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Abstract: Existing anatomical landmark detection methods consider the performance gains under
heavyweight network architectures, which lead to models tending to have poor scalability and
cost-effectiveness. To solve this problem, state-of-the-art knowledge distillation (KD) methods are
proposed. However, they only require the teacher model to guide the output of the final layer of the
student model. In this way, the semantic information learned by the student model is very limited.
Different from previous works, we propose a novel KD-based model-training strategy, named feature-
sharing fast landmark detection (FSF-LD), which focuses on intermediate features and effectively
transfers richer spatial information from the teacher model to the student model. Moreover, to
generate richer and more reliable knowledge, we propose a multi-task learning structure to pretrain
the teacher model before FSF-LD. Finally, a tiny and effective anatomical landmark detection model
is obtained. We evaluate our proposed FSF-LD on a public 2D hand radiograph dataset, a public
2D cephalometric radiograph dataset and a private 2D hip radiograph dataset. On the 2D hand
dataset, our FSF-LD has 11.7%, 12.1%, 12.0,% and 11.4% improvement on SDR (r = 2 mm, r = 2.5 mm,
r = 3 mm, r = 4 mm) compared with other KD methods. The results suggest the superiority of FSF-LD
in terms of model performance and cost-effectiveness. However, it is a challenge to further improve
the detection accuracy of anatomical landmarks and realize the clinical application of the research
results, which is also our next plan.

Keywords: knowledge distillation; multi-task learning; landmark detection; teacher–student learning

1. Introduction

Accurate anatomical landmark detection is a primary and vital task in medical image
analysis, establishing treatment programs and prognosis, due to its important role in diag-
nosing various diseases [1–4]. However, manually locating landmarks is time-consuming,
and the individual variation between different doctors results in quality deviations. There-
fore, the demand for reliable automatic detection of anatomical landmarks has been increas-
ing [5]. Remarkable advances in anatomical landmark detection have been witnessed with
the rapid development of deep convolutional neural networks (CNN). Ref. [6] proposed a
multi-task learning method, which trains models to predict the landmarks and edges simul-
taneously. Capturing the resolution between landmarks greatly improved the performance
of the models. Ref. [7] proposed a novel CNN architecture and split the landmark detec-
tion into two easier substeps: first, locally accurate but ambiguous candidate predictions;
and second, refined landmark detection. Ref. [8] applied an end-to-end network named
CephaNN that includes two novel parts: the multi-head part and the attention part. Ref. [9]
designed a cascaded three-stage network to localize cephalometric landmarks. However,
these models are often too large to be deployed on resource-limited devices, which is an ob-
stacle to the wide application of deep learning in clinical medicine. Therefore, the purpose
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of this paper is to decrease the scale of the model without model performance degradation,
improve the detection accuracy of anatomical landmark detection, and achieve high-quality
automatic detection of anatomical landmarks.

As a model compression and acceleration technology, knowledge distillation (KD)
has broad applications in computer vision (CV), speech recognition, natural language
processing (NLP), etc. KD is often characterized by the so-called ‘Student–Teacher’ (S-
T) learning framework, and its training objective is to transfer the knowledge from a
pretrained teacher model to a tiny target model. Based on the principle of KD, we propose a
cost-effective model-training strategy for anatomical landmark detection, which decreases
the scale of the model without model performance degradation. Unlike natural images,
radiograph medical images often have low contrast. The anatomical landmarks from
different patients appear diverse in shape, which makes model training difficult. Ref. [10]
considered the differences between the features of the teacher and student in different
areas and proposed focal and global distillation (FGD) to reduce background interference.
Ref. [11] proposed an online KD framework named OKDHP which is designed as a one-
stage knowledge distillation model of human body structure.

As Figure 1 shows, different from previous methods [12], we design feature-sharing
knowledge distillation (FSF-LD), which enables learning richer information from the teacher
and provides more flexibility for performance improvement. Moreover, it is known that
a poor teacher is prone to mislead a student model with noise, resulting in poor network
performance. Hence, to ensure the feasibility of FSF-LD and improve the performance of
the teacher model, we pretrain the teacher model with a multi-task structure. It contains
two task branches: a landmark detection task and a segmentation of landmark’s local neigh-
borhood task. Considering their similarity, the teacher model will learn more robust and
universal feature representations. Moreover, we impose the Non-Local Block (NLB) [13]
to process the output of the encoder, which adaptively integrates local features with their
global dependencies to capture contexts. Thus, the teacher model obtains more topology
and global structure information.

