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Abstract: In order to recognize breast cancer histopathological images, this article proposed a com-
bined model consisting of a pyramid gray level co-occurrence matrix (PGLCM) feature extraction
model and an incremental broad learning (IBL) classification model. The PGLCM model is designed
to extract the fusion features of breast cancer histopathological images, which can reflect the multires-
olution useful information of the images and facilitate the improvement of the classification effect
in the later stage. The IBL model is used to improve the classification accuracy by increasing the
number of network enhancement nodes horizontally. Unlike deep neural networks, the IBL model
compresses the training and testing time cost greatly by making full use of its single-hidden-layer
structure. To our knowledge, it is the first attempt for the IBL model to be introduced into the breast
cancer histopathological image recognition task. The experimental results in four magnifications of
the BreaKHis dataset show that the accuracy of binary classification and eight-class classification out-
performs the existing algorithms. The accuracy of binary classification reaches 91.45%, 90.17%, 90.90%
and 90.73%, indicating the effectiveness of the established combined model and demonstrating the
advantages in breast cancer histopathological image recognition.

Keywords: breast cancer histopathological image; feature extraction; pyramid gray level co-occurrence
matrix; incremental broad learning

1. Introduction

According to the latest global cancer data released by the International Agency for
Research on Cancer (IARC) of the World Health Organization in 2021, breast cancer in
women (11.7%) has surpassed lung cancer (11.4%) as the most common cancer in 2020 [1].
Early screening of breast cancer is fundamental to diagnosis, which can not only find hidden
dangers in time, but also effectively improve the survival rate of the patient. Therefore, the
development of an automatic recognition system based on breast cancer histopathological
images is of great significance to help doctors improve diagnostic efficiency and save
medical resources. Currently, with the continuous development of artificial intelligence,
machine learning and its related technologies have been widely used in the identification
and diagnosis of breast cancer in Computer-Aided Diagnosis (CAD) [2,3], which has
reduced the workload of physicians vastly. However, the problems of providing correct
and meaningful computer diagnostic results and improving the recognition of breast cancer
have yet to be solved.

At present, CAD of breast cancer histopathological images can be divided into two
categories: image recognition based on traditional artificial feature extraction and recogni-
tion based on deep learning feature extraction. For traditional artificial feature extraction
methods, basic statistical features are mainly used to describe images. Common image
features include texture features, spatial features and color features [4]. Among these,
texture features are a quantitative form of the change of target image’s sharpness, contrast
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and intensity. Thus, the stability of image grayscale change, grayscale correlation of local
area and groove depth can be represented. Existing texture feature extraction methods
include wavelet transform, Gray Level Co-occurrence Matrix (GLCM), Local Binary Pat-
tern (LBP) and Complete Local Binary Pattern (CLBP) descriptors [2,5–7] and Gaussian
pyramid [8]. Meanwhile, feature extraction methods based on deep learning have been
successfully applied to histopathological image recognition of breast cancer [3,9,10], such as
the fine-tuned neural network Inception-V3 model [11], fine-tuning a set of CNN (AlexNet,
VGGNet, ResNet, Inception-BN, etc.) models [12]. Furthermore, other scholars have pro-
posed an integration model of various deep learning models; for example, multi-view deep
residual neural network (mResNet) model [13], pre-trained convolutional neural network
integration model (Adaptive VGG19, MobileNet and DenseNet) [14], multi-model (VGG16,
Inception-V3 and Resnet-V2-152) [15]. In addition, some improved models based on neural
network structure have emerged, such as a deep convolutional Neural network (CSDCNN)
model based on class structure [16], end-to-end CNN [17] and improved Lenet-5 [18].

