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Abstract: In response to problems such as low recognition rate, random distribution of defects and
large-scale differences in the detection of surface defects of aluminum profiles by other state-of-the-art
algorithms, this paper proposes an improved MS-YOLOv5 model based on the YOLOv5 algorithm.
First, a PE-Neck structure is proposed to replace the neck part of the original algorithm in order
to enhance the model’s ability to extract and locate defects at different scales. Secondly, a multi-
streamnet is proposed as the first detection head of the algorithm to increase the model’s ability to
identify distributed random defects. Meanwhile, to overcome the problem of inadequate industrial
defect samples, the training set is enhanced by geometric variations and image-processing techniques.
Experiments show that the proposed MS-YOLOv5 model has the best mean average precision (mAP)
compared to the mainstream target-detection algorithm for detecting surface defects in aluminium
profiles, whereas the average single image recognition time is within 19.1FPS, meeting the real-time
requirements of industrial inspection.

Keywords: surface defects of aluminium profiles; YOLOv5; MS-YOLOv5; PE-Neck; multi-streamnet

1. Introduction

As one of the most valuable materials in the industrial arena, aluminium profiles are
inseparable from the aerospace and high-speed railway industries. However, due to exter-
nal factors such as uneven production equipment and different standards of production
processes, different types of defects can occur on the surface of aluminium profiles during
the actual production process, affecting the service life of aluminium profiles. With the
continuous development of artificial intelligence technology, the design of an accurate and
fast detection method to address the needs of automated detection in industry is a key area
for many researchers.

Metal defect detection methods have gone through three stages: manual based de-
tection methods, single-mechanism-based detection methods, and machine vision-based
classification methods. Manual inspection methods are influenced by subjective factors,
resulting in low accuracy rates and the frequent occurrence of missed detections. The single-
mechanism detection method mainly uses photoelectric technology, ultrasonic technology,
and related devices to detect surface defects on aluminium profiles by using the acquired
optical, electrical, and magnetic signals and ultrasonic waves. H. Khatun et al. [1] used
piezoelectric transducers to inspect aluminium plates, proposing to use the finite element
method (FEM) to obtain the intrinsic frequency response of aluminium plates and then use
piezoelectric actuators to generate periodic excitation of aluminium plates, followed by
using piezoelectric transducers to detect the mechanical impact response. Finally, the sensor
response data is used to classify the defects by using the KNN classification algorithm.
Leslie Bustamante et al. [2] proposed a non-contact method for the non-destructive detec-
tion of defects in aluminium plates, by using air-coupled ultrasound for identifying the
size and location of defects. The defects are detected by the variation of their demonstrated
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wave values. E. Ramírez-Pacheco et al. [3] proposed an eddy current inspection technique
for the detection of defects in aluminium. By using a giant magneto resistance (GMR)
sensor to detect surface defects in aluminium, a flat coil is used to generate the magnetic
field, and it is proposed that the GMR output voltage depends on the width of the defect
with a simple linear relationship to the depth. However, detection methods based on a
single mechanism have limited accuracy and are costly and cumbersome to detect. The ma-
chine recognition-based classification method classifies aluminium profile defects in three
main parts: image pre-processing, feature extraction, and defect classification. Features
can be made visible through image pre-processing. For feature extraction, features such
as texture, structure, colour, and shape can be extracted. The defect detection part is to
discriminate and classify the extracted defect features by means of machine learning algo-
rithms. Commonly used classification algorithms are support vector machines (SVMs) [4],
Adaboost [5], and decision trees [6]. Kai Yan et al. [7], studied how to solve the problem
of inaccurate classification due to the small size of metal weld defects. A completed local
ternary pattern (CLTP ) was proposed for weld-defect detection and an SVM classifier was
used to classify the weld defects. S. R. Aghdam et al. [8] proposed the use of principal
component analysis (PCA) and bagging (bootstrap aggregating) on the local binary pattern
of operator extraction features in order to solve the problem of excessive time in the identi-
fication of steel surface defects, and used Decision Tree as a classifier for the classification
of steel surface defects. F. Duan et al. [9] proposed an automated weld-defect detection
system which first identifies potential defects by using the adaptive thresholding method
of background subtraction. Next, the greyscale features and geometric properties of the
defects are extracted. Finally, the defects are classified by using Adaboost. Although the
problem of classifying defects in aluminium profiles can be solved by using machine vision,
it is difficult to identify different types of defects at the same time when there are several
different defects in a single picture and the classifier cannot accurately detect the exact
location of the defects. In addition, these methods require the design of different feature
extractors for different types of defects, and the accuracy of the recognition of defects de-
pends entirely on the goodness of the designed feature extractor, and the actual production
process is diverse, making it difficult to design a feature extractor that meets the reality,
thus causing the disadvantage of poor generalisation ability.