Teacher Model

Student Model Output

logit transfer

Fast KD Feature-Sharing KD(Ours)

Teacher Model

Student Model Output

Output

feature transfer

SEG

patch segmentation branchesSEG

Output

Figure 1. Different from Fast-KD [12], our proposed FSF-LD focuses on intermediate features and
transfers them in an effective way. Moreover, to improve the teacher model’s performance, we design
a multi-task structure to pretrain the teacher model. The details are provided in Section 3.
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In summary, our contributions are as follows:

• Focusing on the issue of anatomical landmark detection model deployment, we
propose a model-training method named feature-sharing fast landmark detection (FSF-
LD), which enables a lightweight model to approximately achieve high performance
as good as that of a heavy but strong model. Our proposed FSF-LD outperforms
state-of-the-art KD methods on landmark detection.

• Moreover, we propose a multi-task learning (MTL) method to pretrain the teacher
network and improve its ability to exploit features and represent knowledge. We
carry out some extensive experiments to validate the efficiency and superiority of our
MTL methods.

The layout of this paper is as follows: Section 2 describes related work; Section 3
describes the implementation of the algorithm and the details of the models; Section 4 de-
scribes the datasets, evaluation methods, and the analysis of experimental results; Section 5
discusses the conclusions and future work.

2. Related Work
2.1. Anatomical Landmark Detection

Anatomical landmark detection plays an important role in medical image analysis.
Unfortunately, manual annotation is typically tedious, time-consuming, and subjective.
To address these difficulties, many CNN-based methods have been used to automatically
localize landmarks in medical images.

Recently, Ref. [7] proposed a novel CNN-based method named Spatial Configuration-
Net (SCN), which splits the localization detection task into two simple subproblems. One
component makes locally accurate but ambiguous candidate predictions, while the other
component improves robustness to ambiguities by incorporating the spatial configuration
of landmarks. Inspired by [7], we extract the landmark coordinates from the heatmap
images in two branches. However, this method also suffers from inter- and intra-user
variability. Ref. [9] proposed cascaded three-stage convolutional neural networks to predict
cephalometric landmarks automatically. This model obtains inefficiencies during training
and testing because it includes 21 individual CNN models which result in a high cost.
Ref. [6] imposed the relative position constraints on each landmark by defining edges
among landmarks according to the clinical significance. With multi-task learning, the
model can predict the landmarks and edges simultaneously. In this paper,we use a multi-
task learning method due to its excellent performance in anatomical landmark detection.
Refs. [14–16] proposed an advanced adversarial training method to defend against adver-
sarial examples which are samples created by adding a little noise to the original sample
data. The proposed method can correctly classify adversarial examples which will be
wrongly classified by a neural network.

However, most existing state-of-the-art methods tend to have very deep and wide
cumbersome models, which require large computation and amounts of labeled datasets.
These limitations have hindered their clinical application. In this paper, we design a model-
training strategy named feature-sharing fast landmark detection (FSF-LD) structure to
obtain fast landmark detection models.

2.2. Knowledge Distillation

Knowledge distillation (KD) was originally proposed and generalized in classification
tasks [17], and it refers to effective techniques that facilitate the training process of tiny
models under the supervision of large models. The knowledge is transferred by minimizing
the differences between the knowledge representations they produce. The large model
providing knowledge is called the teacher model, and the tiny model learning knowledge
is called the student model. The knowledge representations here can refer to logits informa-
tion, intermediate features, and so on. Ref. [17] used teacher model outputs as soft targets.
Ref. [18] captured spatial attention maps and defined them as knowledge representations
to transfer. Ref. [19] defined the distilled knowledge to be transferred as the flow between
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two layers. To obtain a better student model, Ref. [20] designed an information–theoretic
framework for knowledge transfer which formulates knowledge transfer as maximizing
the mutual information between the teacher and the student networks.

It is crucial for KD to design the knowledge representation and the method of infor-
mation transferring [21]. Different from classification tasks which refer to category-level
discriminative knowledge, landmark detection requires richer structured information and
complex knowledge representation. Ref. [12] proposed a new fast pose distillation training
strategy in human pose estimation. It adopted knowledge distillation and provided extra
supervision guidance via the mimicry loss function. Ref. [22] presented MoVNet, a 3D
real-time human pose estimation model where a heatmap and location map are transferred
as knowledge. Therefore, we can conclude that an effective knowledge representation is
supposed to express learned information in a more general way [21].

Most existing knowledge distillation methods focus on deep intermediate features;
logit distillation methods ignore intermediate features resulting in poor performance.
Inspired by [12,21], this paper makes an effort to explore and compare various methods
of knowledge representation and transfer in landmark detection. Furthermore, we try to
explain their working rationales.

