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Abstract: The rapid technological development of computing power and system operations today
allows for increasingly advanced algorithm implementation, as well as path planning in real time. The
objective of this article is to provide a structured review of simulations and practical implementations
of collision-avoidance and path-planning algorithms in autonomous underwater vehicles (AUVs).
The novelty of the review paper is to consider not only the results of numerical research but also the
newest results of verifying collision-avoidance and path-planning algorithms in real applications
together with a comparison of the difficulties encountered during simulations and their practical
implementation. Analysing the last 20 years of AUV development, it can be seen that experiments in
a real environment are dominated by classical methods. In the case of simulation studies, artificial
intelligence (AI) methods are used as often as classical methods. In simulation studies, the APF
approach is most often used among classical methods, whereas among AI algorithms reinforcement
learning and fuzzy logic methods are used. For real applications, the most used approach is re-
active behaviors, and AI algorithms are rarely used in real implementations. Finally, this article
provides a general summary, future works, and a discussion of the limitations that inhibit the further
development in this field.

Keywords: collision avoidance; path planning; obstacle detection; autonomous underwater vehicle;
artificial intelligence; autonomous navigation

1. Introduction

In recent years, a significant increase in the number of unmanned underwater, ground,
and air vehicles (UxVs) in various environments has been observed. Most often, these
vehicles are autonomous with different levels of autonomy. When speaking of autonomous
vehicles, most will refer to air or ground vehicles. Less widespread and commercialised,
but equally important are autonomous underwater vehicles (AUVs). This type of vehicle
can be used for ocean exploration, performance of various industrial operations, or military
missions. Due to the limited adaptability of humans, diving to very deep depths may
be impossible or require a lot of time and preparation. In some cases, like observing the
seafloor or looking for damage to pipes running along the bottom of a water reservoir,
using AUV can bring many benefits to humans. To perform underwater operations prop-
erly and safely, it is necessary to equip the AUVs with all the essential systems, such as
obstacle detection systems, motion- or path-planning systems, collision-avoidance systems,
trajectory-planning systems, mapping systems, mission planners, path-tracking systems,
etc. The underwater environment poses many difficulties for the vehicles’ movement,
i.e., high signal attenuation, limited possibilities of spatial orientation in relation to ref-
erence points, the presence of sea currents, limited access to light, and disturbing signal
reflections from the bottom and surface of the water. Therefore, some motion-planning
solutions implemented for robots or other groups of autonomous vehicles may not be
appropriate for AUVs. The rapid technological development of computing power and
system operations today allow for more and more advanced algorithm implementation as

Electronics 2022, 11, 2301. https://doi.org/10.3390/electronics11152301 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152301
https://doi.org/10.3390/electronics11152301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9273-353X
https://doi.org/10.3390/electronics11152301
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152301?type=check_update&version=2


Electronics 2022, 11, 2301 2 of 30

well as path planning in real time. As one study [1] indicated, increasing the computing
power through hardware can significantly increase the data-processing speed and system
efficiency compared to the implementation of more efficient software. Reliable performance
is considered a crucial condition for AUV design. Although simulation analysis of collision-
avoidance algorithms and path planning usually brings satisfactory results, real vehicle
implementation has caused many difficulties in past studies [2]. As scientific and technical
knowledge advance, researchers attempt to systematise current achievements in this field.
In [3], motion-planning approaches for robots from the years 1980–2010 were analysed, in-
dicating how the number of heuristic algorithms changed in individual decades compared
to conventional algorithms. The basics of classical and heuristics-based methods for robots
were discussed in [4]. The authors of [5] analysed 80 articles from 2011–2015 on motion
planning in a dynamic environment for robots and systematised individual solutions in
terms of parameters such as smooth path, safety, path length, run-time, accuracy, stability,
control, computation cost, and efficiency. The study [6] reviewed 3D path-planning algo-
rithms for robots, focusing on the universality of individual algorithms implementation in
aerial, ground, and underwater robots. Reference [7] elaborated on heuristic algorithms for
robots, showing examples of their efficient and inefficient operation. Reference [8] reviewed
sampling-based motion-planning algorithms for robots, and [9] focused on probabilistic
roadmap approaches in dealing with dynamic collision, narrow passages, multi-targets,
and manipulation planning for deformable linear objects. Other studies also summarized
the achievements in the field of quadrupedal robots [10], AGVs (usually road vehicles)
[11,12], coverage path planning for robots [13], and searching methods for environmen-
tal monitoring [14]. Together with single robots, multi-robot performance has also been
studied. Reference [15] discussed navigation techniques for the single and multi-robot
systems in both static and dynamic environments. In addition, reference [16] analysed
the techniques of movement of the robot group depending on the shape of the formation
(cluster/line flocking). The authors of [17] reviewed the available literature in terms of
the multi-robot movement in normal and faulty situations, and [18] focused on methods
determining desired trajectories for multi-robots. In the path-planning studies, some re-
searchers have been focusing on solutions designed for specific types of vehicles depending
on the environment in which the vehicle is moving. In [19,20], the algorithms designed for
unmanned aerial systems (UASs) were analysed, and in [21–23] algorithms for unmanned
aerial vehicles (UAVs) were discussed. Reference [24] discussed vision-based algorithms
for UAVs, and [25] for multiple UAVs. Many reviews in the field of underwater robotics
have also been published. In [26], the technological development and limitations that
are encountered in marine robotics are analysed. The authors of [27] define the trends in
construction, instrumentation, and systems for unmanned underwater vehicles (UUVs).
The UUVs can be remotely operated vehicles (ROVs) and AUVs. In [28], the main systems
for both a single AUV and multi-AUV are described, as well as the possible directions of
AUVs’ further development. In terms of motion control of a UUV, reference [29] reviews
the development of control methods and the problems encountered during the research.
In turn, reference [30] provides detailed literature that analyses path-planning-related
solutions for AUVs. The main surveys connected with motion planning for robots are
presented in Table 1.

The objective of this article is to provide a structured review of simulations and practi-
cal implementations of collision-avoidance and path-planning algorithms in AUVs together
with a comparison of the difficulties encountered during simulations and their practical
implementation. The paper is organised as follows. In Section 2, the most essential path-
planning and collision-avoidance algorithms for AUVs are explained. Section 3 includes
a summary of simulation and practical research in this area. In Section 4, the general
summary, future works, and limitations that inhabit the further development in this field
are discussed. Final conclusions are presented in Section 5.
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Table 1. Surveys connected with motion planning for robots.

Review Field of Analisys Year Main Focus

[7] Robots 2005 This review elaborated on heuristic algorithms for robots,
showing examples of their efficient and inefficient operation.

[9] Robots 2006
This review focused on probabilistic foadmap approaches in
dealing with dynamic collision, narrow passages, multi-targets,
and manipulation planning for deformable linear objects.