Through the analysis of the existing research results, it is found that the deep-learning-
based breast cancer histopathological image recognition algorithm has significant advan-
tages in accuracy, owing to its multi-hidden layer network structure. The deep features
of data, which are conducive to the improvement of the recognition effect, can be auto-
matically mined. However, the complex structure of the deep network makes the process
of training deep neural network quite time-consuming. To solve the this problem, J.L.
Chen et al. proposed a wide network structure based on random vector function linked
neural network (RVFLNN) and single-layer feedforward neural network to replace the
deep network structure, called the Board Learning System (BLS) [19]. At the same time,
some derived networks based on BLS have been applied to image classification and arrhyth-
mia detection [20]. These techniques provide some new insights into the design of a new
generation of classifiers. Inspired by these researchers, this paper proposes a breast cancer
histopathological image recognition method based on the pyramid gray co-occurrence ma-
trix (PGLCM) and incremental generalized learning (IBL) model. The proposed method can
describe the GLCM features of breast cancer histopathological images with multi-resolution
by constructing a Gaussian pyramid model of breast cancer histopathological images. In
addition, the established IBL classification model has high classification accuracy and real-
time performance. The effectiveness of the proposed method was verified experimentally
using the public dataset of the breast Cancer Histopathology Database (BreaKHis).

The remaining part of the paper proceeds as follows: Section 2 describes the dataset
used for evaluation; Section 3 is concerned with the methodology used for this study; the
experiments and results are presented in Section 4; Section 5 discusses the results of the
proposed method, and Section 6 concludes the article.

2. Database

Histopathological examination of breast cancer is the “gold standard” for breast cancer
diagnosis. Thus, the dataset used in this experiment is the BreaKHis dataset from the
P&D laboratory—Pathological Anatomy and Cytopathology in Paraná, Brazil [2]—which
consists of hematoxylin and Eosin (H&E)-stained histopathological images of breast cancer
from 82 patients (24 benign and 58 malignant), with a total of 7909 images (3-channel RGB,
8-bit depth per channel, 700 × 460 pixels, PNG format), containing 5429 malignant tumor
samples and 2480 benign tumor samples.

The amounts of the different types of data in the BreaKHis dataset are shown in Table 1,
which contains images of benign tumors (Benign) and malignant tumors (Malignant) at
four different magnifications (40X, 100X, 200X, 400X), with Benign including Adenosis (A),
Fibroadenoma (F), Phyllodes Tumor (PT), and Tubular Adenoma (TA), while the Malignant
include Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carcinoma (MC) and
Papillary Carcinoma (PC), a total of eight types. Each breast cancer histopathological
image file name stores information about the image itself: procedure biopsy method, tumor
category, tumor type, patient identification, and magnification factor. Figure 1 shows
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the H&E-stained breast cancer histopathological images for these eight tumor types, A
is Adenosis, F is Fibroadenoma, PT is Phyllodes Tumor, TA is Tubular Adenoma, DC is
Ductal Carcinoma, LC is Lobular Carcinoma, MC is Mucinous Carcinoma, PC is Papillary
Carcinoma.

Table 1. The amounts of different types of data in the BreaKHis dataset.

Magnification
Benign Malignant

Total
A F PT TA DC LC MC PC

40X 114 253 109 149 864 156 205 145 1995
100X 113 260 121 150 903 170 222 142 2081
200X 111 264 108 140 896 163 196 135 2013
400X 106 237 115 130 788 137 169 138 1820
Total 444 1014 453 569 3451 626 792 560 7909

Patients 4 10 3 7 38 5 9 6 82

Figure 1. H&E-stained breast cancer histopathological images of 8 tumor types. (a) A; (b) F; (c) PT;
(d) TA; (e) DC; (f) LC; (g) MC; (h) PC.

3. Proposed Methodology

The breast cancer histopathological image recognition process based on the proposed
PGLCM-IBL model is shown in Figure 2, including three stages: data preprocessing, feature
extraction, and classification. First, the dataset is expanded and balanced preprocessed
using data augmentation methods such as rotation and flip. Second, the PGLCM features
of breast cancer histopathological images are extracted. Finally, the IBL classifier is used to
achieve the recognition of breast cancer histopathological image types.

Figure 2. Breast cancer histopathological image recognition process.

