
Citation: Matyukha, V.; Voloshchuk,

S.; Mosin, S. A Configurable IP Core

for Calculating the Integer Square

Root for Serial and Parallel

Implementations in FPGA. Electronics

2022, 11, 2335. https://doi.org/

10.3390/electronics11152335

Academic Editors: Daniel Ziener,

Nikolaos Alachiotis and Hasan Irmak

Received: 29 June 2022

Accepted: 22 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Configurable IP Core for Calculating the Integer Square Root
for Serial and Parallel Implementations in FPGA
Vladimir Matyukha 1, Sergey Voloshchuk 1 and Sergey Mosin 1,2,*

1 LabSystems LLC, Fedoseeva Str. 5, 600000 Vladimir, Russia; vladimir.matyuha@lab-systems.ru (V.M.);
sergey.voloshchuk@lab-systems.ru (S.V.)

2 Institute of Computational Mathematics and Information Technologies, Kazan Federal University,
Kremlyovskaya Str. 18, 420008 Kazan, Russia

* Correspondence: smosin@ieee.org; Tel.: +7-492-260-47-08

Abstract: The development of digital technologies is in many ways associated with an improvement
of integrated technologies, microelectronic components, and the capabilities of hardware acceleration
of the most computationally complex operations. Field-programmable gate arrays (FPGAs) are
actively used for prototyping or the small-scale production of special purpose digital signal processing
(DSP) devices. The implementation of DSP algorithms is variative in nature and affects important
indicators of a produced device, such as the accuracy of the numerical solution, performance,
structural/functional complexity, etc. The architectural features of the FPGA can be used for choosing
an effective DSP algorithm in the form of solving the multicriteria discrete optimization problem.
This paper analyzes and selects an effective algorithm for calculating the integer square root, which
is one of the most frequently used digital signal processing operations. A behavioral model based on
a non-restoring algorithm is presented. The SystemVerilog description of the module for calculating
the square root, presented in the form of a universal configurable IP core, has been developed and
synthesized. The configuration allows one to change the width of the input data bus and select the
serial or parallel processing mode for scalar or vector data. The results of testing and comparison of
the obtained characteristics with the corresponding Xilinx Cordic IP core are presented. The field test
of the proposed IP core implemented in the Xilinx FPGA SOC xc7z045ffg900-2 has demonstrated the
gain in the maximum system frequency at 174 MHz in the sequential mode with a 48-bit input bus
and 169 MHz in the pipelined mode at a reduction of both the structural complexity and the number
of used FPGA internal resources in comparison with the Xilinx Cordic IP core.

Keywords: integer square root; non-restoring algorithm; FPGA design; pipelined data processing

1. Introduction

The operation of square root calculation (OSRC) is often found in DSP algorithms, for
example, when calculating the modulus of a complex number, root-mean square (RMS)
value, and standard deviation, etc. The OSRC is widely used in telecommunication,
including in 5G and beyond 5G mobile systems, for estimating the signal amplitude based
on IQ constituents and bit-error ratio (BER). Hardware implementation can significantly
reduce the time spent on performing this operation.

The programmable logic gate array’s integrated circuits (FPGA) are widely used as
a universal basis for implementation of DSP and specialized digital computers, emphasizing
on performance and improvement of area overheads. For instance, a specialized DSP
processor is proposed, implemented, and estimated on a Xilinx Virtex-5 XC5VSX50T FPGA
chip [1]. The overall performance there was improved by an average of nine times in an FIR
Filter and Matrix Multiplication benchmark. A tool for mapping graphs of add/sub/mul
nodes to DSP blocks on Xilinx FPGAs, ensuring maximum throughput, is developed and
presented in ref. [2]. An approach to strike a favorable balance between utilization of the

Electronics 2022, 11, 2335. https://doi.org/10.3390/electronics11152335 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152335
https://doi.org/10.3390/electronics11152335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1389-2602
https://doi.org/10.3390/electronics11152335
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152335?type=check_update&version=1

Electronics 2022, 11, 2335 2 of 10

FPGA on-chip memory, logic, and DSP resources for convolution computation, which leads
to transformation of the accelerator design space and relaxes the pressure on the required
DSP resources, is proposed in ref. [3]. The multiplier or addition blocks are considered
in ref. [4], which enable the DSP block to directly support the multi-operands addition
operation with high performance and effective use of the chip area. The use of hardware
description languages for the development and implementation of complex functional
devices in the FPGA basis is described in refs. [5,6]. The development of an approximate
square root circuit is presented in ref. [7]. The final solution provides low latency and
power dissipation.