[8] Robots 2008 This study reviewed sampling-based motion planning algorithms
for robots.

[3] Robots 2012

This study reviewed motion planning approaches for robots from
the years 1980–2010 indicating how the number of heuristic
algorithms changed in individual decades compared to
conventional algorithms

[13] Robots 2013 This study reviewed coverage path planning issues for robots

[4] Robots 2015 This study presented the basics of classical and heuristics-based
methods for robots.

[5] Robots 2015

This review analysed 80 articles from 2011–2015 on motion
planning in a dynamic environment for robots and systematised
individual solutions in terms of parameters such as smooth path,
safety, path length, run-time, accuracy, stability, control,
computation cost, efficiency.

[6] Robots 2016
This study reviewed 3D path-planning algorithms for robots,
focusing on the universality of individual algorithms
implementation in aerial, ground, and underwater robots.

[14] Robots 2017 This study reviewed searching methods for environmental
monitoring

[15] Robots (Single and
multi-robot) 2019 This study discussed navigation techniques for the single and

multi-robot systems in both static and dynamic environments.

[17] Robots (Multi-robot) 2020 This study reviewed the available literature in terms of the
multi-robot movement in normal and faulty situations.

[18] Robots (Multi-robot) 2021 This study focused on methods of determining desired
trajectories for multi-robots.

[16] Robots (Multi-robot) 2021 This study analysed the techniques of movement of the robot
group depending on the shape of the formation.

[10] Robots 2021 This study summarized the achievements in the field of
quadrupedal robots

[11] Ground Robots (AV) 2015

This study presented relevant works in the overtaking and
obstacle avoidance maneuvers and also makes an overview of the
state-of-the-art implementation of motion planning techniques
for automated driving.

[12] Ground Robots (AV) 2021

This study reviewed existing approaches on motion and behavior
planning for AVs in terms of their feasibility, capability in
handling dynamic constraints and obstacles, and optimality of
motion for comfort.

[21] Aerial Robots (UAVs) 2010

This study presented existing motion-planning algorithms and
recent developments in the robotics and aerospace guidance and
control fields. The review also analysed perspectives and
practical examples from UAV guidance approaches.
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Table 1. Cont.

Review Field of Analisys Year Main Focus

[19] Aerial Robots (UAS) 2015
This study presented a comparison between different
motion-planning algorithms for a multi-rotor UAS with a
multi-joint robotic arm.

[24] Aerial Robots (UAVs) 2018 This study discussed vision-based algorithms for UAVs.

[25] Aerial Robots (multi-UAV) 2019 This study presented a state-of-the-art overview of various
approaches for multi-UAV collision avoidance.

[20] Aerial Robots (multi-UAV) 2019
This study presented the most relevant Deep Learning techniques
for autonomous collision avoidance as well as their application to
UAV systems.

[23] Aerial Robots (UAV) 2020

This study presented an extensive review of UAVs including
physical characteristics, classification, standardization, battery
charging, security challenges, and solutions. The research also
discussed the perspective of using UAVs in 5G networks, Internet
of Things Networks, and different applications.

[22] Aerial Robots (UAV) 2021 This study presented the methodology for spatial orientation
angle correction for UAV.

[29] Marine robots(UUV) 2009
This study reviewed the development of control methods and the
problems encountered during the research connected with
motion control of UUVs.

[26] Marine robots 2018 This study analysed the technological development and
limitations that are encountered in marine robotics.

[27] Marine robots (UUV) 2021 This study defined the trends in construction, instrumentation,
and systems for UUVs.

[28] Marine robots (single and
multi-AUV) 2021

This study described the main systems for both a single AUV and
multi-AUV as well as the possible directions of AUV’s further
development.

[30] Marine robots (AUV) 2021 This study provides detailed literature that analyses path
planning related solutions for AUVs.

This
review Marine robots (AUV) 2022

This study provides a structured review of simulations and
practical implementations of collision avoidance and path
planning algorithm in AUV together with a comparison of the
difficulties encountered during simulations and their practical
implementation.

2. Fundamentals of Path-Planning Algorithms

This section presents the main path-planning algorithms for AUVs. The description of
each method includes an explanation of the fundamental principles. It also analyses the
advantages and disadvantages, environmental limitations, and potential difficulties in real
applications. Each approach contains several application examples from different fields
of robotics.

2.1. A* Algorithm

In 1986, the heuristic method [31] A* was proposed, which consists of dividing the
known area into individual cells and calculating the total cost of reaching the target for
each of them. Given the total distance from the starting point to the currently analysed cell
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and the distance from the analysed cell to the target, the total path cost is calculated with
the following formula:

F(n) = G(n) + H(n), (1)

where:
F(n) is the total path cost;
G(n) is the cost of reaching from the starting point to the analysed cell; and
H(n) is the cost of reaching from the analysed cell to the target.
The A* algorithm focuses on finding the shortest path to a destination in the presence

of static obstacles assuming that both the environment and the location of the obstacles
are known. In this method, however, an increased amount of computation is needed for
large areas analysis or areas with many obstacles. This significantly increases the path
planning time. For the marine vehicles, AUVs and autonomous surface vehicles (ASV),
the A* algorithm method is in most cases used in combination with the visibility graph
algorithm [32–34]. In [35], simulations of two grid-based methods in the 3D environment
were compared. Compared to the Dijkstra algorithm, the multi-directional A* proved to
be more efficient in terms of the number of nodes and the total length of the path. The
practical implementation of this method is associated with the problem of variability of
the underwater environment and the lack of precise knowledge about the location of
obstacles. Another challenge for practical implementation of this method in AUV may be
the unforeseen effect of sea currents.

2.2. Artificial Potential Field

The artificial potential field (APF) method has its origins in 1986 [36] and assumes the
presence of a repulsive field around the obstacle and an attractive area around the target
that affect a moving vehicle (e.g., AUV). As a result of the interaction of these virtual fields,
the resultant force is determined according to which way the vehicle is moving. In this
method, prior knowledge of the environment and the location of obstacles is not needed. It
can be used regardless of whether the obstacles in the environment in which the AUV is
moving are static or dynamic and whether they have regular or irregular shapes. The crucial
condition for this algorithm to be efficient is accurate obstacle detection. The advantage
of the APF method is the ease of implementation and low computational requirements,
which makes it possible to control AUVs and avoid collisions in close to real time. Despite
the many abovementioned advantages, the possibility of local minima or trap situations is
considered as a significant disadvantage [37]. Under certain conditions, e.g., a U-shaped
obstacle, when the resultant force acting on the AUV is balanced, the algorithm will control
the movement of the AUV in a closed infinite loop without reaching the goal. In addition,
the passage of the AUV between closely spaced obstacles may not be possible or cause
oscillation due to the alternating influence of force fields from opposing obstacles [37,38].
Also, the AUV tends to demonstrate unstable movements when passing around obstacles.
In order to solve the local minima problem, APF is combined with other methods, such
as [39,40]. In the simulation-based study [41] for AUVs a solution was proposed based
on the introduction of a virtual obstacle in the place where the local minimum occurs.
Another way to avoid a trap situation can be by using random movements to lead the
AUV out of the adverse area (randomised potential field) [42]. Despite the limitations
of this method, it is used to control a swarm of robots [43–46]. Simulation-based studies
also prove the possibility of controlling multi-AUV formations [47] and its application in
mission planners [48]. In [49], the potential field-based method was used in the practical
implementation in NPS ARIES AUV in a real-world environment. To avoid the negative
impact of APF method limitations in real implementations, it is necessary to use the global
path-planner module based on, e.g., heuristic methods.
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2.3. Rapidly Exploring Random Tree

