.; Mallipeddi, R.; Das, S. Particle swarm optimization with a modified learning strategy and blending crossover. In Proceedings
of the IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017.

17. OuYang, H.; Quan, Y.; Gao, L.; Zou, D. Hierarchical path planning method based on mixed genetic particle swarm optimization
algorithm. J. Zhengzhou Univ. 2020, 41, 34–40.

18. Song, B.; Wang, Z.; Zou, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree
Bezier curve. Appl. Soft Comput. 2021, 100, 106960. [CrossRef]

19. Miao, K.; Feng, Q.; Kuang, W. Particle Swarm Optimization Combined with Inertia-Free Velocity and Direction Search. Electronics
2021, 10, 597. [CrossRef]

20. Chen, G.; Jia, J.; Han, Q. Study on the Strategy of Decreasing Inertia Weight in Particle Swarm Optimization Algorithm. J. Xi’an
Jiaotong Univ. 2006, 40, 53–56. [CrossRef]

21. Nan, J.; Wang, X. Particle swarm optimization algorithm with improved inertia weight. J. Xi’an Polytech. Univ. 2017, 31, 835–840.
[CrossRef]

22. Zhao, Y.; Fang, Z. Particle swarm optimization algorithm with weight function’s learning factor. J. Comput. Appl. 2013,
33, 2265–2268. [CrossRef]

23. Huberman, B.A.; Lukose, R.M. TadHogg. An Economics Approach to Hard Computational Problems. Science 1997,
275, 3. [CrossRef]

24. Chen, G.; Xie, X.; Xu, Y.; Jun, G.U. The construction of stochastic algorithm restart strategy and its application in TSP. Chin. J.
Comput. Sci. 2002, 514–519.

25. Li, X.; Wu, D.; Zhao, Z.; Wang, X.; Zhang, L. Path Planning Method for Indoor Robot Based on Improved PSO. Comput. Meas.
Control 2020, 28, 206–211. [CrossRef]

26. Li, X.; Wu, D.; He, J.; Bashir, M.; Liping, M. An Improved Method of Particle Swarm Optimization for Path Planning of Mobile
Robot. J. Control Sci. Eng. 2020, 2020, 3857894. [CrossRef]

http://doi.org/10.13973/j.cnki.robot.190035
http://doi.org/10.1016/j.asoc.2020.106960
http://doi.org/10.3390/electronics10050597
http://doi.org/10.7652/xjtuxb200601013
http://doi.org/10.13338/j.issn.1674-649x.2017.06.018
http://doi.org/10.3724/SP.J.1087.2013.02265
http://doi.org/10.1126/science.275.5296.51
http://doi.org/10.16526/j.cnki.11-4762/tp.2020.03.043
http://doi.org/10.1155/2020/3857894

	Introduction 
	RDS-PSO Algorithm 
	Standard Particle Swarm Algorithm 
	Improved Particle Swarm Algorithm 
	Learning Factors 
	Cubic Spline Interpolation 
	Particle Coding 
	Evaluation Function 
	Restart Strategy 
	RDS-PSO Algorithm 

	Experiments and Analysis of Results 
	Experimental Environment and Parameter Settings 
	Experiments in Map 1 
	Experiments in Map 2 
	Experiments in Map 3 

	Conclusions 
	References