3.1. Data Preprocessing

Figure 3 shows the sample distribution of the BreaKHis dataset according to Table 1.
From Figure 3, it can be seen that the data samples are unevenly distributed among the
eight tumor types, especially the DC type is overrepresented. Therefore, in order to ensure
the training effect and generalization performance of the designed model, the BreaKHis
dataset was expanded and balanced using data augmentation methods such as rotation
and flip. Figure 4 shows the tumor type A images after rotated and flipped. Table 2 shows
the amounts of different types of data in the BreaKHis dataset using data augmentation.
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Figure 3. Sample distribution of the BreaKHis dataset.

Figure 4. Data augmentation. (a) Original Image; (b) Flip Horizontal; (c) Flip Vertical; (d) Rotate 90°
Clockwise; (e) Rotate 180° Clockwise; (f) Rotate 270° Clockwise.

Table 2. The amounts of different types of data in the BreaKHis dataset using data augmentation.

Magnification
Tumor Type

A F PT TA DC LC MC PC Total

40X 912 856 872 894 864 884 905 870 7057
100X 904 891 968 900 903 956 981 851 7354
200X 888 913 864 840 896 918 864 810 6993
400X 848 821 920 780 788 772 746 828 6503
Total 3552 3481 3624 3414 3451 3530 3496 3359 27,907

3.2. Feature Extraction

Figure 5 shows the constructed PGLCM feature extraction model for breast cancer
histopathological images. The specific feature extraction steps are: (1) Converting the
breast cancer histopathological images into grayscale images; (2) Establishing a 5-layer
Gaussian pyramid of breast cancer histopathological images; (3) Extracting 4 GLCM texture
features, namely contrast, correlation, energy, and homogeneity, at multiresolution of breast
cancer histopathological images in 0°, 45°, 90° and 135° directions with distances of 1–10;
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(4) GLCM features of histopathological images are feature fused to form pyramidal fusion
features.

Figure 5. Feature extraction model of breast cancer histopathological images based on PGLCM.
(a) Converting the breast cancer histopathological images into grayscale images; (b) Establishing a
5-layer Gaussian pyramid of breast cancer histopathological images; (c) Extracting 4 GLCM texture
features, namely contrast, correlation, energy and homogeneity, at multiresolution of breast cancer
histopathological images in 0°, 45°, 90° and 135° directions with distances of 1–10; (d) GLCM features
of histopathological images are feature fused to form pyramidal fusion features.

The following introduces the important parts involved in the feature extraction process.

3.2.1. Gaussian Pyramid

A pyramid of breast cancer histopathological images is a series of images arranged in
a pyramid shape with decreasing resolution, and all from the same original image; each
image in the collection is called a layer. The bottom layer of the pyramid is a high-resolution
representation of the original image. The top layer is a low-resolution approximation of
the original image. The stacked images are shaped like a “pyramid”. The higher the layer,
the smaller the image and the lower the resolution, so the breast cancer histopathological
image pyramid can better characterize the GLCM features of the image in a multiresolution
manner.

The process of establishing Gaussian pyramid [21] is shown in Figure 6. Firstly, the
image is smoothed (Gaussian blurring) using a Gaussian low-pass filter, and secondly, the
image after the Gaussian smoothing process is down-sampled to obtain a series of sizes.
From Figure 6, it can be seen that the image of the k-th layer of the Gaussian pyramid is
obtained by Gaussian blurring and down-sampling to obtain the Gaussian image of the
(k + 1)-th layer. The down-sampling is inter-row and inter-column down-sampling, which
can remove all the even rows and columns to get the upper image with 1/4 of the pixels of
the lower image. By repeatedly iterating these two steps, a complete Gaussian pyramid
can be obtained.
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Figure 6. The process of establishing Gaussian pyramid.