Introduced in 1998 [50], the motion-planning algorithm named rapid-exploring ran-
dom tree (RRT) is a sampling-based method. Any node in the Xrand spatial is randomly
determined from the initial point Xinit (Figure 1). Then, depending on the given direction
of movement and the maximum length of the section from the analysed point, the interme-
diate Xnear node is determined. The longer the sections’ connecting nodes, the higher the
risk of moving in the wrong direction for a long time and encountering obstacles on the
designated path. If any obstacle is detected between waypoints, further route calculation
in that direction is ignored. If no obstacles are detected, a random point in the Xrand spatial
is determined, followed by a new intermediate point Xnew.

Figure 1. An illustration of the RRT mechanism.

As a result of subsequent iterations (time steps), new edges and path points are
determined. The method is easy to process and ensures the finding of a collision-free path
(if there is one) in an unknown environment, both 2D and 3D. RRT can be used in both
static and dynamic environments [51]. A modification of this method was used in the
SPARUS-II AUV and tested in a real-world environment [52]. The study [53] shows the
validity of the modified RRT* algorithm for mapping in a 3D environment for multiple
AUVs. In [54], an RRT-based approach was used to solve the problem of local minima in the
fast warm starting module in the Aqua2 AUV. It was noted that this method is not always
efficient in an environment where the path to the target leads through a narrow opening or
gap. Another limitation of this method is the need to provide information about large areas
of the environment, which is not always possible in practical implementations due to the
technical limitations of sensors [55–57]. Additionally, the calculated path is suboptimal [58]
which requires the use of additional optimisation algorithms.

2.4. Artificial Neural Network

An artificial neural network (ANN) is a machine learning method based on the math-
ematical mapping of information processing by the human brain. The general structure
consists of three layers: input layer, hidden layers, and output layers (Figure 2). The
neurons in each layer are connected to all the neurons in the neighboring layer and process
the inputs based on the weights in between. The data from each neuron in the input layer
multiplied by weights is sent as input to hidden layers where each neuron is assigned a
value (bias). Depending on the activation function and bias value, only neurons with a
value higher than the threshold value are activated. The output from each layer is also the
input for the next layer. The data transfer between the layers is performed only by active
neurons. The ANN method requires learning, i.e., indicating the accuracy of the output
data. Based on the determination of the expected results, the neural network adjusts the
weights between the individual neurons in each iteration in such a way that the output
data is as close to the expectations as possible.
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Figure 2. Neural network architecture.

The method has learning ability and is applicable in systems that implement complex
functions, supporting many outputs based on data from multiple sensors. The algorithm is
also efficient for the systems where the input data is incomplete or distorted, or in cases in
which there poorly modelled, nonlinear dynamical systems [59–61]. The main drawback
of this algorithm is the need for long-term training to achieve satisfactory results [62]. In
the case of practical implementation for AUV, online learning does not bring satisfactory
results due to slow learning speed and long training time [63]. Therefore, offline train-
ing for controllers is essential before the AUV can be used in a real-world environment.
Reference [64] presents a collision-avoidance controller for static and dynamic obstacles
based on neural networks that do not require training. The resulting behaviour of the AUV
was defined by neuron weights. It should be noted, however, that this type of controller is
suitable for simple AUV operational cases. In [65], the neural network method was used
in real implementation in AUV-UPCT. The vehicle required prior learning in ROV mode.
In [66], the neural network algorithm was used in a simulation study to control and avoid
collisions for multiple AUVs in a 3D environment. In [67], the neural network was used to
process real images of the underwater environment (simple, coloured monocular camera)
to determine the free space enabling the escape of the AUV from the cluttered environment.

2.5. Genetic Algorithm

Genetic algorithm (GA) refers to research and optimisation methods inspired by the
natural evolution process where only the fittest organisms have a chance for survival.
In general, the algorithm starts looking for a solution to a problem by generating a random
population of possible solutions. Depending on the applied function, a selection is made
during which the least suitable solutions are eliminated [68]. For path planning, the main
criterion is the energy cost required to run each path [69]. Then, through an operation called
crossover, further potential solutions to the problem (offspring) are created, combining the
best solutions from the previous generation (parents). Additionally, in the mutation process,
random modifications of the best solutions are created. Then, the GA runs the selection
again, adding to the population’s successive possible solutions that are closer and closer to
the correct result until a specific final condition is reached, e.g., the number of generations.
The main advantage of the GA method is the possibility of fast and global stochastic
searching for optimal solutions [70]. In addition, the algorithm is easy to implement and
can be used to solve complex problems, such as determining the optimal AUV path in
the presence of static and dynamic obstacles in the underwater environment. Due to the
random nature of searching for solutions, the algorithm reduces the risk of the local minima
problem [71]. In general, the method does not require large numbers of calculations to solve
the path-planning problem. However, the route may be suboptimal if too few generations
are executed. As the number of generations increases, the route becomes closer and closer
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to the optimal one due to the constant elimination of the least optimal solutions in the
population. It entails an increase in computational costs. Similarly, in a rapidly changing
environment or when the environment is very extensive, the amount of computation
needed to determine a solution increases significantly. In [69], a modification of the GA was
presented in order to determine the energy’s optimal path. The modification involved the
introduction of iterations consisting of additional runs of the algorithm with different initial
conditions and the operator based on the random immigrants’ mechanism, which sets the
level of randomness of the developing population. Reference [72] discussed the framework
of the collision-avoidance system based on the GA. The simulation test proved the proper
functioning of the method for static and dynamic obstacles. Improved GA was also used in
a simulation-based study [73] to optimise energetic routing in a complex 3D environment
in the presence of static and dynamic obstacles. The algorithm with improved crossover
and mutation probability and the modified fitness function was tested in simulation [70] in
comparison with the traditional GA method. The simulation confirmed that the improved
GA allows a shorter and smoother path with fewer generations. The method worked very
well in the energy optimisation of routing. It should be noted that the efficiency of this
method in real testing depends on the correct detection and determination of the obstacle
location as well as the target.