2.3. Multi-Task Learning

As an excellent learning paradigm in machine learning, multi-task learning (MTL)
was applied to exploit useful information from related tasks [23]. Benefiting from the
extra information, MTL improves its generalization ability and makes latent and effective
features easy to capture. Originally, an important motivation of MTL was data sparsity
alleviation by aggregating existing knowledge in all the tasks to obtain a more accurate
learner for each task. Ref. [23] classifies the MTL structure into five categories. The most
widely used MTL structure is a feature-learning approach, which can be implemented
by a hard parameter-sharing structure. Considering the similarity of related works, it is
reasonable to assume that different tasks share a common feature representation. In [24],
they transfer landmark detection tasks into landmark segmentation of the landmark’s local
neighborhood tasks. Inspired by [24], we make a bold and reasonable assumption that
there is a strong similarity between the segmentation of landmark local neighborhoods
and landmark detection tasks. They both exploit the local area information around the
landmark as a strong identification of the landmark. The common semantic information
for the two tasks is universal and effective.

The performance of the student model is influenced by the teacher model.Therefore,
in this paper, we optimize the teacher model on both landmark detection tasks and segmen-
tation of landmark local neighborhood tasks to improve the teacher model’s performance.
In this way, it enables the pretraining of a stronger teacher model. Thus, the student model
is easy to learn from the knowledge and improve its performance. We will state our work
in detail in Section 3.3.

3. Feature-Sharing Fast Landmark Detection Strategy
3.1. Anatomical Landmark Detection Task

Anatomical landmark detection aims to predict the coordinates of anatomical land-
marks on a given medical image. To train a model in a supervised manner, we should have
access to a training dataset {Ii, Gi}N

i=1, which contains N medical images. Ii and Gi are the
i-th medical image and corresponding landmarks’ coordinates. If medical image Ii with K
landmarks, Gi in the image space is defined as

Gi = {gi
1, ..., gi

K} ∈ RK×2 (1)

where gi
k is a landmark of the i-th medical image in a set of k landmarks. The medical

image Ii ∈ RW×H×3, and W, H is the width and height of Ii.
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Generally, for landmark detection, each landmark is converted into a confidence map.
The landmark detection model takes processed pictures as input and is responsible for
predicting and regressing the confidence map.

3.2. Student Model and Original Teacher Model

Considering the outstanding performance of U-net [25] on anatomical landmark detection,
we use UNet4 as the student model and UNet5 as the original teacher model. The channels in
UNet4 are [32, 64, 128, and 256], and the channels in UNet5 are [64, 128, 256, 512, and 1024].

3.3. Our Proposed FSF-LD Training Procedure

The whole FSF-LD training procedure is shown in the following:
Step 1. Pretrain teacher model: As Figure 2 shows, the teacher model is pretrained

with the multi-task structure to make knowledge rich, general, and reliable.

Figure 2. The multi-task learning framework for teacher model pretraining: There are two branches:
the segment branch (top) and the landmark detection branch (bottom). The segment branch processes
a medical image to predict a segmented mask and the landmark branch predicts a heatmap as shown
in Figure 3.

Figure 3. The segmentation mask and ground truth heatmap: (a) the segmentation mask, which is a
local neighborhood patch Pi

k centered at landmark gi
k with radius r = 1 pixels; (b) the groud truth

heatmap, which is a Gaussian distribution centered at landmark gi
k with the σ = 1.5.
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Step 2. Knowledge distillation: As Figure 4 shows, we extract the intermediate spatial
heatmaps from a teacher model as extra supervision for the student. Then we train a target
student model UNet4 to locate landmarks and mimic the spatial features with the proposed
loss function Latten (10).

Encoder Decoder

𝑥

ℒ𝐹𝑆𝐹−𝐾𝐷

ො𝑦 𝑦

ℒ𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘

Teacher model

Student model

𝑥

64

128

512
256

1024

64

128
256

512

Encoder/Decoder Block 3x3 Convolutional Layer

Rectified Linear Unit (ReLU) Layer

Batch Normalization Layer

Unet4 Encoder/Decoder Block Unet5 Encoder/Decoder Block

Figure 4. An overview of the feature-sharing fast landmark detection (FSF-LD) model-training
strategy: Apart from the ground truth, the pretrained teacher model provides a student model with
extra supervision guidance via LFSF−KD. The loss LFSF−KD imposes the student model to imitate
the teachers’ representations from intermediate layers.

3.4. Pretrain Teacher Model

In KD, a reliable teacher model is the prerequisite to ensuring the performance of the
student model. Consequently, building a well-performing teacher model is essential to
provide richer and more general knowledge; otherwise, the student model will be confused
and misguided to incorrect learning directions.

In this paper, we propose a novel and effective multi-task learning structure to promote
teacher models in exploiting and representing knowledge. In this way, a better teacher
model can be obtained, named SEG-UNet5. Figure 2 shows the framework of SEG-UNet5.