We denote the k-th layer of the Gaussian pyramid as Gk(x, y), then the structural
expression of the Gaussian pyramid is shown in Equation (1):

Gk(x, y) = ∑
x

∑
y

W(x, y)Gk(2i + x, 2j + y) (1 6 k 6 M, 0 6 x 6 Ck, 0 6 y 6 Rk), (1)

where M is the total number of layers of the Gaussian pyramid, Ck and Rk are the pixel
columns and rows of the image at the k-th layer of the pyramid, respectively, and W(x, y)
is a two-dimensional Gaussian function whose expression is shown in Equation (2):

W(x, y, σ) =
1

2πσ2 exp

(
−
(

x2 + y2)
2σ2

)
, (2)

Equation (1) completes the main process of image down-sampling and Gaussian
blurring. A complete Gaussian pyramid model is composed of G1, G2, . . . GM generated
in the above steps, where G1 is the bottom layer of the original image, and GM is the top
layer of the Gaussian pyramid. This paper focuses on describing the situation when M = 5,
that is, the 5-layer Gaussian pyramid of breast cancer histopathological images shown in
Figure 5.

3.2.2. Gray Level Co-Occurrence Matrix and Its Common Features

The Gray Level Co-occurrence Matrix (GLCM) proposed by Haralick et al. [22] is
a common method for describing texture-related information data between image pixel
points. The texture features extracted by this method have good discriminative power. His-
torically, the GLCM has been been a classical algorithm for texture feature extraction, which
analyzes the image texture information by calculating the similarity between grayscales
between different pixel points at a specific distance and a specific direction. Figure 7 shows
the specific definitions of the image in 0°, 45°, 90°, and 135° directions. Equations (3)–(6)
describe the computation of the GLCM in 0°, 45°, 90°, and 135° directions, respectively.

P0◦ ,d(a, b) =
{

m− i = 0, n− j = d, f (i, j) = a
f (m, n) = b [(i, j), (m, n) ∈ I]

}
, (3)

P45◦ ,d(a, b) =
{

m− i = −d, n− j = d, f (i, j) = a
f (m, n) = b [(i, j), (m, n) ∈ I]

}
, (4)

P90◦ ,d(a, b) =
{

m− i = −d, n− j = 0, f (i, j) = a
, f (m, n) = b [(i, j), (m, n) ∈ I]

}
, (5)

P135◦ ,d(a, b) =
{

m− i = −d, n− j = −d, f (i, j) = a
, f (m, n) = b [(i, j), (m, n) ∈ I]

}
, (6)
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Figure 7. Common directions of GLCM. (a) θ = 0◦; (b) θ = 45◦; (c) θ = 90◦; (d) θ = 135◦.

Among them, the meaning of each parameter is: suppose that in an image I whose
gray level is k, its GLCM size should be pq, from a certain pixel point A(x, y) with a gray
value of a, a pixel point B (which has a gray value of b), which is d pixels away in the θ
direction, the number of all pairs of pixels (a, b) with distance d and direction θ that appear
in image I is the number of elements that constitute the GLCM.

Ulaby et al. [23] found that only four features, namely contrast, correlation, energy and
homogeneity, are uncorrelated among the relevant texture features calculated based on the
GLCM, which are easy to compute yet give high classification accuracy. Therefore, in this
paper, the above 4 features are selected as the features of breast cancer histopathological
images. The meaning and calculation equation of each of their texture feature values are as
follows:

Contrast means that each element is located away from the main diagonal in the matrix
of element distribution. The contrast value reflects the diversity of grayscale intensity
contained in the sample breast cancer histopathological image. The clearer the texture, the
greater the contrast. It is calculated using the Equation (7):

Contr =
L−1

∑
i

L−1

∑
j
(i− j)2P(i, j), (7)

where |i − j| is the grayscale difference between adjacent pixels, and p(i, j) represents
the (i, j)-th item in the normalized GLCM, which is called the distribution probability of
different grayscale levels between adjacent pixels. L is the gray level of the breast cancer
histopathological image.