2.6. Fuzzy Logic

The fuzzy logic (FL) method [74,75] is based on the evaluation of the input data
depending on the fuzzy rules which can be determined by using the knowledge and expe-
rience of experts. In AUV obstacle avoidance systems, the fuzzy controller sensor processes
data containing information about the surrounding environment and makes decisions
based on it. Then, appropriate signals are transmitted to the actuators. The first stage of
the algorithm’s operation is fuzzification, i.e., assigning the input data to the appropri-
ate membership function. Each of the functions is based on a descriptive classification
of the input data, e.g., low, medium or high collision risk. Then, in the fuzzy inference
process, a data evaluation is performed based on “if prerequisite then result” statements
rule. Ultimately, the defuzzification process determines specific system output values
(e.g., actuator control signal values). The method can be used for both static and dynamic
obstacles. However, when an AUV operates in an unknown environment, the usability
of the algorithm directly depends on the implemented rules, and therefore also on the
knowledge and experience of experts. The main advantage of the algorithm is its usability
in the case of incomplete information about the environment, even containing noises or
errors [76]. The method is easy to implement and provides satisfactory results in real-time
processing but requires a precise definition of membership functions and fuzzy rules [77].
Additionally, as the number of inputs increases, the amount of input data necessary for the
system to process increases. An important issue affecting the effectiveness of the algorithm
is also the AUV speed and the complexity of the environment. A fuzzy system usually
has at least two inputs. In a very dynamic environment, the use of additional inputs can
increase the efficiency of the controller [78]. In some cases, the necessity of performing
complex maneuvers to avoid a collision may cause the AUV to be diverted far from the
optimal path. For this reason, it is necessary to use additional algorithms that control the
path in terms of energy. A simulation study [71] showed that the use of GA to optimise
fuzzy logic path planner allows one to achieve greater efficiency and reduce cross-track
errors and total traveled path. A modification of this method was also used in a practical
implementation in a study [79] where the Bandler and Kohout product of fuzzy relations
was used for preplanning in horizontal plane maneuvers. The fuzzy logic method was also
used in [80] to control a single unmanned surface vehicle (USV) and in the simulation [81]
to control virtual AUVs in the leader–follower formation of AUVs.
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2.7. Reinforcement Learning

The reinforcement learning (RL) method is based on research about the observation
of animal behaviour. As a result of strengthening the pattern of behavior by receiving a
stimulus by the animal, it increases the tendency to choose actions [82]. Machine learning
based on this idea was very intensively developed in the second half of the 19th century.
Depending on the requirements of the environment model, the simplicity of data processing,
and the iterative nature of calculations, several methods of solving RL problems have been
developed, e.g., dynamic programming, Monte Carlo methods, and temporal difference
learning. The most crucial method of solving RL problems is the temporal difference
method. Depending on the occurrence of the policy function, it is divided into several
algorithms, e.g., Actor-Critic, Q-learning or Sarsa method [82]. The actor-critic method
consists of autonomous learning of the correct problem solving depending on the received
reward or punishment. By performing action, the agent influences the environment by
observing the effects of the action. Depending on the implemented reward function,
different ways of influencing the environment are assessed. The objective of this method
is to learn how to perform such actions in order to get the greatest reward. In the case
of path planning, the agent will receive the greatest reward if moving toward the given
destination. In general, an agent includes a combination of neural network’s actor and
critic. The interaction between them is a closed-loop learning situation [83]. The actor
chooses the action for performing to improve the current policy. The critic observes the
effects of this action and tries to assess them. The assessment is then compared with
the reward function. Based on the error rate, the critic network is updated to predict
actor network behaviour in the future better. The abovementioned approach was used
in [84] to control four robots. Each of them was able to avoid collisions with other robots
and with obstacles. In the study [85], the RL approach was used in a two-dimensional
simulation of cooperative pursuit of unauthorized UAV by using a team of UAVs in an
urbanized environment. In [86], a simulation of smart ship control algorithm was presented.
Moreover, in simulation studies [87,88] the RL approach was used for path planning and
motion control of AUVs. The method can be used for both static and dynamic obstacles in
an unknown environment. It is characterised by a strong focus on problem solving and
shows high environmental adaptability. The RL algorithm can learn to solve very complex
problems as long as the correct reward function is used. The inability to manually change
the parameters of the learned network is considered as the main drawback of this method.
To change the operation of the algorithm, the network must be redesigned, and a long
learning process must be performed. Also, checking this method’s operation by simulation
does not guarantee its correct operation in a real-world environment.

2.8. Comments

Among the classical and heuristic methods discussed above, it is difficult to find one
that will work efficiently in various conditions and at the same time meet all the require-
ments for complete control and for a collision-avoidance system for the AUV. In an ideal
scenario, the implemented method should assure high efficiency, real-time response, safety,
path optimisation in terms of energy, low complexity, high accuracy, the shortest possible
path, and the ability to operate properly in an unknown environment in relation to both
static and dynamic obstacles. Each of the methods has its advantages and disadvantages
depending on the given conditions. A situation in which the algorithm works very well
and one in which the effectiveness of the algorithm will be very low can be found for
each of the discussed methods [7]. Researchers still work on improving the parameters
of individual methods by modifying them. In order to improve efficiency and eliminate
defects, combinations of various algorithms are also used.
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3. Chronological State of the-Art

After analysing the available literature in the field of path planning and collision
avoidance for AUVs, a detailed classification of the studies was carried out in terms of
chronology and in terms of the technique of testing the effectiveness of the presented
algorithms. In each of the 4 intervals (until 2010, 2011–2015, 2016–2020 and from 2021
onward), the studies were divided into 2 groups, as follows.

• The first group includes algorithms validated in numerical research containing new
methods, modified methods, or a combination of existing methods that have been
validated in a simulation environment. Some of the methods presented have been
developed to be applied to real AUVs. This group also includes algorithms whose
effectiveness has been verified in hardware-in-loop simulations.

• The second group includes algorithms in real applications where AUV control methods
are presented, the effectiveness of which has been tested in a real environment in the
presence of both real and virtual obstacles

In each of the abovementioned groups, the research was ordered from oldest to newest
in the analyzed period of time.