The aim of this paper deals with the development and verification of the OSRC
implementation module as an IP core for subsequent reuse according to the design reuse
paradigm. An important task when implementing an FPGA-based design is the optimal
use of the chip’s internal hardware resources. Modern FPGAs provide an opportunity to
use not only standard logic for a project implementation but also more complex internal
functional blocks, for example, look-up-tables (LUTs), multipliers, block memory, etc.
Knowledge of the architectural features of FPGAs can be used when choosing an effective
algorithm for performing the OSRC (n*) in the form of solving a multicriteria discrete
optimization problem

minn∈DF(n) = F(n∗) (1)

where
D = {1,. . . ,N} is the admissible range of variable parameters for N algorithms;
n ∈ D is the number of the OSRC implementation algorithm from the set of considered

options A = {an}N
n=1;

F(n) = (f1(n), f2(n), f3(n)) is a vector criterion of optimality including:

− An accuracy of square root calculation (f1(n) = −m1n → minn);
− A time of square root calculation (f2(n) = m2n → minn);
− A hardware implementation complexity of the OSRC (f3(n) = m3n → minn);

M = [min] is a 3 × N matrix of initial parameters for the set of considered options A.
There are many algorithms for implementing the OSRC for integers and real num-

bers based on the use of table functions, approximations, iterative numerical methods, or
polynomial approaches. However, not all algorithms are equally applicable for efficient
implementation in the FPGA basis. An algorithm in ref. [8] uses simple arithmetic opera-
tions. The error of the algorithm decreases with increasing iterations. The disadvantages
of the algorithm include suboptimal resource consumption with the required accuracy
of calculations. A 16-bit input bus implementation requires 800 logic gates and 600 flip-
flops. An algorithm in ref. [9] uses a polynomial approach to implementation using digital
signal processors (DSPs) and block memory (BRAM). A 16-bit input bus implementation
requires 177 logic gates, 176 flip-flops, 2 BRAMs, and 2 DSPs. An algorithm in ref. [10] uses
a distributed memory in which precalculated values of the square root are stored. As the
memory size decreases, the number of calculation iterations increases. For a 16-bit input
bus design, 325 pairs of logic blocks are required, including a lookup table and a flip-flop
(LUT-FF). An iterative algorithm for calculating the square root in the CORDIC (coordi-
nate rotation in a digital compute) basis is presented in ref. [11] using shift and addition
operations. This apparatus is often used to calculate trigonometric and special functions as
well. The non-restoring square root algorithm is presented and discussed in refs. [12–16].
The algorithm is based on sequential consideration of a pair of the operand’s bits, so at
each iteration step one bit of the result is formed, and the number of iterations is finite and
deterministically equal to half the length of the operand to calculate the integer part of the
square root. An additional iteration is used to calculate the rounding bit. The algorithm
uses simple arithmetic operations and does not require DSP and/or BRAM. A 16-bit input
bus implementation takes about 200 gates and flip-flops.

The analysis of the existing algorithms for performing the OSRC showed that the non-
restoring algorithm has the best characteristics for implementation in the FPGA basis, taking

Electronics 2022, 11, 2335 3 of 10

into account criterion (1). This paper proposes a behavioral model and implementation
of an IP core for integer square root calculation with customizable restrictions: input data
width from 8 to 128 bits, the number of resources used for a 16-bit bus should not exceed
0.1% of the chip area (with focus on the Xilinx FPGA SOC xc7z045ffg900-2), and a calculation
of the square root with integer precision in a predictable number of clock cycles proportional
to the width of the input bus. Both the model and the SystemVerilog description were
verified. A field full-scale testing of the synthesized IP core and implementation on the
Xilinx FPGA SOC xc7z045ffg900-2 basis were conducted. A comparative analysis of the
obtained characteristics for the implemented IP core with characteristics of the Xilinx IP
core based on the CORDIC algorithm was performed.

2. Integer Square Root Models
2.1. CORDIC-Based Model

The CORDIC (coordinate rotation digital computer) method was originally proposed
for calculating trigonometric functions and coordinate transformation operations [11] and
later was extended to exponential and logarithmic functions, including square root extraction.
The main attraction of the CORDIC method lies in the use of operations in the calculation of
complex functions that are implemented through a combination of simple steps of addition
and shift-operations that require minimal resources for hardware implementation.

The basic CORDIC algorithm for calculating the square root uses the operations
of multiplication, addition/subtraction, and shift, while multiplication, and hence the
entire set of operations involved in the hardware implementation, can be represented by
decomposition of addition and shift only. The algorithm is iterative, allowing for a finite
number of steps to obtain the result.

Basic CORDIC algorithm of square root calculation

function [data_out] = cordic_SQRT(data_in)
% CORDIC square-root calculation
N = ceil(log2(data_in)/2); % number of bits for the result value
Base = 2 ˆ N; % Base assignment
data_out = 0; % the result value initialisation
for m = 1: N + 1, % iterative calculation of the result value
data_out = data_out + Base; % add
if (data_out * data_out) > data_in, % mul and comparison
data_out = data_out − Base; % correction
end
Base = bitshift(Base, −1); % div by 2 (shift left by 1 bit)
end

The Xilinx LogiCORE™ IP CORDIC library includes IP cores for executing complex
functions based on the CORDIC method [17]. There are two architectural configurations
for the CORDIC core: word serial, with multiple-cycle throughput and a smaller silicon
area (Figure 1a), and parallel, with single-cycle data throughput and large silicon area
(Figure 1b).