Correlation represents a measure of how a pixel in the entire breast cancer histopatho-
logical image is related to its adjacent pixels, and its calculation uses the Equation (8):

Corrp =
∑i ∑j(ij)p(i, j)− µxµy

σxσy
, (8)

Energy represents the uniformity of the gray distribution and the complexity of texture
in the histopathological image of breast cancer. If the element values of the GLCM are
similar, the energy is small, indicating that the texture is fine; if some of the values are large
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and others are small, it indicates that the energy value is larger. It is calculated using the
Equation (9):

Energ =
L−1

∑
i

L−1

∑
j

P(i, j)2, (9)

Homogeneity refers to the tightness of the distribution of elements in GLCM to
the diagonal line, which reflects the structural uniformity of gray levels in breast cancer
histopathological images. Its calculation uses Equation (10):

Homop =
L−1

∑
i

L−1

∑
j

1
1 + (i− j)2 P(i, j), (10)

Figure 8 shows the contrast, correlation, energy and homogeneity feature maps of a
GLCM at a distance of 2 in a breast cancer histopathological image at 90° direction.

Figure 8. Feature map of breast cancer histopathological images. (a) Original Image; (b) Contrast
Feature; (c) Correlation Feature; (d) Energy Feature; (e) Homogeneity Feature.

3.3. Classifier

Broad Learning (BL) is a structure that can replace deep neural networks, and can be
used to efficiently re-establish the network by incremental learning when the network needs
to be extended. Compared with the traditional deep neural network model, BL has the
advantages of fast training data and simple structure while ensuring certain accuracy. Based
on the above characteristics, this paper introduces BL into the classification of breast cancer
histopathological images for the first time. Figure 9 shows the structure of the Incremental
Broad Learning (IBL) model based on the classification of breast cancer histopathological
images. First, using the features mapped by the input feature vector as the “feature nodes”
of the network. Next, the mapped features are transformed into “enhancement nodes” with
randomly generated weights. Finally, all mapped feature nodes, enhancement nodes and
addition enhancement nodes are directly connected to the output, and the corresponding
output coefficients can be obtained by finding the pseudo-inverse of the corresponding
mapping matrix. In this paper, the number of enhancement nodes is increased to improve
the classification accuracy. The equation of enhancement nodes is:

Hm+q = ξ
(
[Z1, Z2, . . . , Zn]Whm+q + βhm+q

)
, q = 1, 2, . . . , k, (11)

where q is the addition enhancement node, equal to k, ξ is the activation function,
[Z1, Z2, . . . , Zn] is the mapping feature of all the first n input data, Whm+q and βhm+q is
randomly generated weights and biases for all enhancement nodes.
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Figure 9. Classification structure of breast cancer histopathological images based on IBL model.

This neural network uses pseudo-inversion to calculate the weights of feature nodes
and enhancement nodes instead of updating feature kernels with backpropagation, which
greatly saves time in the training process. Moreover, the network is highly scalable because
the reconfiguration can be achieved by incremental learning algorithms without training
the entire network.

4. Experiments

In the experiment, the data-preprocessed breast cancer histopathological images were
randomly divided into a test set (30%) and a training set (70%). The same PGLCM feature
extraction operation was taken and the mechanism of model classification performance
improvement by IBL network extension (adding network nodes) was explored. In this
experiment, model training and parameter learning for the network are done in the training
set, and improving the recognition ability of the test model is done in the test set.

In this thesis, the effectiveness of our proposed method is verified by the following
three experiments: (1) verifying the binary classification and eight-class classification
effects of the PGLCM-IBL model on the BreaKHis dataset; (2) verifying the effectiveness of
introducing Gaussian pyramid using ablation experiments; (3) verifying the superiority
of this method by comparison experiments. The hardware configuration used in this
experiment is: CPU: Intel Core i5-10400, GPU: NVIDIA GeForce GTX 1650, 32 GB memory;
software platform: MATLAB2018b; experiments run on Windows 10 64-bit operating
system.

4.1. Experiments Based on PGLCM-IBL

This experiment uses the confusion matrix and the accuracy (Acc), sensitivity (Sen),
specificity (Spe), positive prediction rate (Ppr) and negative prediction rate accuracy (Npr)
as evaluation indexes The larger the value of Acc, Sen, Spe, Ppr and Npr, the closer the
prediction of the model and the real situation, the better the model performance, and their
expressions are:

Acc =
TP + TN

TP + TN + FP + FN
, (12)

Sen =
TP

TP + FN
, (13)

Spe =
TN

TN + FP
, (14)

Ppr =
TP

TP + FP
, (15)

Npr =
TN

TN + FN
, (16)
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Among them, TP represents true positives, FN represents false negatives, FP repre-
sents false positives, and TN represents true negatives.