Convolutional neural network (CNN)-based approaches are currently making great
progress. Karen Simonyan et al. [10] proposed the VGG model, which performs well on
all types of datasets through its regular design profile of stackable convolutional blocks.
Alex Krizhevsky et al. [11] proposed AlexNet, proposed by using ReLU instead of Sig-
moid as the activation function of CNN, and successfully solved the gradient dispersion
problem of Sigmoid that occurs when the network is deeper; they used Dropout to ran-
domly ignore some neurons to avoid model overfitting and proposed an LRN layer to
suppress neurons with smaller feedback that enhances the generalization ability of the
model. The method received extremely good results in the ImageNet 2012 competition.
Kaiming He et al. [12] proposed ResNet, which solved the problem of gradient disappear-
ance by using the residual module, and it effectively deepened the depth of the network,
and many scholars have applied its ideas since then. Gao Huang et al. [13] proposed
DenseNet, which uses dense block to reuse the feature maps of each layer to enhance
the transfer of features in the network and improve the network performance while re-
ducing the number of parameters in the network. Since then, a number of excellent
target-detection algorithms have been proposed. These algorithms are mainly classified
into single-stage detection algorithms and two-stage detection algorithms. Two-stage
detection algorithms include Region-CNN (R-CNN) [14], Fast Region-based CNN (Fast
R-CNN) [15], Faster Region-based CNN (Faster R-CNN) [16], and so on. Single-stage de-
tection algorithms such as the You Only Look Once (YOLO) series [17–21] and single-shot
multibox detector (SSD) [22] further enhance the performance of deep learning models
in detection.

The aim of this research is to use target-detection algorithms in deep learning tech-
niques to address the shortcomings of previous research in industrial defect detection, such
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as the high cost of detection, cumbersome detection steps, the ability to classify defects and
the inability to accurately detect the location of defects.