The CORDIC algorithm requires approximately one Shift-AddSub operation for each
bit of accuracy. A CORDIC core with a parallel architectural configuration implements
these Shift-AddSub operations in parallel using an array of Shift-AddSub stages. A parallel
CORDIC core with N bit output width has a latency of N cycles and produces a new output
every cycle. A CORDIC core implemented with the word serial architectural configuration
implements these Shift-AddSub operations serially, using a single Shift-AddSub stage and
feeding back the output. A word serial CORDIC core with N bit output width has a latency
of N cycles and produces a new output every N cycle [18].

Electronics 2022, 11, 2335 4 of 10Electronics 2022, 11, x FOR PEER REVIEW 4 of 11

(a) (b)

Figure 1. The Xilinx LogiCORE™ IP CORDIC architectural configurations: (a) word serial; (b)
parallel.

The CORDIC algorithm requires approximately one Shift-AddSub operation for
each bit of accuracy. A CORDIC core with a parallel architectural configuration imple-
ments these Shift-AddSub operations in parallel using an array of Shift-AddSub stages. A
parallel CORDIC core with N bit output width has a latency of N cycles and produces a
new output every cycle. A CORDIC core implemented with the word serial architectural
configuration implements these Shift-AddSub operations serially, using a single
Shift-AddSub stage and feeding back the output. A word serial CORDIC core with N bit
output width has a latency of N cycles and produces a new output every N cycle [18].

It should be noted that the Xilinx IP core for the square root calculation is only syn-
thesized for the parallel architecture.

2.2. Proposed Model Based on a Non-Restoring Algorithm
The construction of a behavioral model is based on a non-restoring algorithm for

calculating the integer square root, which uses at each step the simplest operations for
hardware implementation such as the logical shift and subtraction.

The essence of the algorithm is the following. The original number in binary repre-
sentation is split into pairs of bits, and the calculation starts with the most significant pair
of bits. Two numbers are obtained at each iteration: the minuend and the subtrahend.
The minuend is formed by concatenating the remainder from the previous iteration and a
pair of bits from the input number: the most significant pair of bits is the remainder; the
lower pair of bits is a pair of bits from the input number. The subtrahend is formed by
concatenation of the already-calculated bits of the result of extracting the square root and
the constant 012: the number calculated at the previous iteration is put in the high order
bits, and 012 is put in the lower bits. If the difference of these two numbers is greater than
or equal to zero, the found bit of the result is one, and otherwise it is zero. If the difference
is greater than or equal to zero at the current iteration, the difference from the current it-
eration is taken as the remainder. If the difference is less than zero, the remainder from
the previous iteration should be taken as the remainder. The algorithm accurately calcu-
lates the next bit of the integer square root result and the remainder at each iteration.

Thus, the presented algorithm allows one to obtain the result of integer square root
calculation and has the following computational complexity (2): (_ _ 1 (2)_ _ = ((_ 12

where data_in is the input number, and data_out_size is the length of the output number in
bits.

So, the proposed algorithm provides the result of integer square root in nine steps
for a 16-bit input number, in 17 steps for a 32-bit input number, in 25 steps for a 48-bit
input number, and so on.

Figure 1. The Xilinx LogiCORE™ IP CORDIC architectural configurations: (a) word serial; (b) parallel.

It should be noted that the Xilinx IP core for the square root calculation is only
synthesized for the parallel architecture.

2.2. Proposed Model Based on a Non-Restoring Algorithm

The construction of a behavioral model is based on a non-restoring algorithm for
calculating the integer square root, which uses at each step the simplest operations for
hardware implementation such as the logical shift and subtraction.

The essence of the algorithm is the following. The original number in binary repre-
sentation is split into pairs of bits, and the calculation starts with the most significant pair
of bits. Two numbers are obtained at each iteration: the minuend and the subtrahend.
The minuend is formed by concatenating the remainder from the previous iteration and
a pair of bits from the input number: the most significant pair of bits is the remainder;
the lower pair of bits is a pair of bits from the input number. The subtrahend is formed
by concatenation of the already-calculated bits of the result of extracting the square root
and the constant 012: the number calculated at the previous iteration is put in the high
order bits, and 012 is put in the lower bits. If the difference of these two numbers is greater
than or equal to zero, the found bit of the result is one, and otherwise it is zero. If the
difference is greater than or equal to zero at the current iteration, the difference from the
current iteration is taken as the remainder. If the difference is less than zero, the remainder
from the previous iteration should be taken as the remainder. The algorithm accurately
calculates the next bit of the integer square root result and the remainder at each iteration.

Thus, the presented algorithm allows one to obtain the result of integer square root
calculation and has the following computational complexity (2):

O(data_out_size + 1) (2)

data_out_size = ceil
(

f loor(log2(data_in)) + 1
2

)
where data_in is the input number, and data_out_size is the length of the output number
in bits.