Through several experiments, it is verified that, when the number of feature node
windows is 200, the number of feature nodes in each window is 100, the number of enhance-
ment nodes is 800, and the number of addition enhancement nodes reaches 10,000, a better
recognition effect and a higher real-time performance can be obtained. Figure 10 shows
the confusion matrix of the binary classification results of breast cancer histopathological
images based on Pthe GLCM-IBL model. As can be seen from Figure 10, in the binary
classification experimental test data, regardless of the magnification, TP = 3521, FN = 630,
FP = 481, TN = 3741, Acc = 86.73%, Sen = 84.82%, Spe = 88.61%, Ppr = 87.98%,
Npr = 85.59%. In addition, the green diagonal shows the number of correctly classified
images (42.05% for TP as a percentage of all test data and 50.42% for TN as a percentage of
all test data), while the other pink data show the number of images with incorrect network
judgments (5.74% for FP as a percentage of all test data and 7.52% for FN as a percentage
of all test data). The confusion matrix edge datas are Sen, Spe, Ppr and Npr calculated from
the test data, for example, take malignant tumors as an example: there are 4151 images
in the test set, the number of images correctly classified by the network is 3521, and the
number of images incorrectly classified as benign tumors is 630. As can be seen from
Figure 10, the accuracy of benign tumor recognition is higher than that of malignant tumor
recognition.

Figure 10. Confusion Matrix of the binary classification results.

Figure 11 shows the confusion matrix of the eight-class classification results of breast
cancer histopathological images based on the PGLCM-IBL model. As can be seen from
Figure 11, in the eight-class classification experimental test data, regardless of the mag-
nification, the number of correctly classified images is shown on the green diagonal line,
while the other pink data show the number of images misjudged by the network. Take
A (Adenosis) as an example: there are 1066 images in the test set, the number of images
correctly classified by the network is 1013, the number of images incorrectly classified
as F (Fibroadenoma) is 11, the number of images incorrectly classified as PT (Phyllodes
Tumor) is 10, and so on. By analogy, we can know the number of images incorrectly
classified as TA (Tubular Adenoma), DC (Ductal Carcinoma), LC (Lobular Carcinoma), MC
(Mucinous Carcinoma) and PC (Papillary Carcinoma) by A, and then SenclassA = 95.03%,
SpeclassA = 97.46%, PprclassA = 84.49%, NprclassA = 99.26%. Similarly, the remaining
seven types of results can be found, as shown in Table 3, yielding a final Acc of 83.43%. As
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shown in Figure 11, the recognition accuracy of A was the highest and the recognition accu-
racy of DC (Ductal Carcinoma) was the lowest, in which DC was incorrectly recognized as
LC (Lobular Carcinoma) the most, indicating that DC and LC tumors have some similarity,
and the number of DC incorrectly recognized as other tumors was also higher compared
with other tumors, indicating that DC tumors have some complexity difficult to identify.

Figure 11. Confusion Matrix of the eight-class classification results.

Table 3. Evaluation indexes report of the eight-class classification.

Class Sen Spe Ppr Npr

A 95.03% 97.46% 84.49% 99.26%
F 81.15% 97.01% 79.48% 97.30%

PT 95.31% 97.90% 87.14% 99.29%
TA 92.20% 98.61% 90.26% 98.91%
DC 46.72% 96.92% 68.17% 92.80%
LC 82.44% 97.46% 82.44% 97.46%
MC 81.12% 97.28% 81.05% 97.30%
PC 92.96% 98.41% 88.90% 99.03%