2. Related Work

In recent years, deep learning has been widely used in industrial product inspection.
M. P. Muresan et al. [23] proposed to classify bushing locations on injection moulds of
automotive parts by using Gaussian filtering to remove white noise from the images and
converting the images into greyscale images, followed by using morphological methods
to segment out the black holes in the fixed templates and by each boundary to extract the
region of interest and subsequently classify the bushings by using LeNet-5. However, this
method requires that the regions of interest are extracted according to a fixed template and
the extracted images are fed into the network for classification, which is not applicable
for detection objects without a template. The method is mainly suitable for classification,
but cannot effectively classify the same image with multiple defects, and cannot predict
the exact location of the defects itself. R. Usamentiaga et al. [24] used a target-detection
algorithm to detect defects on the steel surface separately, and experimentally showed that
YOLOv5 has better performance for the six defects on the steel surface compared to the rest
of the target-detection algorithms. However, this study only demonstrates the detection
performance of YOLOv5 and does not investigate how YOLOv5 can be improved to
achieve better detection performance. Markus Schmitz [25] performed detection of defects
generated by laser welding, first by using the Canny algorithm for detected edges, with
training of Inception3 to obtain weights, and secondly by using moblienet as the backbone
network, by using SSD’s object detector. Finally, they used the K-mean++ algorithm, which
clusters the detection frame sizes that match the dataset. Experiments have shown that
this method has good results, but its training steps are too cumbersome. Gao, H. et al. [26]
proposed the use of deep convolutional adversarial production network (DCGAN) for data
augmentation and CNN for classification of defects in order to solve the problem of small
samples for industrial gear defect detection. Experiments have shown that the model has
good results in classification, but it only does classification work, and no further research on
detection is carried out. Jiang, Q. [27] et al. proposed an improved Faster R-CNN model for
the detection of bearing surface defects by using ResNet-101 as a feature-extraction network,
followed by a general method for improving positive samples, which was experimentally
shown to have better performance than the base algorithm. He Di et al. [28] addressed the
problem of steel surface sample images (mostly unlabelled images) and proposed a way to
annotate images based on convolutional self-coding (CA) and semi-supervised generative
adversarial network (SGAN), which can give an insight to the rest of the scholars and has
solved the problem of deep learning to manually annotate labels. Xu, Y. et al. [29] proposed
the YOLOv3 algorithm as a basis for detecting surface defects in aluminium profiles by
adding a detection layer and using the k-means++ algorithm instead of the original k-means
algorithm in the network for clustering analysis to obtain a more accurate anchor frame,
thus improving the detection effect. However, only three categories of defects have been
studied, and the types of defects are insufficient. Yongxiong Wang et al. [30] proposed a new
network based on CNN for the problem of tiny defects in aluminium alloy castings. First,
the X-ray images of aluminium alloy defects were obtained, and general feature network
(GFN) and subtle feature network (SFN) were proposed to extract the image. The GFN and
SFN are proposed to extract general features and subtle features of the images respectively,
so as to achieve the purpose of detecting minor defects. Although the experiments show that
the model has a good detection effect for aluminium alloy castings, it is difficult to obtain
data about the X-ray defects, and the X-ray irradiated images reduce a lot of disturbing
information, so it is not suitable for practical scenarios. Chen Song et al. [31] proposed an
improved Faster-RCNN algorithm for the detection of five different categories of defects
in order to solve the problem of missed detections in the detection of surface defects in
aluminium tubes, firstly by expanding the resulting dataset through data augmentation,
and secondly by proposing a new region method for the detection of defects in aluminium
profiles. However, two-stage detection algorithms require more detection time than single-
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stage detection algorithms and therefore may not meet the demands of industrial inspection
in real time.

Based on the above work, it is demonstrated that it is feasible to apply target detection
to industrial defect detection, but there are still problems with existing algorithms for
aluminium, such as slower detection, fewer types of defects detected, and poor extraction
of certain missing features, which leads to average detection performance. Therefore, this
paper proposes an improved model based on YOLOv5, MS-YOLOv5, for the detection
of seven aluminium profiles , which meets the need for real-time performance in indus-
trial inspection while ensuring high detection capability. The work done in this paper is
as follows.

(1) We propose a PE-Neck by using poly-scale convolution (PSConv) with efficient chan-
nel attention (ECA) to incorporate it into the appropriate position of the neck part of
the original algorithm and change its structure. This is done to overcome the model’s
problem of extracting and locating defective features with too large a scale difference.

(2) A multi-streamnet is proposed, borrowing the idea of pyramid convolution (PyConv)
to change its calculation, adding residual connections and incorporating the first
detection head of the original algorithm, thus improving the recognition of randomly
distributed defects.

(3) We intend to address the situation where industrial defect samples are small. In ad-
dition we propose data-augmentation techniques by using traditional geometric
transformations for the training set, and image processing techniques are also used.
This produces similar but different data to increase the size of the training set while
reducing the model’s reliance on certain features.

3. Materials and Methods
3.1. Aluminium Profile Defect Dataset

The dataset in this paper is constructed from the Ali Tianchi database [32] together with
the actual defect images produced by an aluminium profile factory in Guangxi. The dataset
contains a total of 3098 images of seven types of defects such as Concavity, Dirtyspot,
Orangepeel, Nonconducting, Scrape, Underscreen, and Embossing, all at a resolution of
2560 × 1920. The dataset described in this paper is shown in Figure 1. The acquired images
are inadequate for the detection of surface defects in 7 types of aluminium profiles, and the
lack of data can lead to problems such as overfitting of the training process, poor detection
accuracy and poor generalisation, so we need to perform a data-enhancement strategy on
the training set, which also uses gamma variation, contrast variation, and bright variation as
image-processing techniques in addition to the traditional geometric variation, to produce
similar but different data to increase the size of the training set while reducing the model’s
reliance on certain features. The final training and test sets were 7777 and 1987 images
respectively, and the composition of the data for each type of defect in aluminium profiles
is shown in Table 1. The enhanced RGB contrast histogram is shown in Figure 2.
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Table 1. Dataset consisting of various classes of defects.