So, the proposed algorithm provides the result of integer square root in nine steps for
a 16-bit input number, in 17 steps for a 32-bit input number, in 25 steps for a 48-bit input
number, and so on.

A behavioral model was developed in the MATLAB tool as a function based on the
algorithm described above, where an input variable data_in is the input value, and data_out
is the returned result.

Electronics 2022, 11, 2335 5 of 10

Behavioral model for operation of integer square root calculation

function [data_out] = com_sqrt_calculator(data_in)
data_out = 0;
if data_in ~= 0
data_out_size = ceil((floor(log2(data_in)) + 1)/2); % length of output value (in bit)
data_bin = de2bi(data_in, 2 * data_out_size, ‘left-msb’); % decimal to binary transformation
data_bin = [data_bin 0 0];
register = 0; % register initialization
for i = 1: data_out_size + 1 % iterative calculations
register = 4 * register + bi2de(data_bin((i − 1) * 2 + 1: (i − 1) * 2 + 2), ‘left-msb’);
if (register − 4 * data_out − 1) >= 0
register = register − 4 * data_out − 1;
data_out = 2 * data_out + 1; % shift left and increment
else
data_out = 2 * data_out; % shift left
end
end
output = de2bi(data_out, data_out_size + 1, ‘left-msb’); % decimal to binary transformation
data_out = bi2de(output(1: end–1), ‘left-msb’) + output(end); % rounding the resultend

In practice, DSP algorithms operate on various data structures, both scalars and vectors.
Moreover, in the second case, it is advisable to organize parallel computations in order to
reduce the total processing time, for example, through pipelining.

The proposed behavioral model has the necessary properties for organizing com-
putations in both the sequential and parallel processing modes. The essence of parallel
processing is the use of several homogeneous computing units (CU) that process the
assigned data simultaneously.

The architecture of a pipeline is proposed. The continuous operating character of the
pipelined module and obtaining results for different elements of the input vector data_in
at each step are provided by compensating the calculation iterations by the number of
used computing units (Figure 2); here, N is the number of used CUs; K = ||data_in || is the
length of the vector under processing; j is the ordinal number of the vector element. The
number of the model iterations for one scalar input value is (data_out_size + 1).

Electronics 2022, 11, x FOR PEER REVIEW 5 of 11

A behavioral model was developed in the MATLAB tool as a function based on the
algorithm described above, where an input variable data_in is the input value, and da-
ta_out is the returned result.

Behavioral model for operation of integer square root calculation
function [data_out] = com_sqrt_calculator(data_in)
data_out = 0;
if data_in ~= 0
data_out_size = ceil((floor(log2(data_in)) + 1)/2); % length of output value (in bit)
data_bin = de2bi(data_in, 2 * data_out_size, ‘left-msb’); % decimal to binary transformation
data_bin = [data_bin 0 0];
register = 0; % register initialization
for i = 1: data_out_size + 1 % iterative calculations
register = 4 * register + bi2de(data_bin((i − 1) * 2 + 1: (i − 1) * 2 + 2), ‘left-msb’);
if (register − 4 * data_out − 1) >= 0
register = register − 4 * data_out − 1;
data_out = 2 * data_out + 1; % shift left and increment
else
data_out = 2 * data_out; % shift left
end
end
output = de2bi(data_out, data_out_size + 1, ‘left-msb’); % decimal to binary transformation
data_out = bi2de(output(1: end–1), ‘left-msb’) + output(end); % rounding the result
end

In practice, DSP algorithms operate on various data structures, both scalars and
vectors. Moreover, in the second case, it is advisable to organize parallel computations in
order to reduce the total processing time, for example, through pipelining.

The proposed behavioral model has the necessary properties for organizing com-
putations in both the sequential and parallel processing modes. The essence of parallel
processing is the use of several homogeneous computing units (CU) that process the as-
signed data simultaneously.

The architecture of a pipeline is proposed. The continuous operating character of the
pipelined module and obtaining results for different elements of the input vector data_in
at each step are provided by compensating the calculation iterations by the number of
used computing units (Figure 2); here, N is the number of used CUs; = ‖ _ ‖ is
the length of the vector under processing; j is the ordinal number of the vector element.
The number of the model iterations for one scalar input value is (data_out_size + 1).

Figure 2. A scheme of the pipelined data processing mode.

Thus, the execution time of the OSRC for a K-elements vector in the sequential mode
is (K (data_out_size + 1)) clock cycles.

The use of (data_out_size + 1) computing units operating in parallel should compen-
sate for the module downtime and ensure the possibility of its loading at each clock cycle
at a vector processing.

Figure 2. A scheme of the pipelined data processing mode.

Thus, the execution time of the OSRC for a K-elements vector in the sequential mode
is (K (data_out_size + 1)) clock cycles.

The use of (data_out_size + 1) computing units operating in parallel should compensate
for the module downtime and ensure the possibility of its loading at each clock cycle at
a vector processing.