4.2. Ablation Study

To verify the effectiveness of introducing the Gaussian pyramid, ablation experiments
were conducted to compare the performance of PGLCM-IBL and GLCM-IBL for binary clas-
sification and eight-class classification of breast cancer histopathological images. Figure 12
shows the experimental results of PGLCM-IBL and GLCM-IBL for binary classification
accuracy and eight-class classification accuracy of breast cancer histopathological images,
with red representing the curve of GLCM-IBL classification accuracy with the number of
addition enhancement nodes and blue representing the curve of PGLCM-IBL classification
accuracy with the number of addition enhancement nodes. As can be seen from Figure 12,
the classification accuracy of PGLCM-IBL is higher than that of GLCM-IBL, and the clas-
sification accuracy of PGLCM-IBL peaks when the number of IBL addition enhancement
nodes is 10,000, where the accuracy of binary classification is 86.73%, which is 6.03% higher
than that of GLCM-IBL, and the total sum test time was only 32.94 s. Then, every 5000
enhancement nodes enter saturation state, in which the classification accuracy is decreasing;
the accuracy of eight-class classification is 83.43%, which is 11.21% higher than that of
GLCM-IBL, and the total sum test time is only 21.32 s.
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Figure 12. PGLCM-IBL and GLCM-IBL classification results of breast cancer histopathological images.
(a) Binary classification results; (b) Eight-class classification results.

The experimental results in Figure 12 show the effectiveness of introducing the Gaus-
sian pyramid for breast cancer histopathological image recognition. In addition, it shows
that the PGLCM-IBL model has high real-time performance.

4.3. Comparative Experiment

In order to evaluate the performance of PGLCM-IBL for eight-class classification and
binary classification of breast cancer histopathological images under specific magnification
conditions, comparative experiments of different classification algorithms were conducted.
For the ablation experiments, the number of addition enhancement nodes by IBL was
chosen to be 10,000 for the experiments, and Table 4 shows the results of eight-class
classification and binary classification experiments of different models for BreaKHis dataset
under specific magnification conditions.

Table 4. Comparison of accuracy rate of different classification algorithms.

Category Model
Magnification

40X 100X 200X 400X

Eight-class
Classification

GoogLeNet [24] 68.7 65.9 69.1 62.8
ResNet50 [24] 82.5 78.8 84.3 81

Inception-ResNet-V2 [24] 86.7 80.3 83.5 68.5
CNN [25] 88.2 84.6 83.3 84

PFTAS + QDA [26] 82.70 82.15 83.37 82.40
PFTAS + SVM [26] 81.65 79.70 85.30 82.30
PFTAS + RF [26] 81.70 82.60 84.40 81.20

Single-Task CNN [26] 83.08 84.15 85.67 83.10
Proposed method 89.49 85.52 85.85 88.54

Binary
Classification

CNN [9] 89.6 85 84 80.8
DeCAF features using CNN [27] 84.6 84.8 84.2 81.6

Single Task CNN [3] 83 83.1 84.6 82.1
Proposed method 91.45 90.17 90.90 90.73

In eight-class classification experiments related to magnification on the BreaKHis
dataset, the literature [24] compared the eight-class classification accuracy of GoogLeNet,
ResNet50 and the Inception-ResNet-V2 model proposed in the literature [24], the Inception-
ResNet-V2 model, compared to the GoogLeNet and ResNet50 model. Except for the unsat-
isfactory results at 400X, it has better results in 40X–200X and can achieve 86.7% accuracy;
the literature [25] used CNN for eight-class classification of breast cancer histopathological
images and achieved 84–88.2% accuracy; the literature [26] compared the eight-class clas-
sification accuracy of PFTAS + QDA, PFTAS + SVM, PFTAS + RF and Single-Task CNN
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models, where PFTAS + QDA achieved 82.15–83.37% accuracy, PFTAS + SVM achieved
79.70–85.30% accuracy, PFTAS + RF achieved 81.20–84.40% accuracy, and Single-Task CNN
with independent magnification achieved 83.08–85.67% accuracy; the PGLCM-IBL model
proposed in this thesis achieved 85.52–89.49% accuracy, and compared with all the above
models, the highest accuracy was achieved for all four magnifications, 89.49%, 85.52%,
85.85% and 88.54%, respectively.