Concacity Dirtyspot Scrape Embossing Underscreen Nonconducting Orangepeel

Train
Original 185 143 158 135 178 185 127
H_flip 185 143 158 135 178 185 127
V_flip 185 143 158 135 178 185 127
HV_flip 185 143 158 135 178 185 127
Gamma 185 143 158 135 178 185 127
Contrast 185 143 158 135 178 185 127
Bright 185 143 158 135 178 185 127
Total 7777
Test
Original 320 256 216 320 277 278 320
Total 1987

Figure 1. A partial dataset of aluminium profiles containing different types of defects.
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Figure 2. RGB comparison histogram for different data enhancement methods. (a) Original image;
(b) gamma variation image; (c) contrast variation image; (d) brightness variation image.

3.1.1. Gamma Variation

The same defect can appear in different feature states depending on the light or the
angle of the image acquisition in a practical inspection environment. In image processing,
gamma variation is a technique that enhances dark details by making nonlinear changes to
an image. The equation for gamma change is shown in Equation (1):

g(x, y) = f (x, y)γ (1)

where f (x, y) represents the normalised grey value of row x, column y, and g(x, y) repre-
sents the grey value of row x, column y of the output image.

3.1.2. Contrast Variation and Brightness Variation

To make sure that the model can cope with different external variations, this paper
uses contrast transformations and brightness variations to enhance the dataset. Contrast
transformation is an image-processing method that improves the quality of an image by
changing the contrast of the image elements. Brightness variations is used to simulate the
characteristics reflected by the object being detected in high-intensity light.

3.2. Methods
3.2.1. MS-YOLOv5

The YOLOv5 algorithm is one of today’s more advanced single-stage target detection
algorithms, which can guarantee detection accuracy while spending less time on recog-
nition, but it is not accurate enough to detect defects in aluminium profiles with random
defect distributions and large-scale differences. Therefore, this paper proposes an improved
model MS-YOLOv5 based on the YOLOv5 algorithm. The structure of the MS-YOLOv5
model is shown in Figure 3. The algorithm consists of three parts: backbone, neck, and de-
tection. The backbone adopts the CSPDarknet-53 structure. The neck uses our proposed
PE-Neck. Detection uses our proposed multi-streamnet as the first detection header.
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Figure 3. Schematic diagram of the structure of the MS-YOLOv5 model. (a) PE-NECK instead of Neck
part and Multi-streamnet as first detection head; (b) composition of modules Focus, CBL, SPP etc.

3.2.2. Poly-Scale Convolution

PSConv [33] is a multi-scale convolution in which a set of differently sized dilation
factors are incorporated into a single convolution kernel for the purpose of extracting
feature information at different scales. All the convolution kernels in a single layer with
different sets of dilation factors corresponding to each convolution are alternated in a cyclic
manner along the axes of the input and output channels, mapping the input features to the
output by extracting them at different scales. A schematic of PSConv is shown in Figure 4.

Figure 4. Schematic diagram of the structure of PSconv. (a) the input features; (b) the different
expansion factors added to the convolution kernel.

In order to better understand the idea of PSConv, we use H and W to represent
the height and width of the input image respectively, where a kernel size of K×K, F ∈
RCin×H×W denotes the characteristics of the input, G ∈ RCout×Cin×H×W presents the con-
volution, and K ∈ RCout×H×W presents the output features. The common convolution
formula is shown in Equation (2):

Hc,x,y =
Cin

∑
K=1

K−1
2

∑
i=− K−1

2

K−1
2

∑
j=− K−1

2

Gc,K,i,jFK,x+i,y+j. (2)

The dilated convolutions formula is shown in Equation (3):

Hc,x,y =
Cin

∑
K=1

K−1
2

∑
i=− K−1

2

K−1
2

∑
j=− K−1

2

Gc,K,i,jFK,x+id,y+jd. (3)
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The PSConv formula is shown in Equation (4):

Hc,x,y =
Cin

∑
K=1

K−1
2

∑
i=− K−1

2

K−1
2

∑
j=− K−1

2

Gc,K,i,jFK,x+iDc,K ,y+jDc,K (4)

where D ∈ RCOut×Cin denotes the matrix associated by the channels in the orthogonal
dimension and the specific channels in the convolution. From the above equations, it can
be seen that PSConv generates multi-scale kernels by adding feature factors to different
kernels in the convolution, and that the different scale kernel calculations alternate by
channel to process the information at different scales.