As Figure 2 shows, there are two branches: (1) segmentation of the landmark’s neigh-
borhood patch branch (Patch Segmentation); and (2) the landmark detection branch (Land-
mark Detection). Take a 2D hand radiograph dataset as an example to introduce our
model. A 2D hand radiograph image has 37 anatomical landmarks and is first processed as
512× 256 size. The encoder takes the processed hand image as input to extract high-level
features for the following two branches. At the end of encoding, we employ a non-local
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module to capture global structure features, which contain some vital topological structure
information.

For the landmark detection branch, the landmarks Gi in the i-th image Ii are converted
into a confidence map set, named GTi, as shown in Figure 3.

GTi = {gti
1, ..., gti

K} (2)

And gti
k is a 2D Gaussian distribution centered at coordinates xk, yk from Gi

k ∈ Rh×w×1,
defined as

gti
k =

1
2σ2 exp(

−[( x−xk
w )2 + ( y−yk

h )2]

2σ2 ), k = 1, . . . , K (3)

where h and w are the width and height of the input, respectively. Here h = 512 and
w = 256 in the 2D hand radiograph dataset. The hyperparameter σ determines the shape of
the distribution. Here we empirically set σ = 1.5, and K is the total number of landmarks.

Then several convolutional layers are utilized to regress GTi from the features learned
by the encoder and output 37 channel feature maps lmi ∈ Rh×w×37, where each channel
represents a heatmap of a corresponding landmark. For landmark detection, the loss
denoted as Llm is formulated by the mean radial error (MRE), which is consistent with
previous literature [26,27].

Llm =
1
N

N

∑
i=1

K

∑
k=1
‖lmi

k − gti
k‖

2
2 (4)

For the segment branch, we mask a circular image patch Pi
k as white, which is centered

at landmark gi
k with a radius of r as the local neighborhood as Figure 3 shows. Then with

the landmarks Gi in the i-th image Ii as the center, we can obtain a set of segmentation
masks STi, which are formulated as

STi = {sti
1, ..., sti

K} (5)

where sti
k ∈ Rh×w×1 is defined as

sti
k(a) =

{
1 a ∈ Pi

k
0 else

(6)

where a is a pixel on sti
k.

Different from the landmarks branch, these convolution layers serve to regress the seg-
mentation mask STi and output 37 channel feature maps smi with a size of 512× 256, where
each channel represents the local neighborhood patch P of the corresponding landmark.

For the segmentation task, we employ dice coefficient loss [28] to optimize the seg-
mentation of mask STi. It is named Lseg and defined as

Lseg =
1
N

N

∑
i=1

[1− 2 ∑i∈Ω smi · sti

∑i∈Ω sm2
i + ∑i∈Ω st2

i
] (7)

where Ω is the total pixels in the image, smi is 37 channel feature maps, and sti is one of the
set of segmentation masks STi.

In summary, in SEG-UNet5, the final objective function L is combined with Llm and
Lseg as follows:

L = Llm + λ ∗ Lseg (8)

where λ is a balance factor. Here,we set λ = 0.01. Based on MTL, our proposed method
can implicitly improve the ability of teacher model feature extraction during the training
process. It contributes to the later knowledge distillation.
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3.5. Feature-Sharing Knowledge Distillation

It is vital for KD to represent and transfer knowledge effectively [21]. In fact, the
state-of-the-art KD strategy (Fast-KD) [12] imposed student model aligns the teacher model
on the output randomly. The knowledge is expressed in the form of the teachers’ predictive
output heatmap and transferred to the student model by minimizing the proposed mimicry
loss function. However, the gap between their learning capabilities is ignored.

To better express and transfer knowledge, we propose two novel and effective knowl-
edge distillation strategies for the landmark detection task. Inspired from [18], we propose
a feature-sharing fast landmark detection (FSF-LD) structure, shown in Figure 4. It pro-
vides the student model with some spatial feature maps AM instead of the output from
the teacher model. Thus, the student model enables our model to learn where the teacher
mainly focuses. Then it is trained to capture more important feature information by imi-
tating the spatial feature maps learned by the teacher model. Here, AM consists of some
output from the middle layer, defined as

AM = {hp1, hp2, hp3} (9)

In UNet5 and SEG-UNet5, hp1, hp2, and hp3 come from the output of up2, up3, and
up4 blocks. In UNet4, hp1, hp2, and hp3 come from the output of the up1, up2, and
up3 blocks.