Thereby, each new i-th input value will arrive at the i-th unit from (data_out_size + 1)
available calculating units, while the previously loaded (i–1) values will pass further along
the pipeline of the corresponding (i–1) computing units at each clock. The loading of the
pipeline is completed at the data_out_size + 1 clock cycle. After that, the result of calculating
the OSRC for the next element of the input vector becomes available at the output of the

Electronics 2022, 11, 2335 6 of 10

pipeline at each clock. The unprocessed elements of the vector are sequentially assigned
to the vacated calculating units, while the j-th element of the vector arrives at the k-th
unit, where

k = jmod(data_out_size + 1) (3)

The execution time of the OSRC for a K-elements vector in the pipeline mode is
(K + data_out_size + 1) clock cycles. Thus, the use of the pipelined mode will provide an
increase in efficiency in comparison with the sequential processing by a factor of

EF =
K(data_out_size + 1)
K + data_out_size + 1

(4)

but it will require the hardware resources at least in (data_out_size + 1) times more.

3. Development of the IP Core on the FPGA Basis

Hardware description languages (HDL) and FPGA CAD tools provide the ability to
develop functional blocks in the form of soft and hard IP cores for subsequent reuse in the
designing of complex systems.

An implementation of the IP core involves the adaptation of the proposed behavioral
model for the sequential and pipelined processing modes, as well as the formation of an ap-
propriate behavioral SystemVerilog description and its synthesis for the selected FPGA basis.

The module being developed has the following configurable input parameters that
ensure the versatility of the IP core, as well as the efficiency of both organizing the com-
putational process and a set of resources occupied after synthesis, considering the initial
requirements and features of the DSP problem:

MODE is the operating mode (sequential (slow)/pipelined (fast)), and
TDATA_WIDTH is the input data width (from 8 to 128 bits).
TDATA_WIDTH parameter allows one to set the width of the input data bus in bits

and can take a value from the set {8, 16, 32, 48, 64, 128}. The IP core is parametrized by an as-
signment of correspondent values to the input parameters (MODE and TDATA_WIDTH)
before synthesis with dependance on the solved task features and values range of operands
under processing. There is a slight difference from the behavioral model: the model each
time calculates the number of iterations depending on the actual value of the input number,
and the module always fixes the bit width of the input data bus and, correspondingly, the
number of computational iterations.

In accordance with the adapted behavioral model, the module is described in the
SystemVerilog language with an orientation to the AXI4-Stream protocol [19] for signal
exchange. The module has the following interface.

The module’s interface

module com_sqrt_calculator #(
parameter MODE = “fast”, // fast, slow
parameter integer TDATA_WIDTH = 32
)(
// Synchro signal and reset
input logic ACLK,
input logic ARESETN,
// Interface S_AXIS_DATA
input logic S_AXIS_DATA_TVALID,
output logic S_AXIS_DATA_TREADY,
input logic [TDATA_WIDTH–1:0] S_AXIS_DATA_TDATA,
// Interface M_AXIS_DATA
output logic M_AXIS_DATA_TVALID,
input logic M_AXIS_DATA_TREADY,
output logic [TDATA_WIDTH/2:0] M_AXIS_DATA_TDATA
);

Electronics 2022, 11, 2335 7 of 10

The synthesis of both the resulting SystemVerilog description of the proposed module
and the Xilinx LogiCORE ™ CORDIC IP core (hereafter Cordic IP core) [17] with similar
initial settings was performed in the Xilinx Vivado® CAD system. The Xilinx FPGA SOC
xc7z045ffg900-2 was used as a basis for the implementation. The results of comparing the
resources being used after synthesis are presented in Tables 1 and 2, where the percentage
of resources used from its total amount in the FPGA is given in parentheses. Characteristic
clock cycles demonstrate the number of cycles required to calculate one square root value.

Table 1. The results of synthesis for the proposed module (sequential mode) and the Cordic IP core.

FPGA
Resource,

Items

TDATA_WIDTH, Bits

8 16 32 48

Module Cordic
IP Core Module Cordic

IP Core Module Cordic
IP Core Module Cordic

IP Core

Logic Level 4 5 5 5 6 6 7 7

LUT 25
(0.01%)

77
(0.04%)

45
(0.02%)

157
(0.07%)

69
(0.03%)

389
(0.18%)

97
(0.04%)

717
(0.33%)

LUTRAM 0
(0%)

9
(0.01%)

0
(0%)

21
(0.03%)

0
(0%)

45
(0.06%)

0
(0%)

69
(0.1%)

Flip-Flop 35
(0.01%)

93
(0.02%)

56
(0.01%)

201
(0.05%)

97
(0.02%)

514
(0.12%)

137
(0.03%)

954
(0.22%)

Clock Cycles 5 5 9 9 17 17 25 25

Table 2. The results of synthesis for the proposed module (pipelined mode) and the Cordic IP core.