3.2.3. Efficient Channel Attention

Most studies in recent years have indicated that adding attentional mechanisms in
convolutional neural networks can boost the performance of the model as a whole [34–36].
Most attention mechanisms obtain better performance by using more complex structures,
which results in problems such as a larger network, more training time and longer inference
times. By analyzing the SE-Net, ECA [37] found that the reduction in dimensionality does
not allow for effective learning of channel information, thus leaving the overall network
without better overall performance. Appropriate cross-channel interaction of information
can reduce the complexity of the model while maintaining good performance. Therefore,
a dimensionless local cross-information interaction strategy is proposed, which is mainly
implemented by 1-dimensional convolution and an adaptive selection of 1-dimensional
convolution kernels. A schematic of ECA is shown in Figure 5.

Figure 5. ECA structure schematic. Local cross-channel information interaction by 1D convolution of
size k.

In order to be able to guarantee a good performance and a simple structure of the
ECA module, we use WK to denote the learned channel attention and avoid the complete
independence of different groups. In performing the weight yi, only the information
interactions between that weight and its K neighbours are considered. The calculation
formula is shown in Equation (5):

wi = σ

(
k

∑
j=1

wj
iy

j
i

)
, yj

i ∈ Ωk
i . (5)

To further improve performance, so that all channels share weight information, the for-
mula is shown in Equation (6):

wi = σ

(
k

∑
j=1

wjyj
i

)
, yj

i ∈ Ωk
i . (6)
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In order to achieve information interaction between channels, this module can be
implemented by a one-dimensional convolution with a convolution kernel of size K. The cal-
culation formula is shown in Equation (7),

w = σ(C1DK(y)), (7)

where C1D denotes a 1-dimensional convolution operation, |t|odd denotes the nearest odd
number to t, and where k is determined accordingly as a function of the channel dimension
C. The relationship between the two can be determined by Equation (8) as follows:

k = ψ(C) = |
log2(c)

γ
+

b
γ
|odd. (8)

With the above formula, it is easy to see that ECA aims to improve the accuracy
of the model while reducing the complexity of the model compared to the rest of the
attention mechanisms.

3.2.4. PE-Neck

The neck section of YOLOv5 extracts features at different scales and fuses and locates
them by combining up- and downsampling. However, this extraction capability is limited
for surface defects of aluminium profiles which vary greatly in scale. In addition, the
top part of the neck part of the original algorithm needs not only to transfer feature
information to the detection layer, but also to send the extracted features to the next
layer, which causes the model to be unnecessarily extracted several times and makes
the resulting features more fragmented, thus increasing the difficulty of overall model
recognition. To address these issues, this paper proposes the PE-Neck. First, by using
PSConv the aim is to make the model actively extract information about the different
scales of the aluminium profile, but this may cause the model to focus too much on the
semantic information and thus neglect its localisation information. Therefore, this paper
uses the ECA module to supplement the localization information. The aim is to feed the
rich semantic information and accurate localisation information extracted by the network
into the detection layer, but the top of the original neck section would make the model
perform unnecessary extractions, so the structure of the original network is changed by
using the jump connection method to solve these unnecessary feature extractions and thus
feed stable features into the detection layer. A schematic of PE-Neck is shown in Figure 6.

Figure 6. PE-Neck structure schematic. The integration of the PSconv and ECA modules in the neck
part of the original algorithm does not connect from the top.
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3.2.5. Multi-Streamnet

When the input image is convolved to extract features of the image, each kernel is
responsible for capturing the ocal image, whereas larger kernels are able to capture a larger
range of feature information. For example, PyConv [38], OctaveConv [39], Res2Net [40],
ScaleNet [41], etc. can expand the perceptual field of the model mainly by using structures
composed of different convolutional kernel sizes.