With the FSF-LD method, the objective function of the student model, Latten, is
defined as:

Latten = Llm + α ∗ Lak (10)

where Llm is the same as the loss function of the SEG-UNet, and α is the knowledge transfer
ratio. We set α = 0.5, and Lak is defined as

Lak =
1
3

3

∑
i=1

[‖F(thpi)− F(shpi)‖2] (11)

where thpi is the hpi from AM of UNet5 or SEG-UNet5, and shpi is the hpi from AM of
UNet4. The function A(·) is defined as

F(A) =
1
C

C

∑
i=1
|Ai|2 (12)

where A ∈ RW×H×C and F(A), Ai ∈ RW×H , C is the number of the channels. By minimiz-
ing the proposed object function Latten, the student can learn about the teacher-training
process in detail and focus on features that are more important for landmark detection.
Thus, the student can easily master learning skills and improve their performance.

4. Experiments
4.1. Dataset

To illustrate the effectiveness and generalization of our training strategy, we conduct
comparative experiments on two publicly available datasets and a private hip dataset.

4.1.1. 2D Hand Radiograph Dataset

We use a public 2D hand radiograph dataset [29] to investigate the number of hyperpa-
rameters of the teacher model and the effectiveness of our KD training method. The dataset
consists of 895 2D hand radiograph images with an average size of 1563 × 2169 pixels,
acquired with different X-ray scanners. Because the images lack information about physical
pixel resolution, we assume a wrist width of 50 mm determined by two of the annotated
landmarks at the wrist, which is used in [7]. We perform a manual annotation of 37 land-
marks on fingertips and bone joints. According to the ratio of 6:2:2, we split the data into
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the training, test1, and test2 sets, which contain 537, 179, and 179, respectively. During
preprocessing, all images are resized to 512× 256 pixels.

4.1.2. 2D Cephalometric Radiograph Dataset

We also evaluate our proposed method on a public 2D cephalometric X-ray dataset [30].
The dataset consists of 400 2D cephalometric X-ray images with an average size of
1935 × 1935 pixels. Each X-ray image has 19 landmarks, which were the average of two
experienced experts’ annotations. According to the ratio of 6:2:2, we split the data into
the training, test1, and test2 sets, which contain 240, 80, and 80, respectively. During
preprocessing, all images are resized to 512× 512 pixels.

4.1.3. 2D Hip Radiograph Dataset

To verify the generalization of our training strategy, we apply several supplementary
experiments on a private hip dataset. The dataset consists of 210 radiograph images in
total. The resolution of an image is 1935 × 2400 pixels. We perform a manual annotation
of 10 landmarks. Considering the symmetrical structure of the hip joint, we divide a hip
radiograph image into two parts. Thus, the dataset is expanded to 420. Then according
to the ratio of 6:2:2, we split the data into training, test1, and test2 sets, which contain 252,
84, and 84, respectively. During preprocessing, all images are resized to 512× 256 pixels.

4.2. Evaluation Metrics
4.2.1. MRE

The performance of landmark detection methods is evaluated with mean radial error
(MRE) and successful detection rate (SDR) metrics [6]. For landmark detection, the loss
denoted as Llm is formulated by the mean square error (MSE), which is consistent with
previous literature [26,27]. MRE and MSE are functionally equivalent, and here we express
them uniformly in terms of MRE. The MRE is defined as

MRE =
1
N

N

∑
i=1

Ri (13)

where N denotes the number of detected landmarks, and Ri is the Euclidean distance
between the predicted landmarks coordinates and the ground truth.

4.2.2. SDR

The SDR (success detection rate) [9] shows the percentage of landmarks successfully
localized. For a landmark, if the radical error between it and the ground truth is no greater
than r mm (r = 2.0 mm, 2.5 mm, 3.0 mm, 4.0 mm), it is considered a successful detection.
The success detection rate for r mm is defined as below:

SDRr =
H({ŷi : ||ŷi − yi||2 ≤ r)}

H(Ω)
(14)

whereH is the cardinal function, and Ω is the set of predictions over all images.

4.2.3. GFLOPs

Giga Floating-point Operations Per Second (GFLOPs) [31] refers to floating-point
operands, which can be used to measure the complexity of an algorithm/model. The
smaller the GFLOPs, the faster the calculation.

4.3. The Effect of the Multi-Task Pretraining Structure

To validate the validity of our improving-teacher method, we compare the perfor-
mance of UNet5 and SEG-UNet5 on the 2D hand radiograph of the test1 and test2 datasets.
The result is shown in Table 1. In Table 1, MRE and SDR are adopted as the evaluation
metric. It is obvious that the SEG-UNet5 outperforms UNet5 in all indicators in Table 1.
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Table 1. 2D hand radiograph dataset: The comparison results for our proposed improving-teacher
method on the 2D hand radiograph dataset. The student model is UNet4, while the teacher model is
UNet5 and SEG-UNet5. We have bolded the data with the best results.