FPGA
Resource,

Items

TDATA_WIDTH, Bits

8 16 32 48

Module Cordic
IP Core Module Cordic

IP Core Module Cordic
IP Core Module Cordic

IP Core

Logic Level 4 5 5 5 6 6 7 7

LUT 49
(0.02%)

77
(0.04%)

138
(0.06%)

157
(0.07%)

391
(0.18%)

389
(0.18%)

797
(0.36%)

717
(0.33%)

LUTRAM 5
(0.01%)

9
(0.01%)

13
(0.02%)

21
(0.03%)

29
(0.04%)

45
(0.06%)

45
(0.06%)

69
(0.1%)

Flip-Flop 76
(0.02%)

93
(0.02%)

174
(0.04%)

201
(0.05%)

490
(0.11%)

514
(0.12%)

966
(0.22%)

954
(0.22%)

Clock Cycles 5 5 9 9 17 17 25 25

Based on the results of the synthesis, we can conclude that the implemented module
in a pipelined mode with 8- and 16-bit input data buses takes less resources than the Cordic
IP core and a comparable number of resources with 32- and 48-bit input data buses. So,
with an 8-bit input bus, the gain in resources is: 28 LUTs (36.4%), 4 LUTRAMs (44.4%),
and 17 FFs (18.3%); with 16-bit input bus: 19 LUTs (12.1%), 8 LUTRAMs (38.1%), and
27 FFs (13.4%).

The module in the sequential mode takes up significantly less resources than the
Cordic IP core, regardless of the width of the input data bus. So, with an 8-bit input bus,
the gain in resources is 52 LUTs (67.5%), 9 LUTRAMs (100%), and 58 FFs (62.3%); with
a 16-bit input bus, it is 112 LUTs (71.2%), 21 LUTRAMs (100%), and 145 FFs (72.1%); with
a 32-bit input bus, it is 320 LUTs (82.3%), 45 LUTRAMs (100%), and 417 FFs (81.1%); with
a 48-bit input bus, it is 620 LUTs (86.5%), 69 LUTRAMs (100%), and 817 FFs (85.6%).

It should be noted that the width of the input data bus of the Cordic IP core [17]
is limited to 48 bits, in contrast to the width of the input data bus of the proposed and

Electronics 2022, 11, 2335 8 of 10

developed module, which is limited to 128 bits, which significantly expands the range of
values of the processed data.

4. Experimental Results

The performance assessment and technical characteristics of the proposed IP core were
investigated during the verification of the behavioral model and SystemVerilog description
of the module, as well as testing its hardware implementation in the FPGA.

The verification plan includes checking the adequacy of the behavioral model in the
MATLAB tool using input test sets, obtaining the results of the OSRC and their subse-
quent analysis.

Numerical values correspond to the boundary values for the selected input bit width,
as well as values with a special structure reflecting a single, double, and four-fold alter-
nation of zeros and ones in the number code, and the exact results of the integer square
root corresponding to them were used as input test sets. The results obtained during
experimental study correspond to the golden reference values.

The second step of verification is aimed at checking the SystemVerilog description of
the proposed module using the Synopsys VCS CAD system. The verification plan at the
second step includes a functional check of the module on the same test patterns (Table 3)
for both modes of operation, checking the data integrity and correctness of the module
interface, as well as evaluating the results of synthesis for the selected FPGA basis.

Table 3. Maximum system frequency of the IP core determined after synthesis.

TDATA_WIDTH, Bits
CLK, MHz

MODE = “Slow” MODE = “Fast” Cordic IP Core

8 641 641 477
48 513 508 339

128 409 395 -

Maximum clock frequency (CLK) of the proposed IP core and the occupied re-sources
in the FPGA were determined after synthesis for various values of the tunable parameters
MODE and TDATA_WIDTH (Table 3).

An experimental setup represented in Figure 3 was used for a field test of the imple-
mented IP core and the Cordic IP core. The setup consists of a special board connected to
a PC by a JTAG cable, which is used for FPGA configuration, input data application, and
output data acquisition. The board is based on the Xilinx FPGA SOC xc7z045ffg900-2. The
synthesized configuration file was loaded into the Xilinx FPGA SOC xc7z045ffg900-2, and
functional testing of the developed IP core as part of the digital signal processing module
for the 128-bit input data bus was carried out for both the sequential and pipelined modes
of operation.

The input test patterns were loaded into FPGA block memory. The IP core operating
results were verified automatically in the chip. The timing diagrams of the module’s
operation were recorded using the Xilinx ILA kernel. The proposed IP core demonstrated
the correct operation at a system frequency of 330 MHz and 340 MHz for pipelined and
sequential modes correspondingly. So, the difference in operating frequency between
the results of synthesis and after IP-core implementation in the FPGA consists of less
than 17%.

Electronics 2022, 11, 2335 9 of 10

Electronics 2022, 11, x FOR PEER REVIEW 9 of 11

The input test patterns were loaded into FPGA block memory. The IP core operating
results were verified automatically in the chip. The timing diagrams of the module’s op-
eration were recorded using the Xilinx ILA kernel. The proposed IP core demonstrated
the correct operation at a system frequency of 330 MHz and 340 MHz for pipelined and
sequential modes correspondingly. So, the difference in operating frequency between the
results of synthesis and after IP-core implementation in the FPGA consists of less than
17%.