By analysing PyConv, we found that although the perceptual field of features can be
increased by convolution of different sizes, convolution of different depths can lead to the
generation of too much redundant feature information, which affects network inference
and increases the difficulty of defect detection, and this unnecessary feature information
also increases the number of parameters and computation. To address the above problems,
we propose a multi-streamnet, which first, in order to reduce the amount of computation
and the number of parameters, proposes to use the number of convolutions to control
the depth of the convolution, so that the depth of the convolutions at different scales
remains the same, and thus the number of feature maps obtained is the same. To facilitate
understanding, if the input contains FMi channels, and the size of each convolutional layer
is K2

1, K2
2 . . . K2

n, and the number of convolutions is n, then the depth is FMi/n, and the
corresponding feature dimensions are FM01, FM02 . . . FM0n, and its parametric quantity
and computation formula are shown in Equations (9) and (10):∣∣∣∣∣∣∣∣∣∣∣∣∣∣

parameters =
K2

n × FM0n × FMi
n +

...
K2

3 × FM03 × FMi
n +

K2
2 × FM02 × FMi

n +

K2
1 × FM01 × FMi

n +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(9)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

FLOPs =
K2

n × FM0n × FMi×(W×H)
n +

...
K2

3 × FM03 × FMi×(W×H)
n +

K2
2 × FM02 × FMi×(W×H)

n +

K2
1 × FM01 × FMi×(W×H)

n +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (10)

Each row represents the computational cost of a different convolution kernel size,
in such a way that a certain number of feature images are generated while ensuring a certain
amount of computation is reduced to reduce the complexity of the model. In addition, this
paper borrows ideas from Resnet to use residual connectivity to learn redundant structures
into constant mappings without performance degradation. These structures are eventually
incorporated into the first detection head of the original algorithm to improve the model’s
ability to identify randomly distributed defects. A schematic of multi-streamnet is shown
in Figure 7.
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Figure 7. Multi-streamnet structure schematic. By using the same convolution depth for different
scales of convolution kernels on top of PyConv, adding residual connections and incorporating
detection layer convolution.

4. Experimental Environment, Evaluation Indicators, and Model Training
4.1. Experimental Environment

The experimental environment was defined as follows: CPU, Intel(R) Core(TM)i7-
11700KF@3.60GHz 8-core CPU; GPU, NVIDIA GeForce RTX3080Ti; SSD, 1TB; programming
languages, Python3.7; Framework, Pythorch 1.7.1; deep learning accelerator, CUDA 11.0
and CUDNN 11.1; IDE: Pycharm.

4.2. Experimental Evaluation Indicators

For the target detection algorithm, the performance metric used to evaluate the effec-
tiveness of the model is mAP (mean average precision). mAP is used to measure the average
recognition performance of the model over all categories and is given in Equation (11):

mAP =
1
N

N

∑
1

AP, (11)

where N denotes n classifications and AP denotes the average accuracy rate, which is
calculated as shown in Equation (12):

AP =
∫ 1

0
P(R)dR, (12)

where P represents precision and R represents recall, which is calculated as in Equation (13):

P =
TP

TP + FP
R =

TP
TP + FN

. (13)

True positive (TP) means that the correct target type is predicted, false positive (FP)
means that the predicted target type is wrong, and false negative (FN) means that the target
that should be detected is missed. Thus, from this formula we can see that P and R should
be negatively correlated in a model.

4.3. Model Training

YOLOv5 uses the idea of transfer learning in the training process and obtains pre-
weights after testing with a large amount of data. MS-YOLOv5 continues the YOLOv5
training approach by using the initial weights YOLOv5x.pt with the best results to train
the training set in the dataset. We set the hyperparameters before training to: learning rate,
0.001; Optimizer, stochastic gradient descent (SGD); momentum, 0.937; weight decay, 0.005;
batch size, 8; epoch, 150. The target detection algorithm uses the training loss to determine
whether the model is stable, and the loss of YOLOv5 is divided into box_loss, obj_loss and
cls_loss. The final model with three training losses is shown in Figure 8. We can see that
after 60 calendar hours, all losses change minimally and the model is close to stable.
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Figure 8. MS-YOLOv5 three types of training losses.