Model

Test1 Test2

FLOPs(G) Total ParametersSDR (%)
MRE (mm)

SDR (%)
MRE (mm)

r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm

HRNet 44.0 56.2 65.3 76.6 3.0683 41.4 53.4 61.8 73.1 4.1372 7.9211886 9,318,595
UNet4 80.0 81.7 82.6 83.3 4.6741 79.5 81.8 82.7 83.5 4.9473 19.9375 1,948,069
UNet5 95.4 97.3 98.3 99.3 0.9982 94.4 97.2 98.5 99.4 0.9683 104.0 31,381,285

SEG-UNet5 95.8 97.7 98.6 99.4 0.8628 95.1 97.5 98.5 99.4 0.9034 177.35156 46,022,154

In the 2D hand test1 dataset, the SEG-UNet5 has 0.41%, 0.31%, 0.31%, and 0.1%
improvements on SDR (r = 2 mm, r = 2.5 mm, r = 3 mm, r = 4 mm). In the 2D hand
test2 dataset, the SEG-UNet5 has 0.74% and 0.31% improvements on SDR (r = 2 mm,
r = 2.5 mm), and the other metrics of SEG-UNet5 are close to UNet5. This proves that our
proposed segment branch is conducive to obtaining a teacher model with better landmark
detection performance.

For the teacher model in KD, we focus on the landmark’s detection performance, but
also on the feature extraction capacity. Therefore, we investigate several spatial feature
maps learned by UNet5 and SEG-UNet5 on the 2D hand radiograph test1 dataset, as
shown in Figure 5. We adopt different colors to represent the numerical value, and the
darker the color represents a lower value, which means less semantic information in this
area. As Figure 5 shows, the color of the feature maps from SEG-UNet5 is lighter, which
means that the value is larger. In other words, the spatial feature map SEG-UNet5 learned
contains more information that contributes to landmark detection compared with UNet5.
These learned spatial maps will be directly or indirectly passed to the student model as
knowledge representations.

Figure 5. Feature map and output examples come from different models in the 2D hand radiograph
dataset: row (A), SEG-UNet5; row (B), UNet5; columns (1–5) show the output of the up3 block, the
up4 block, the final landmark detection heatmap, and ground truth, respectively. The RGB color
value represents the amount of information contained in feature heatmaps.

Moreover, we further apply our method to the 2D cephalometric radiograph dataset
and the 2D hip radiograph dataset. The results are shown in Tables 2 and 3. Similarly, we
select the MRE and SDR as the evaluation metrics. In the hip test1 dataset, the SEG-UNet5
has 1.49%, 2.62%, and 2.04% improvements on SDR (r = 2.5 mm, r = 3 mm, r = 5 mm). The
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other metrics of SEG-UNet5 are close to UNet5. In the hip test2 dataset, the SEG-UNet5 has
2.07%, 1.54%, and 1.38% improvements on SDR (r = 2 mm, r = 2.5 mm, r = 3 mm). In the 2D
cephalometric radiograph test1 and test2 dataset, UNet5 and SEG-UNet5 are comparable
in performance.

In general, our proposed improving-teacher method is in favor of obtaining a better
teacher model. In follow-up experiments, we will prove that with networks applying our
improving-teacher method as teachers, the student model will achieve better results under
the same knowledge distillation strategy.

Table 2. 2D hip radiograph dataset: The comparison results for our proposed improving-teacher
method on the 2D hip radiograph dataset. The student model is UNet4, while the teacher model is
UNet5 and SEG-UNet5.

Model

Test1 Test2

GFLOPs Total ParametersSDR (%)
MRE (mm)

SDR (%)
MRE (mm)

r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm

HRNet 11.8 19.8 29.6 48.2 5.4197 15.4 25.8 35.4 55.2 4.8275 7.9167938 9,317,987
UNet4 64.1 74.7 82.4 89.6 2.1110 62.7 70.6 78.6 88.9 2.5568 19.8125 1,948,069
UNet5 70.1 80.5 86.3 92.8 1.8879 67.5 77.8 84.6 92.8 2.2486 103.78125 31,381,285

SEG-UNet5 69.9 81.7 87.7 94.7 1.8555 95.1 97.5 98.5 99.4 2.2127 176.8516 46,022,154

Table 3. 2D cephalometric radiograph dataset: The comparison results for our proposed improving-
teacher method on the 2D cephalometric radiograph dataset. The student model is UNet4, while the
teacher model is UNet5 and SEG-UNet5.