3.1. Until 2010

The need for a collision-avoidance system for AUVs has been recognised in the last
century. At that time, many researchers proved algorithms that could detect and avoid
collisions for static and moving obstacles [64,89]. Studies carried out in early 2000 showed
a very intensive development of AUV collision-avoidance and path-planning algorithms.
The capabilities of most of them, however, were tested only with simulation-based methods.
The list of algorithms validated in numerical research until 2010 is presented in Table 2.
At that time, intensive research on obstacle detection and classification were carried and
analysed for physical sensor use and in simulation-based methods. In some cases, the al-
gorithms were explicitly created for practical implementation. In [90] a virtual force field
(VFF)-based system for the RAIS AUV was introduced and tested by using numerical
simulations and hardware-in-loop simulation methods. In [91], researchers proposed a
collision-avoidance algorithm through the pitch angle change. This algorithm was intended
for physical implementation in the Taipan AUV. The authors of [92] proposed a collision
avoidance algorithm based on the prediction of gradient lines (static obstacle) and deformed
safety zone (for dynamic obstacles) intended foran AUV called DeepC. The approach was
based on determining the trajectory by using the graph method combined with the A*
method. The Redermor test platform equipped with forward-looking sonar (FLS), ten
echosounder, and side scan sonar in the [93] study was used to collect sonar data during
underwater tests. The authors have been able to classify the obstacles and prove that it is
possible to define the boundary level around the obstacle. The implementation of more
advanced hardware equipped with FPGAs allowed [1] to significantly increase the speed
of data processing and power efficiency. At that time, solutions were also designed to
control AUVs moving in formation. The accuracy of the proposed method was tested
only in simulation-based analysis. In the study [94], the method based on the potential
function and behaviour rules was proven in simulations for 3 AUVs moving in formation.
Also, the authors of [81] proposed a well-functioning algorithm based on FL to control
the velocity of the AUV formation. An algorithm based on the artificial potential field
method [95] was also developed, which has been proven, under simulation conditions,
to work efficiently for static obstacles.
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Table 2. List of algorithms validated in numerical research until 2010.

Research Algorithm Main Characteristics

[89] Modified Potential Field method
• Static and dynamic obstacles
• Local path planning
• Simulated clustering sonar returns

[64] Neural Network

• Static and dynamic obstacles
• Local path planning
• Not necessarily adaptive training, neuron weights defined

by the desired AUV response

[96] Increase or decrease velocity, heading control
• Dynamic obstacles
• Sonar data analyse in 2D (horizontal plane)

[97] Deformable Virtual Zone
• Static obstacles
• Local path planning
• 25 ultrasonic sensors to scan front space in 25 directions

[2] Reinforcement Learning based on the
stochastic real value function

• Local path planning
• For AUV named Twin Burger 2
• In the real application, only detection was achieved. Avoid-

ance behaviors were not obtained due to the complexity of
the implemented method.

[90] Virtual Force Field (VFF)
• For AUV named RAIS
• Numerical and Hardware in Loop simulation

[98] Nonlinear programming technique
• Local path planning
• 2D environment
• Tested on ROV

[91] Changing pitch angle
• Static obstacles (underwater cliffs)
• Local path planning
• For AUV named Taipan

[99] Fuzzy Logic
• 2D environment
• For AUV named REMUS

[32]
Two-layer control Path planning by Graph
method with A* method Reactive control

based on Deformable Safety Zone

• Static and dynamic obstacles
• For AUV named DeepC
• Simulations in 2D and 3D environment

[72] Genetic Algorithm

• Static and dynamic obstacles
• 2D simulation
• Smooth collision-free path
• Real-time algorithm

[100] Markov decision process
• Uncertain static obstacles and vortex
• 2D environment
• Real-time algorithm

[71] Genetic Algorithm tuned Fuzzy Logic
planner

• Static obstacles
• Global Path Planning
• Better results than conventional fuzzy logic planners

[101] Virtual Potential Method
• 2D environment
• Static obstacles

[102] Direct-method-based procedure
• Horizontal and vertical path planning
• Static and dynamic obstacles

[103] Graph algorithm based on time-varying
ocean flow

• Static and dynamic obstacles
• For AUV named SLOCUM

[104] Fuzzy Logic
• Static obstacles
• 5 possible behaviours for AUV
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An example of practical implementation of collision-avoidance algorithms can be
found in [49]. In this study, AUV avoided the sunken barge by changing the altitude by
using a method based on the artificial Pptential field. Another practical implementation [38]
was also performed with MEREDITH. 2D vector field histogram (VFH) based method
functionality was tested in a real-world environment. The vehicle was able to avoid a
large obstacle which was a breakwater. Also, in 2001–2009, a project code-named Autosub
was carried out. At that time, several vehicles from the Autosub brand were made and
practically tested during many under-ice missions. The collision-avoidance capability
has been proven practically in this mission. In [105], a collision-avoidance module was
triggered, and the vehicle correctly managed to avoid the obstacle. At that time, the algo-
rithm worked only in the vertical plane. Over the years, the project’s team gained a lot of
experience and gradually improved their AUVs capability. Reference [106] presented an im-
proved collision-avoidance system capable of turning in a horizontal plane. The upgraded
Autosub-I AUV, after detecting an obstacle, performs a maneuver to change the depth and
then turn and move in the horizontal plane. Then, the AUV retreats and tries to avoid
the obstacle. After the maneuver, it returns to the previously taken path. As the authors
claimed, the algorithm copes well with large obstacles. However, small-sized obstacles and
a complex environment pose a significant challenge to the vehicle. The same algorithm
was also implemented in another vehicle from the Autosub group—Autosub3. The vehicle
operated for four days under the ice and covered 510 km during the mission, proving
practical adaptation to even difficult operations [107]. In Table 3 the list of algorithms in
real applications until 2010 is presented.

Table 3. List of algorithms in real applications until 2010.

Research Algorithm Main Characteristics

[49] Artificial Potential Field

• Collision avoidance realised by chang-
ing depth

• Equipped with FLS and light under-
water camera

[38] Vector Field Histogram +
• Static and dynamic obstacles
• Only 2D heading

[106,107] Reactive behaviours

• Static and dynamic obstacles
• The simplified collision avoidance sys-

tem
• Efficient for large obstacles

3.2. 2011–2016

In the past decade, researchers focused more often on analysing the combinations
of algorithms. In Table 4 the list of algorithms validated in numerical research between
2011–2016 is presented. In the simulation study [77], the particle swarm optimization (PSO)
algorithm was used to regulate the membership function in the FL-based method in the
AUV motion controller system. In the study [108], the method based on the combination of
FL for pre-planning and reactive techniques is simulated. The authors consider collision
avoidance only in the horizontal plane. The study [109] analyses the combination of
potential field and edge detection to avoid collisions (only in the vertical plane). The method
is designed for applications in which the AUV is responsible for inspecting the area (by
using side scan sonar), where a straight course line should be kept. In [34], a combination
of graph methods with the A* algorithm was used to determine the path. However,
as concluded, that combination does not allow one to determine the optimal path in a
completely unknown environment. In [110], the APF-based algorithm was used for local
collision avoidance, and the velocity synthesis algorithm was used to optimise the AUV
path. Also, modifications of the already existing algorithms were developed. The multi-
point potential field method was analysed in [111]. The vehicle is steered in the direction
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of the field’s lowest resultant value, which is generated in many directions. Additionally,
in that time, more and more focus was given to path planning and global collision avoidance.
Several control systems and collision-avoidance and path-planning studies have also
been developed for multi-AUV formations. In a simulation study [47], a multi-layer
region control concept was used to control and avoid both static and dynamic obstacles,
and a PD-based regulator controlled the shape of the formation. The authors in [66]
used neural networks to simulate the multi-AUV control system in the presence of static
obstacles. Other issues closely related to collision avoidance and path planning by AUV
were investigated in studies at that time. The authors of [111] performed a simulation in
laboratory conditions of AUV with hardware-in-loop and software-in-loop methods with
real sensor data (ultrasonic sensor- for distance to the obstacle, pan and tilt angle inputs by
the user) and real implementation of actuators. This method is beneficial and effective for
verifying the operation of algorithms in real time.