5. Results
5.1. Validation of the MS-YOLOv5 Model

MS-YOLOv5 model was validated by adding P-Neck, PE-Neck and multi-streamnet
to the YOLOv5 algorithm, respectively, and the results of each comparison step are shown
in Table 2. Compared to the original YOLOv5 algorithm, the addition of P-Neck improved
the recall by 2.5% and the mAP by 1.4%, thus demonstrating that the addition of P-Neck’s
effectiveness. When PE-Neck was added in place of P-Neck, the precision and recall
improved by 0.2% and 0.6%, respectively, compared to P-Neck, whereas mAP improved
by 1.7%, thus demonstrating the effectiveness of adding PE-Neck. The inclusion of both
PE-Neck and multi-streamnet resulted in a 1.2% increase in precision and a 0.2% increase
in mAP compared to the inclusion of PE-Neck only. The experimental results show a
0.4% decrease in precision, a 1.1% increase in recall, and a 3.3% increase in mAP for MS-
YOLOV5 compared to YOLOv5, with only a 1 FPS increase in detection time. The above
sections of this paper have shown that precision and recall are negatively correlated in the
model, with mAP being the most important.The MS-YOLOv5 mAP validation results for
comparison is shown in Figure 9.

Figure 9. YOLOv5 improved to MS-YOLOv5 mAP comparison chart for each step.
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Table 2. Performance comparsion of various method.

Method Precision(%) Recall(%) mAP(%) FPS

YOLOv5 91.6 75.4 84.1 20.1
YOLOv5+P-Neck 89.8 77.9 85.5 19.8

YOLOv5+PE-Neck 90 78.5 87.2 19.5
YOLOv5 + PE-Neck + Multi-

streamnet(MS-YOLOv5)
91.2 76.5 87.4 19.1

In order to visualize the performance of the MS-YOLOv5 model, we compare the
performance of MS-YOLOv5 with YOLOv5 in terms of F1_Cure, PR_Cure, and actual
detection results. F1_cure is a metric that takes into account both the accuracy and recall of
the model, and the higher the curve, the better the performance of the model. As shown in
Figure 10, we can see that the F1_Cure for MS-YOLOv5 is higher than that of YOLOv5 for
all categories. PR_Cure is a curve formed by taking the accuracy and recall of the model as
coordinates, the area of which is the mAP. As shown in Figure 11, we can see that the area
enclosed by MS-YOLOv5 is larger than that enclosed by YOLOv5. The actual inspection
results are shown in Figure 12. The labels in the graph show the results and probabilities
of detection. The first row shows the detection results for each defect with YOLOv5, and
the second row shows the detection results for each defect with MS-YOLOv5. It can be
seen that the two algorithms have similar detection results for well-defined surface defects
in aluminium profiles such as Concavity, Orangepeel and Embossing. However, in the
case of Scrape, which has a large variation in scale and is densely distributed, MS-YOLOv5
can detect it, whereas YOLOv5 cannot. In the case of Dirtyspot, which has a small and
random distribution, YOLOv5 can only identify one defect, whereas MS-YOLOv5 can
identify all of them. In the case of Nonconducting, which has a large difference in aspect
ratio, YOLOv5 can only identify a single defect, whereas MS-YOLOv5 can identify them all.
In defects such as Underscreen, where the colour is highly similar to the background colour,
MS-YOLOv5 has a higher recognition level than YOLOv5. This shows that MS-YOLOv5
has a better detection performance than YOLOv5 and still meets the real-time requirements
of industrial inspection. More actual test results are shown in Figure 13. The labels in the
graph show the results and probabilities of detection.

Figure 10. F1-Cure comparison of YOLOv5 and MS-YOLOv5 for seven different defects.
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Figure 11. PR-Cure comparison of YOLOv5 and MS-YOLOv5 for seven different defects.

Figure 12. Comparison of YOLOv5 and MS-YOLOv5 results for seven defects. (a) Result of YOLOv5;
(b) Result of MS-YOLOv5.

Figure 13. MS-YOLOv5 results for seven different defects.