Model

Test1 Test2

GFLOPs Total ParametersSDR (%)
MRE (mm)

SDR (%)
MRE (mm)

r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm

HRNet 7.4 13.8 20.6 39.6 70.1222 7.4 12.3 17.8 36.1 72.8118 7.9187164 9,318,253
UNet4 52.3 66.7 78.3 89.8 2.1110 61.6 76.1 85.4 93.9 2.8010 19.8125 1,948,069
UNet5 63.5 76.5 84.6 93.9 1.9557 72.7 84.8 90.4 96.6 1.6668 103.78125 31,381,285

SEG-UNet5 63.7 76.0 84.6 93.9 1.9274 74.0 85.5 92.1 96.6 1.6663 176.8516 46,022,154

4.4. Compared with Other KD Methods

To show the priority of our proposed FSF-LD method, we carry out some comparison
experiments on the 2D hand radiograph images from the test1 and test2 datasets. We
evaluate FSF-LD by comparing against the art-of-state KD method in landmark detection,
named Fast-KD [12]. Moreover, we select Unet5 and SEG-Unet5 as the teacher model,
respectively, and Unet4 as the student model.

As Table 4 shows, based on the same teacher model (UNet-5 or SEG-UNet5), our
proposed FSF-LD method can achieve much better performance than Fast-KD. We also
observe that with the same KD method, using SEG-UNet5 as the teacher model leads to a
better student model than UNet5. This indicates that our proposed multi-task structure
contributes to improving the effectiveness of knowledge distillation. Moreover, with SEG-
UNet5 as the teacher model, the student model applying the FSF-LD method achieves the
best performance, with 11.7%, 12.1%, 12.0%, and 11.4% improvements on SDR (r = 2 mm,
r = 2.5 mm, r = 3 mm, r = 4 mm), compared with Fast-KD [12].
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Table 4. 2D hand radiograph dataset: The comparison results for our proposed KD method on
the 2D hand radiograph dataset. The student model is UNet4, while the teacher model is UNet5
and SEG-UNet5.

Teacher Model
Knowledge

Distillation Method

Test1 Test2

SDR (%)
MRE (mm)

SDR (%)
MRE (mm)

r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm

- HRNet 44.0 56.2 65.3 76.6 3.0683 41.4 53.4 61.8 73.1 4.1372

- UNet-4 80.1 81.7 82.6 83.3 4.6741 83.0 85.4 86.4 87.3 3.5670

UNet5
Fast-KD [12] 84.4 86.7 87.7 88.7 3.9785 84.7 86.5 87.4 88.4 3.9494
FSF-LD(ours) 88.0 90.9 92.4 93.8 2.5480 88.3 90.8 92.1 93.2 2.9257

SEG-UNet5
Fast-KD [12] 93.3 96.1 97.3 98.2 1.5257 93.4 95.7 96.9 97.8 1.6445
FSF-LD(ours) 94.3 97.2 98.2 98.8 1.2912 94.1 96.2 97.3 98.1 1.3585

To further determine how our proposed method works, we visualize feature heatmaps
learned by some of the models mentioned in Table 4. As Figure 6 shows, without the teacher
model’s extra supervision, the UNet4 suffers from a limit on parameter capacity and a
lack of feature information. It leads to poor performance of UNet4 on landmark detection,
and (A), (C), and (D) in Figure 6 prove that the role of KD is to transfer the knowledge
learned by the teacher model (e.g., feature information, even noise) to the student model.
We also deploy the HRNet model which is the classical algorithm for landmark detection
tasks on the same datasets, and the results show that it does not work well on the HRNet
network because of the small amount of data, and our method can achieve good results
on a small amount of data. Moreover, comparing (A), (B), and (C) in Figure 6, our FSF-
LD tends to help the teacher model transfer profuse and more important spatial feature
information to students. The differences between the true and predicted values of the five
landmark detection methods on the hand radiograph images and hip radiograph images,
respectively, are shown in Figure 7 and Figure 8. Correspondingly, some noise is also
introduced. Fortunately, it brings little interference for landmark detection.

To verify our inference, we further apply our method to the 2D cephalometric
radiograph dataset and the 2D hip radiograph dataset. The results are presented in
Tables 5 and 6. UNet applied FSF-LD based on SEG-UNet5 outperforms all other models
on both test datasets.

Table 5. 2D hip radiograph dataset: The comparison results for our proposed KD method on the
2D hip radiograph dataset. The student model is UNet4, while the teacher model is UNet5 and
SEG-UNet5.