Table 4. List of algorithms validated in numerical research between 2011–2016.

Research Algorithm Main Characteristics

[112] Fuzzy interface controller with A/B
(accelerate/break) module

• Static and dynamic obstacles
• More human-like module’s decision making confirmed

by simulation

[77] Fuzzy-PSO controller with A/B
(accelerate/break) module

• Static and dynamic obstacles
• Improved navigation performance with great real-time

[108] Potential Field and Edge Detection
methods

• Increased precision compared to other methods
• Horizontal plane only
• Intended for the AUV called Blue Fin 12

[109] Potential Field and Edge detection
methods

• Vertical plane only
• The algorithm strongly focuses on safety

[34] Graph method with A* path find
algorithm

• Not allowed to determine the optimal path in a com-
pletely unknown environment

• Simulation conducted for static obstacles

[111] Multi-Point Potential Field
• Static and dynamic obstacles
• HIL and SIL simulation

[113] Modified balance points of motion
• Static and dynamic obstacles
• Attempt to combine local and global planning

[114] Vector Polar Histogram (VPH)
• Uses real sonar data for the simulation
• Memory function for trap environment

[110] Velocity synthesis algorithm and
Artificial Potential Field method

• APF method used to avoid obstacles effectively
• Velocity synthesis algorithm to achieve the optimal path

In [65], researchers successfully tested a AUV-UPCT control system based on the neural
network method in Menor Lagoon. The vehicle has the ability to move in 3D, and obstacle
avoidance is implemented only in the horizontal plane. In the study [115], the successful
maneuver to avoid a group of four obstacles was accomplished by making a 90◦ turn and
bypassing the obstacle, which was the island and the points around it. However, one test
resulted in AUV looping due to the local planner not being fully integrated with mission
planner. The study [52] tested the possibilities of the SPARUS-II AUV in a real-world
environment. In the simulation conditions, a computation time equal to 1 s was assumed,
whereas in real-world conditions, it was necessary to change this to 1.5 s. This indicates that
the method works quickly but is not intended for a dynamically changing environment.
The study [116] proposed an algorithm based on reactive behaviours that allows it to
correctly navigate and avoid obstacles in both vertical and horizontal planes. Due to the
fact that the collision avoidance in both planes is not parallel, there may be cases of a
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non-optimal AUV trajectory. The study discusses the situation in which the AUV, to avoid
an obstacle, gradually ascends to the minimum depth and then avoids the obstacle by using
horizontal plane behaviours. the list of algorithms in real applications between 2011–2016
is presented in Table 5.

Table 5. List of algorithms in real applications between 2011–2016.

Research Algorithm Main Characteristics

[65] Neural Network

• Sonar and camera
• Requires learning in ROV mode
• Moving in 3D but avoiding obstacles

only in the horizontal plane
• Can track the seafloor

[115]
Combination of the vector

field, reactive algorithm and
object mapping algorithm

• Static and dynamic obstacles
• Data from 3 sonars
• 2D maneuvers

[52] Optimal Rapidly exploring
Random Tree (RRT*)

• 2D workspace
• Static obstacles

[116] Reactive behaviours

• Test performed only for static obsta-
cles

• Sonar
• Vertical and horizontal plane reactive

maneuvers

3.3. 2016–2020

In the next five years (2016–2020), there was an increased interest in collision avoidance
and control systems for single AUV and multi-AUV formations. Researchers focused
their simulation studies on modifying existing methods to improve efficiency. List of
algorithms validated in numerical research between 2016 and 2020 is presented in Table 6.
In the survey [117], an APF algorithm modification was introduced, consisting of the
disappearance of the repulsive force effect on AUV in the case of increasing the distance
from the obstacle. For this method, an obstacle is detected only when at less than 80 m
distance. In the study [118], the path optimisation determined by the neural network was
solved using the Radau pseudospectral method. The authors of [73] presented a solution
to modify the mutation operator through a grey wolf optimiser for energy optimisation in
path planning. In the modified APF-based method in [119], the amount of data necessary
for the correct operation of the algorithm was reduced to provide information only about
the distance between the vehicle and the obstacle. The study [78] introduced a three-input
FL controller that can provide greater efficiency for fast-moving obstacles than the generally
used two-input controllers. In the survey [70], a modified GA is presented by adaptively
adjusted crossover and mutation probability and by assessing the diversity of the new
population. The collision-avoidance and controls systems for AUV formations were also
points of focus at that time. In [120], authors used the fuzzy artificial potential function and
leader–follower algorithm for flocking control of group AUV. Another solution based on the
neural network method for controlling AUVs and APF for collision detection and avoidance
was simulated in the study [121]. Due to hardware and environmental limitations, real-time
in-system simulation was performed. The results proved to be similar to the simulation run
in the MATLAB environment without using AUVs. Researchers also modified well-known
routing optimisation algorithms for multiple AUVs and their energy consumption [122].
Also, many other studies have been focusing on the control and avoidance of collisions for
multiple AUV formations, e.g., [123–125], which shows that in the time period considered
in this paragraph, there was a significant increase in interest not only in collision avoidance
and path planning algorithms for individual AUVs but also a lot of focus has been given
to the research of AUV-formation control algorithms. In [126], the authors developed a



Electronics 2022, 11, 2301 15 of 30

practical implementation of the 2D control method based on the Dijkstra algorithm with its
testing on the ROV. The authors claimed that the method can also be easily implemented in
AUVs. In the study [127], a real-world test of the biomimetic AUV (BAUV) was carried
out. The study, however did not bring satisfactory results due to the insufficient accuracy
of the navigation system. Also, some false obstacles were detected due to reflections from
testing the BAUV in shallow water. The examples of BAUV and AUV are shown in Figure 3.
Another study [128] analysed the possibilities of determining the optimal and collision-free
path for the Inspection-AUV (I-AUV) with a manipulator in cluttered environments. The
authors of [129] confirmed that it is possible to build a collision-avoidance controller for
AUVs by using a hydroacoustic obstacle-detection system. Reference [130] analyses the
collision avoidance problem for various types of underwater objects (usually vehicles) and
various environmental conditions in cases of one-way communication.

Figure 3. BAUV examples made at the Polish Naval Academy [own source].