5.2. Ablation Comparison Experiments

In order to further verify the validity of the proposed structure, the unimproved
original module (the same position as MS-YOLOv5) was added to YOLOv5 for comparison
with MS-YOLOv5. The results obtained are shown in Table 3. Compared to the direct
addition of the PSConv and ECA modules to the YOLOv5 algorithm, the addition of
PE-Neck alone improved accuracy and recall by 2.6% and 0.5%, respectively, increased
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mAP by 3.7%, and reduced detection time by 0.3 FPS. Compared to the direct addition of
Pyconv to YOLOv5+PE-Neck, MS-YOLOv5’s accuracy and mAP increased by 1.8% and
2.8% respectively, and reduced the detection time by 0.7 FPS. The results of the ablation
experiment demonstrated the effectiveness of MS-YOLOv5 by improving both mAP and
detection time compared to the original method. A comparative plot of mAP for the ablation
experiments is shown in Figure 14.

Table 3. Performance comparsion of ablation study.

Method Precision(%) Recall(%) mAP(%) FPS

YOLOv5+PSConv+ECA 87.4 78 83.5 19.2
YOLOv5+PE-Neck 90 78.5 87.2 19.5

YOLOv5+PE-Neck+PyConv 89.4 77.7 84.6 18.4
YOLOv5 + PE-Neck + Multi-

streamnet(MS-YOLOv5)
91.2 76.5 87.4 19.1

Figure 14. Comparison of mAP with the original module and with the improved module.

5.3. Experiments Comparing Different Algorithms

To further verify the effectiveness of MS-YOLOv5, its performance was compared
with that of the YOLOv3, YOLOv4, SSD, Faster-RCNN, and YOLOv5 algorithms for the
detection of surface defects in seven aluminium profiles, and the experimental results
are shown in Table 4. It can be seen that among the detection results for each type of
defect, MS-YOLOv5 is the best in terms of overall performance, with an AP of over 80%
for each defect and no extreme imbalance in detection performance, whereas the other
algorithms have extreme imbalance in detection performance for defects with large-scale
differences, which is crucial in the actual detection process. MS-YOLOv5 achieved 87.4%
mAP, 11.54% higher than YOLOv3, 4.59% higher than YOLOv4, 3.3% higher than YOLOv5,
20.4% higher than SSD, and 5.71% higher than Faster-RCNN. A comparison of the mAP of
several algorithms is shown in Figure 15.
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Table 4. Performance comparison of various algorithms.

Model
AP(%)

mAP(%) FPSConcavity Scrape Dirty
Spot Embossing Non

Conducting
Orange

Peel
under
Screen

YOLOv3 97.14 48.07 40.56 78.77 89.59 93.42 83.44 75.86 21.3
YOLOv4 97.71 74.43 51.05 81.15 94.69 96.42 84.25 82.81 20.4
YOLOv5 99.2 82.7 79.8 96.3 76.9 87.6 66.1 84.1 20.1

SSD 72.91 60.96 20.9 64.25 82.14 90.81 76.97 67 21.7
Faster-RCNN 92.14 70.74 38.7 94.03 90.36 97.40 88.49 81.69 12.6
MS-YOLOv5 98.8 85.4 80.6 96.1 83.5 87.2 80.1 87.4 19.1

Figure 15. Comparison chart of mAP using six different algorithms.

6. Conclusions

This paper proposes an improved MS-YOLOv5 model based on the YOLOv5 algo-
rithm, proposes a PE-Neck by using PSConv with ECA and incorporating it into the
appropriate position of the neck part of the original algorithm, and changing its structure in
order to solve the problem of model extraction and localisation of defect features with too
large a scale difference. Secondly, a multi-streamnet is proposed to improve the recognition
of randomly distributed defects by changing its calculation by borrowing ideas from Py-
Conv, adding residual connections and incorporating the first detection head of the original
algorithm. At the same time, the problem of the lack of industrial samples is addressed by
means of data augmentation. The experimental results show that MS-YOLOv5 achieves
87.4% detection for seven aluminium surface defects; compared to the mainstream target
detection algorithm, the experimental results show that MS-YOLOv5 is the best in terms of
overall performance, with an AP of over 80% for each defect, no extreme imbalance in de-
tection performance, and a detection speed that meets the industrial inspection. However,
it also has some problems, such as its sacrifice of some detection time. In future work, we
will use knowledge distillation to reduce the size of the model as much as possible while
guaranteeing model detection performance, thus reducing detection time, and place it in
an embedded device.
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