In binary classification experiments related to magnification on the BreaKHis dataset,
the literature [9] used a CNN model for binary classification of breast cancer histopatho-
logical images and achieved 80.8–89.6% accuracy; the literature [27] extracted DeCAF
features of breast cancer histopathological images for binary classification and achieved
81.6–84.8% accuracy; the literature [3] proposed Single Task CNN based on magnification
independence achieved 82.1–84.6% accuracy; the PGLCM-IBL model proposed in this thesis
achieved 90.17–91.45% accuracy, and compared with all the above models, the highest
accuracy was achieved in all four magnifications, namely: 91.45%, 90.17% , 90.90% and
90.73%. This shows that the magnification has a great influence on the experimental results.
In general, the higher the magnification of medical images, the larger the cellular tissue
and the more difficult it is to distinguish the internal environment, leading to worse results.

5. Discussion

The results of experiments (1) and (2) in Section 4.2 show that the PGLCM-IBL model
is an effective method for breast cancer histopathological image recognition. Compared
with the GLCM-IBL model, the PGLCM-IBL model embedded with Gaussian pyramid
technique has higher classification accuracy and better real-time performance. It is shown
through experiments that the PGLCM feature extraction method can extract GLCM features
at multiresolution of breast cancer histopathological images with better feature expression
capability. The results of experiment (3) verified the superiority of the PGLCM-IBL method
compared to other methods. From Section 4.3, the proposed method achieves significantly
better accuracy than other algorithms on both eight-class classification and binary classifi-
cation experiments related to magnification. This means that the PGLCM features extracted
from breast cancer histopathological images can help characterize different tumors under
specific magnification conditions. Furthermore, the samples in Table 2 contain new data for
model training and testing, indicating that our algorithm has good generalization ability to
“fresh data”. Meanwhile, the IBL classifier constructed in this study shows high real-time
performance, which provides a technical reference for doctors to improve the efficiency of
diagnosis and save medical resources. Moreover, in order to further verify the effectiveness
of PGLCM feature extraction method, we also added the breast cancer histopathological
image recognition experiment based on PGLCM and random forest (RF) in the follow-up
work beyond this paper. When the number and depth of random forest decision trees are
200 and 20 respectively, the classification accuracy of the 8 categories can reach 92.46%,
indicating that the proposed PGLCM feature extraction method is beneficial to improve the
recognition effect.

It is worth emphasizing that in this paper, at least 10 independent experiments were
conducted for each classification algorithm carried out in order to avoid the effect of
randomness, and then the average of the multiple classification accuracies was taken as the
average accuracy. Meanwhile, in order to further assess the credibility of the classification
results, the standard deviation of each classification algorithm in the conclusion between
different independent experiments is counted in this paper, and the result obtained is
that the standard deviation of each algorithm is within ±3.1× 10−2, which indicates the
credibility of the experimental results. However, the proposed method also has some
shortcomings, which are mainly reflected in the following two aspects: (1) In order to
facilitate the comparative experiments with other existing algorithms, the same BreaKHis
dataset is adopted in this paper in terms of sample set selection, and does not verify on
other datasets; (2) Limited by hardware conditions, the influence trend of IBL enhanced
node number on the improvement of classification accuracy has not been further discussed.
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6. Conclusions

In this paper, we propose a breast cancer histopathological image recognition algo-
rithm based on PGLCM-IBL and evaluate its performance on the BreaKHis dataset. The
PGLCM feature extraction model improves the scale of feature extraction and feature
representation by introducing Gaussian pyramid technique, and the IBL model improves
classification accuracy by increasing the number of enhancement nodes. Among them,
the IBL model’s simple single hidden layer structure greatly reduces the training and
testing time, and can find a good balance between classification accuracy and time cost.
Furthermore, data augmentation operations on the BreaKHis dataset, including data ex-
pansion and balancing, in the data preprocessing stage also played a role in improving the
generalization ability of the model.
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