Table 6. List of algorithms validated in numerical research between 2016 and 2020.

Research Algorithm Main Characteristics

[41] Artificial Potential Field
• 2D static environment
• Local minima problem solved by introducing a virtual

obstacle in local minimum position

[131] Dynamic Window

• Horizontal plane collision avoidance
• Simulation conducted using nonlinear model of AUV

named HUGIN 1000
• The algorithm is prone to trapping in the local minima

[76] Fuzzy reactive architecture for
different forward speed

• Simulation specifically for Guanay II AUV
• Various obstacles changing location and shape

[67] Deep Learning
• Simulation-based on real camera images
• Finding a collision free space and determining the direction

of AUV escape

[132] Safety spheres
• Relates to I-AUV
• The obstacles are represented by Octrees obtained from the

Octomap implementation

[117] Improved APF

• Static obstacles
• APF modification consists in determining the distance of

80 m between the obstacle and the AUV beyond which the
repulsive force disappears

[118] Radial Basis Function (RBF) Neural
Networks

• Horizontal plane only
• Path planning simulation conducted with dynamic obstacle
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Table 6. Cont.

Research Algorithm Main Characteristics

[133] Fuzzy Logic
• Higher degree security and safety
• The Infrared Sensor module for obstacle distance informa-

tion

[134] Rapid random search tree algorithm • Static and dynamic obstacles Real-time path planning

[73]
Improved Interfered Fluid Dynamical
System, Improved Genetic Algorithm

for energy optimal path obtaining

• Static and dynamic obstacles
• 3D path planning with complex obstacles and the ocean

flow

[135] Machine Learning-based algorithm
• Static obstacles
• Real-time path planning

[87] Image segmentation and
Reinforcement Learning

• Static and dynamic obstacles
• Estimates path dynamically

[119] Modified Potential Field
• Static and dynamic obstacles
• No need to know the exact position of the AUV, only the

distance between the obstacle and the AUV

[78] Three inputs Fuzzy Logic
• Static and dynamic obstacles
• Increased efficiency compared to 2 inputs Fuzzy Logic Sys-

tem

[136]
Improved histogram-based EDA
(LFHH-Learning Fixed-Height

Histogram)

• Static and dynamic obstacles
• 2D and 3D environments

[70] Improved Genetic Algorithm
• Static obstacles
• Improved crossover and mutation probability
• Modified fitness function

[137] Reactive behaviours
• Vertical plane only
• The ability to maintain a constant or varying distance from

an obstacle above or below the vehicle

[88] Reinforcement learning
• Static obstacles
• 2D environment

[138] APF based method

• Improves the suboptimal solution of the traditional trajec-
tory planning algorithm

• Selection of cost function is optimised by potential field
intensity

[35] 3D Multi direction A*
• Static environment
• More satisfying results compared to Dijkstra Algorithm

[139] Evolutionary Neural Network
• Static obstacles (AUVs operate in mountainous and under-

water areas)
• An algorithm designed for BAUV

The list of algorithms in real applications between 2016–2020 is presented in Table 7.
In the study performed in [79], horizontal maneuvers are preferred over vertical ones. If it
is impossible to calculate the path by using horizontal maneuvers, the vertical approach
is activated. This approach allows one to avoid collisions in 3D, although in some cases
the path on which the AUV moves may not be optimal or is far from optimal. The au-
thors [140] tested AUV in a real-world environment with simulated obstacles in the form of
a labyrinth. Therefore, obstacle detection and sensor input processing have been simplified.
Nonetheless, the algorithm recalculated the path in around 5 s, which means the AUV
might not be able to react appropriately in an emergency. The study [141] discussed an
obstacle-avoidance algorithm, changing the AUV altitude when an obstacle appears in
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the scanning area. When performing evasive maneuvers, the AUV ascends vertically, and
a downward-looking camera and laser monitor the obstacle, memorising the position of
the obstacle’s peak of the obstacles. After executing the maneuver, the AUV returns to
the before-avoidance altitude. In the study [142], the reactive algorithm enforces turning
when an obstacle is detected. If not, the AUV is controlled parallel to a wall, keeping a
constant distance from it. In [143], the reactive algorithm uses a combination of behaviours
depending on the situation: gain altitude, reduce altitude, move forward, move back-
wards, and escape from hot water. The study includes photographing the bottom of the
test reservoir containing hydrothermal springs. When avoiding collisions with seafloor
elements, the AUV makes a vertical plane movements only. In [144], extensive simulation
and practical tests (under various conditions, including regular and irregularly shaped
obstacles) were conducted to confirm the correct operation of the collision-avoidance al-
gorithm implemented on the SPARUS-II AUV. The research proved the possibility of an
effective operation of the algorithm in the field of online planning with full 3D control.
The authors [54] tested the Aqua2 AUV in a pool with static obstacles. Although offline
path planning was successfully accomplished in 3D, and online planning was only realized
in the horizontal plane.

Table 7. List of algorithms in real applications between 2016–2020.

Research Algorithm Main Characteristics

[79]

Two-layer algorithm Fuzzy Logic
for preplanning, potential field
and edge detection to reactive

maneuvers

• Horizontal maneuvers, if no routing possible, then the verti-
cal approach activated

• Strongly focused on safety

[140] RRT based algorithm
• Experiment with artificially imposed obstacles
• Around 5 s to calculate the path

[141] Reactive behaviours
• Cameras, line lasers (image processing techniques)
• Change the altitude when obstacle detected

[142] Reactive behaviours
• Forward Looking Sonar
• AUV moving in 3D, collision avoidance only in 2D

[143] Reactive behaviours

• Forward Looking Sonar, Forward Looking Camera-Laser
• Vertical plane collision avoidance maneuvers
• Improved the existing system with Forward Looking Sonar,

backward movement and thermometer (high-temperature
water detection—hydrothermal vent fields.

[144] Optimal RRT* based algorithm
• Static and dynamic obstacles
• Online path planning in 3D unknown environment

[54] Sequential convex optimisation
• The experiment in the pool with static obstacles
• Offline path planning realised in 3D
• Online path planning—only horizontal plane maneuvers

3.4. 2021–Now

In the last two years, simulation methods for route planning and collision avoidance
are still being developed. Another aspect that is becoming more important is accurate
navigation, together with algorithms for reducing the navigation errors and also methods
of tracking the previously determined path [63,145–148]. There is still continuing interest in
control and collision avoidance systems for multi-AUV formations [149–151]. To improve
the efficiency of simulation algorithms, combinations or improvements to the existing
methods are implemented. The list of algorithms validated in numerical research from 2021
is presented in Table 8.
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Table 8. List of algorithms validated in numerical research from 2021.