Figure 3. An experimental setup for the field testing.

5. Discussion
A non-restoring algorithm for integer square root calculation was chosen based on

the minimax criterion. A behavioral model was developed in the MATLAB tool, which
has the necessary properties for organizing computations in both serial and parallel
processing modes. The proposed model is used to implement a configurable module on
the FPGA basis, such as the IP core, operating in two modes: sequential and pipelined.
The choice of the operating mode, as well as the ability to configure the input data bus
width, ensure the possibility to control the number of the occupied FPGA resources.

A significant gain was revealed in resource utilization and in the maximum value of
the system frequency after synthesis of the developed IP core in comparison with the
corresponding integer square root IP core from the Xilinx LogiCORE ™ CORDIC library.

There are the following resource gain results: in serial mode with a 48-bit input bus,
the results are 620 LUTs (86.5%), 69 LUTRAMs (100%), and 817 FFs (85.6%); in pipelined
mode with a 16-bit input bus, the results are 19 LUTs (12.1%), 8 LUTRAMs (38.1%), and
27 FFs (13.4%). The gain in the maximum system frequency is 174 MHz in sequential
mode with a 48-bit input bus and 169 MHz in pipelined mode. The developed IP core
was verified in the Synopsys VCS CAD tool. The field test of the IP core implemented in
the Xilinx FPGA SOC xc7z045ffg900-2 has demonstrated the correct operation at a system
frequency closest to the theoretical one obtained after synthesis. The developed IP core
for square root calculation ensures effective hardware acceleration at scalar and vector
data processing and demonstrates the following benefits: high operating frequency,
minimal number of occupied general resources in the FPGA SoC, and adjustment on the
serial or pipelined operating mode with operands of up to 128 bits in length. Due to the

Figure 3. An experimental setup for the field testing.

5. Discussion

A non-restoring algorithm for integer square root calculation was chosen based on the
minimax criterion. A behavioral model was developed in the MATLAB tool, which has
the necessary properties for organizing computations in both serial and parallel processing
modes. The proposed model is used to implement a configurable module on the FPGA
basis, such as the IP core, operating in two modes: sequential and pipelined. The choice of
the operating mode, as well as the ability to configure the input data bus width, ensure the
possibility to control the number of the occupied FPGA resources.

A significant gain was revealed in resource utilization and in the maximum value
of the system frequency after synthesis of the developed IP core in comparison with the
corresponding integer square root IP core from the Xilinx LogiCORE ™ CORDIC library.

There are the following resource gain results: in serial mode with a 48-bit input bus,
the results are 620 LUTs (86.5%), 69 LUTRAMs (100%), and 817 FFs (85.6%); in pipelined
mode with a 16-bit input bus, the results are 19 LUTs (12.1%), 8 LUTRAMs (38.1%), and
27 FFs (13.4%). The gain in the maximum system frequency is 174 MHz in sequential
mode with a 48-bit input bus and 169 MHz in pipelined mode. The developed IP core
was verified in the Synopsys VCS CAD tool. The field test of the IP core implemented in
the Xilinx FPGA SOC xc7z045ffg900-2 has demonstrated the correct operation at a system
frequency closest to the theoretical one obtained after synthesis. The developed IP core for
square root calculation ensures effective hardware acceleration at scalar and vector data
processing and demonstrates the following benefits: high operating frequency, minimal
number of occupied general resources in the FPGA SoC, and adjustment on the serial
or pipelined operating mode with operands of up to 128 bits in length. Due to the low
overhead in general of FPGA’s resources, the implemented IP core is effective for use in
designing specialized telecommunication systems based on a programmable logic, for
example, software-defined radio, in which the square root operation is often used, while
the specialized resources (DSP, BRAM, etc.) can be allocated to implement complex digital
signal processing operations.

Electronics 2022, 11, 2335 10 of 10

Author Contributions: Conceptualization, V.M. and S.M.; methodology, S.M.; software, V.M. and S.V.;
validation, V.M., S.V. and S.M.; formal analysis, V.M.; investigation, V.M., S.V. and S.M.; resources, V.M.
and S.M.; data curation, V.M.; writing—original draft preparation, V.M. and S.M.; writing—review
and editing, S.M.; visualization, S.V.; supervision, S.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper has been supported by the Kazan Federal University Strategic Academic
Leadership Program (“PRIORITY-2030”).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Altameemi, A.A.; Bergmann, N.W. Enhancing FPGA softcore processors for digital signal processing applications. In Proceedings

of the Sixth International Symposium on Embedded Computing and System Design (ISED), Patna, India, 15–17 December 2016;
pp. 294–298. [CrossRef]

2. Ronak, B.; Fahmy, S.A. Mapping for Maximum Performance on FPGA DSP Blocks. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 2016, 4, 573–585. [CrossRef]