Teacher Model
Knowledge

Distillation Method

Test1 Test2

SDR (%)
MRE (mm)

SDR (%)
MRE (mm)

r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm

- HRNet 11.8 19.8 29.6 48.2 5.4197 15.4 25.8 35.4 55.2 4.8275

- UNet-4 64.1 74.7 82.4 89.6 2.1110 62.7 70.6 78.6 88.9 2.5568

UNet5
Fast-KD [12] 63.4 74.0 80.2 89.4 2.4609 62.2 74.9 80.0 91.1 2.3546
FSF-LD(ours) 61.2 72.0 81.0 89.4 2.3665 63.6 74.2 81.2 91.8 2.1146

SEG-UNet5
Fast-KD [12] 64.3 75.6 81.7 90.6 2.2257 64.7 76.0 82.1 90.6 2.2347
FSF-LD(ours) 66.3 77.1 83.9 91.8 1.9821 66.7 76.1 83.1 91.3 1.9710
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Table 6. 2D cephalometric radiograph dataset: The comparison results for our proposed KD method
on the 2D cephalometric radiograph dataset. The student model is UNet4, while the teacher model is
UNet5 and SEG-UNet5.

Teacher Model
Knowledge

Distillation Method

Test1 Test2

SDR (%)
MRE (mm)

SDR (%)
MRE (mm)

r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm

- HRNet 7.4 13.8 20.6 39.6 70.1222 7.4 12.3 17.8 36.1 72.8118

- UNet-4 52.3 66.7 78.3 89.8 3.5213 61.6 76.1 85.4 93.9 2.8010

UNet5
Fast-KD [12] 54.7 68.9 79.5 90.7 2.2899 62.0 77.6 86.3 93.6 2.5698
FSF-LD(ours) 55.1 69.5 79.5 91.2 2.2267 63.2 78.1 87.4 94.4 2.1396

SEG-UNet5
Fast-KD [12] 55.3 72.7 81.1 91.5 2.2752 64.1 78.2 86.7 94.7 2.0041
FSF-LD(ours) 62.0 77.6 86.4 93.6 2.1899 64.6 78.7 87.4 95.2 1.9798

Figure 6. Feature map examples in 2D hand radiograph: rows (A–E) are respectively from UNet4,
UNet4 with Fast-KD on UNet5, UNet4 with Fast-KD on SEG-UNet5, and UNet4 with FSF-LD on
UNet5, UNet4 with FSF-LD on SEG-UNet5; columns (1–4) represent the output of the up3 block, the
up4 block, and the final landmark detection heatmap, respectively. The RGB color value represents
the amount of information contained in feature heatmaps. It intuitively shows the effect of our
proposed improving-teacher method and FSF-LD. Pseudo color values: First, the feature map of
the network output is normalized to between 0 and 1, and then mapped to 0–255, with each value
representing a color.
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Figure 7. Landmark detection examples on hand radiograph images. The blue points represent the
ground truth, and the red points represent prediction from different models: column (A), Unet4;
column (B), Unet4 (Fast-KD on UNet5); column (C), Unet4 (FSF-LD on UNet5); column (D), Unet4
(Fast-KD on SEG-UNet5); column (E), Unet4 (FSF-LD on SEG-UNet5).

Figure 8. Landmark detection examples on hip radiograph images. The blue points represent the
ground truth, and the red points represent predition from different models: column (A), Unet4;
column (B), Unet4 (Fast-KD on UNet5); column (C), Unet4 (FSF-LD on UNet5); column (D), Unet4
(Fast-KD on SEG-UNet5); column (E), Unet4 (FSF-LD on SEG-UNet5).

5. Conclusions

In this paper, we propose a model-training method named Feature-Sharing Fast
Landmark Detection (FSF-LD). In contrast to most existing anatomical landmark detection
models, the FSF-LD aims to obtain a tiny and effective anatomical landmark detection
model, which is easily deployed in clinical practice. First, we build a well-performing large
teacher model by the proposed multi-task learning method. Thus, the teacher model enables
the provision of richer and more general knowledge for the student model. Moreover,
different from Fast-KD, the FSF-LD we proposed focuses on intermediate features and
transfers knowledge in a more effective way. To verify our proposed methods, we carried
out some experiments on a public 2D hand radiograph dataset and a private 2D hip
radiograph dataset. On the 2D hand dataset, our FSF-LD had 11.7%, 12.1%, 12.0%, and
11.4% improvement on SDR (r = 2 mm, r = 2.5 mm, r = 3 mm, r = 4 mm), compared with
other KD methods. On the 2D hip dataset, our FSF-LD has which has 4.57%, 4.19%, 4.61%,
2.68% improvement on SDR (r = 2 mm, r = 2.5 mm, r = 3 mm, r = 4 mm) compared with
other KD methods. We validated the model on three medical datasets, which gains better
results. The results suggest the superiority of FSF-LD in terms of model performance
and cost-effectiveness. It validates the model on several medical datasets, which gains
better results. In the future, we will focus on how to improve the detection accuracy of
anatomical landmarks and the robustness of models, such as modifying the loss function
and implementing some data augmentation strategies. We hope that the next steps can
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achieve better results in anatomical landmark detection of other human bones and apply
our methods to practical clinical applications to save time and space resources.
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