3. Wang, D.; Xu, K.; Guo, J.; Ghiasi, S. DSP-Efficient Hardware Acceleration of Convolutional Neural Network Inference on FPGAs.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 12, 4867–4880. [CrossRef]

4. Chen, S.; Cai, G.; Huang, Z. An Enhanced DSP Block Architecture for FPGA Supporting Multi-operands Addition Operation.
In Proceedings of the IEEE 14th International Conference on ASIC (ASICON), Kunming, China, 26–29 October 2021; pp. 1–4.
[CrossRef]

5. Trofimov, M.A.; Mosin, S.G. The Realization of Algorithmic Description on VHDL-AMS. In Proceedings of the International
Conference Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET’04), Lviv-Slavsko,
Ukraine, 28 December 2004; pp. 350–353.

6. Kislyakov, M.; Mosin, S. A Processor Development in Programmable Logic Basis. In Proceedings of the 9th Conference the
Experience of Designing and Application of CAD System in Microelectronics (CADSM’07), Lviv, Ukraine, 19–24 February 2007;
pp. 182–185. [CrossRef]

7. Kim, D.; Lee, S. Approximate Square Root Circuits with Low Latency and Power Dissipation. Electronics 2022, 11, 46. [CrossRef]
8. Zhou, Z.; Hu, J. A Novel Square Root Algorithm and its FPGA Simulation. J. Phys. Conf. Ser. 2019, 1314, 012008. [CrossRef]
9. De Dinechin, F.; Joldes, M.; Pasca, B.; Revy, G. Multiplicative Square Root Algorithms for FPGAs. In Proceedings of the

International Conference on Field Programmable Logic and Applications, Milan, Italy, 31 August–2 September 2010; pp. 574–577.
[CrossRef]

10. Campo, F.; Morales-Reyes, A.; Perez-Andrade, R.; Cumplido, R.; Orozco-Lugo, A.G.; Feregrino, C. A multi-cycle fixed point
square root module for FPGAs. IEICE Electron. Expr. 2012, 11, 971–977. [CrossRef]

11. Volder, J.E. The Cordic trigonometric computing technique. IRE Trans. Electron. Comput. 1959, 8, 330–334. [CrossRef]
12. Piromsopa, K.; Arporntewan, C.; Chongstitvatana, P. An FPGA Implementation of a Fixed-Point Square Root Operation. In

Proceedings of the International Symposium on Communications and Information Technology, (ISCIT 2001), Chiang Mai,
Thailand, 14–16 November 2001; pp. 14–16.

13. Sutikno, T. An optimized square root algorithm for implementation in FPGA hardware. Telkomnika 2010, 1, 1–8. [CrossRef]
14. Nanhe, A.; Gawali, G.; Ahire, S.; Sivasankaran, K. Implementation of Fixed- and Floating-Point Square Root Using Nonrestoring

Algorithm on FPGA. Int. J. Comp. Elect. Eng. 2013, 5, 533–537. [CrossRef]
15. Jidin, A.Z.; Sutikno, T. FPGA Implementation of Low-Area Square Root Calculator. Telkomnika 2015, 4, 1145–1152. [CrossRef]
16. Li, Y.; Chu, W. A new non-restoring square root algorithm and its VLSI implementations. In Proceedings of the International

Conference on Computer Design. VLSI in Computers and Processors, Austin, TX, USA, 7–9 October 1996; pp. 538–544. [CrossRef]
17. CORDIC IP/Xilinx. Available online: https://www.xilinx.com/products/intellectual-property/cordic.html (accessed on

27 June 2022).
18. LogiCORE IP CORDIC, version 4.0. Product Specification. Xilinx: San Jose, CA, USA, 2011; 30p.
19. AXI4-Stream Infrastructure IP Suite, version 3.0. LogiCORE IP Product Guide. Xilinx: San Jose, CA, USA, 2021.

http://doi.org/10.1109/ISED.2016.7977100
http://doi.org/10.1109/TCAD.2015.2474363
http://doi.org/10.1109/TCAD.2020.2968023
http://doi.org/10.1109/ASICON52560.2021.9620301
http://doi.org/10.1109/CADSM.2007.4297519
http://doi.org/10.3390/electronics11010046
http://doi.org/10.1088/1742-6596/1314/1/012008
http://doi.org/10.1109/FPL.2010.112
http://doi.org/10.1587/elex.9.971
http://doi.org/10.1109/TEC.1959.5222693
http://doi.org/10.12928/telkomnika.v8i1.598
http://doi.org/10.7763/IJCEE.2013.V5.767
http://doi.org/10.12928/telkomnika.v13i4.1894
http://doi.org/10.1109/ICCD.1996.563604
https://www.xilinx.com/products/intellectual-property/cordic.html

	Introduction
	Integer Square Root Models
	CORDIC-Based Model
	Proposed Model Based on a Non-Restoring Algorithm

	Development of the IP Core on the FPGA Basis
	Experimental Results
	Discussion
	References