Research Algorithm Main Characteristics

[152]
Improved Deep

Deterministic Policy
Gradient (DDPG)

• Static and dynamic obstacles
• APF method to set continuous rewards
• 2D environment

[153] HA* (Hybrid A*)
• Static and dynamic obstacles
• 3D path planning

[154] Deep Reinforcement
Learning

• Static and dynamic obstacles
• 2D environment

[155] Reinforcement
Learning—RRT*

• Static obstacles
• Validated in an unknown virtual maze

[156]

(SDEQPSO) algorithm
Selective Differential

Evolution
Quantum-behaved Particle

Swarm Optimisation

• Static and dynamic obstacles
• HIL test validated
• MOOS-IvP framework

[157]
Dynamic Virtual AUV
principle and Barrier
Lyapunov function

• Static and dynamic obstacles
• Vertical plane avoidance maneuvers

In [158], a real-world environment test was conducted in which the AUV, after detect-
ing a fishing net, was to make a turn and then return to the original path. In a result, 13
out of 16 attempts were successful. For the three unsuccessful attempts, the vehicle did
not react accurately due to the too high detection threshold to exclude false detections.
The MRF-net was used to detect obstacles in real time. The method is suitable for detection
of a single static obstacle. The study [159] examined the capabilities of the PI AUV, which
is intended for damage inspection of underwater pipes. It was tested whether the AUV
correctly detects a leak from the pipe. Also, the anti-collision system operation was tested
in which the avoidance expert system takes over the control if an obstacle is detected
at a distance of 80 m from the AUV. Depending on the obstacle in relation to the AUV,
the appropriate maneuver (turn left/right or bypass left/right) is selected in the horizontal
plane. The position of dynamic obstacles was predicted by using the Kalman filter. The au-
thors [160] introduced the path-planning and collision-avoidance systems for the spherical
underwater robot SUR IV. The combination of ant colony and PSO approaches allowed the
researchers to avoid collisions in 3D, which was confirmed by an experiment in a real water
environment. To detect obstacles in this study, a camera was used. It must be noted that
placing the SUR IV in a real water environment with low transparency could interfere with
the correct detection of the environment and obstacles and as a result, malfunction of the
entire system. The list of algorithms in real applications from 2021 is presented in Table 9.

Table 9. List of algorithms in real applications from 2021.

Research Algorithm Main Characteristics

[158] Reactive behaviours
• Static obstacles
• MRF-net to obstacle detection

[159] Reactive behaviours
(APF based)

• Static and dynamic obstacles
• Kalman filters for the motion predic-

tion of dynamic obstacles
• Multibeam echosounder and FLS

[160] Merged Ant Colony and PSO
algorithms

• Static and dynamic obstacles
• 3D path planning
• Spherical Underwater Robot
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4. Discussion

This section summarises the results of the literature analysis, containing statistics on
the use of path planning and collision-avoidance methods. Quantitative statistics include
a division into simulation-tested and real-environment validated methods from 2001 to
2020. It also contains classification according to classical and artificial intelligence methods.
The next part of this chapter discusses future works and limitations that inhabit the further
development in this field.

4.1. Summary

After analysing the literature on motion planning and collision avoidance for AUVs, it
is clear that a significant increase in publications in this area occurred only in the last decade
(Figure 4). The rise in simulation tests of new, improved, or combined algorithms for path
planning and collision avoidance is accompanied by an increase in the number of practical
implementations in AUV motion controllers and tests in a real environment. However,
the practical implementations of the control and collision-avoidance algorithms are not
developed as fast as the simulation methods. A practical approach to the study requires
dealing with design and technological problems, which are often time-consuming and
costly. Additionally, performing tests in a real environment requires thorough preparation
and logistical organisation. Analysing the last 20 years of AUV development, it can also be
noticed that experiments in the physical environment are dominated by classical methods
(Figure 5). In the case of simulation studies, artificial intelligence methods are used as
often as classical methods. Although artificial intelligence algorithms have origins in the
previous century and allow for solving very complex problems, their use by researchers has
not been dominated in further studies on the development of AUV. Figure 6 shows that in
simulation studies, the APF approach is most often used among classic methods, whereas
among artificial intelligence algorithms RL and FL methods predominate (Figure 7). For
real applications, the most used approach is reeactive behaviors (Figure 8), as can be seen
in Figure 9. Artificial intelligence algorithms are rarely used in real implementations. This
probably results from the fact that these methods need a lots of data to train the artificial
intelligence system. Summarizing the above analysis, it can be stated that in the field of
collision avoidance and path planning in underwater environment algorithms, researchers
still show great interest in classical methods. Thanks to the research to date, many dis-
advantages of classic methods have been eliminated, which, combined with the ease of
implementation, is still an alternative to the often complex methods of artificial intelligence.

The currently designed AUVs are diverse in terms of intended use. Local collision-
avoidance algorithms are usually connected to a global system that analyses and optimises
the path. This creates the need to develop many side areas of studies, such as the se-
lection of the path-planning method, preplanning, algorithms and drivers for tracking
the designated path, navigation and mapping related to determining the most accurate
position of obstacles and the AUV. Moreover, in recent years the development of I-AUVs
has also been noticeable. I-AUVs are usually equipped with an arm with several degrees of
freedom and are designed to perform inspections and repairs, for example of gas and oil
installations [161]. When carrying out specific underwater missions, I-AUVs must have
collision-avoidance algorithms for the correct task execution and safe movement. For the
I-AUV with several arms, it is also necessary to use collision-avoidance algorithms between
arms. Implementing that component to the control system, however, significantly increases
the complexity of the controller system. Another type of AUV is a spherical underwater
robot (SUR). All control elements, electronic devices, and power sources are within that
spherical shape [162–164]. Due to the shape and center of gravity, SURs are characterised
by high stability and maneuverability, allowing for a tiny turning radius (even 0 degrees).
The obstacle-avoidance and control systems for the multiple AUV formations are also
studied more often recently. In such formations, the control is, however, very complex
due to the need to simultaneously control multiple vehicles, their communication and
cooperation, as well as to perform specific maneuvers when avoiding obstacles and then
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returning all formations to the previous positions. Currently, AUV control systems mostly
use artificial intelligence methods to define the environment and the situation they are in,
as well as to find solutions in the event of encountering problems or obstacles. Due to the
limitations of individual methods in their basic versions, to increase the efficiency of the
AUV motion control system, modifications or combinations of methods are used. That
approach in some cases allows one to use the advantages to eliminate the disadvantages of
the chosen methods.

Figure 4. Number of publications in the field of simulation methods and practical implementations
of control and collision avoidance systems for AUV in the last 20 years.

Figure 5. Percentage of classical methods used in simulations studies and real applications in the last
20 years.
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Figure 6. Classical methods validated in numerical research.

Figure 7. Artificial intelligence methods validated in numerical research.
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Figure 8. Classical methods in real applications.

Figure 9. Artificial intelligence methods in real applications.

4.2. Future Works

Over the last few decades, multiple path-planning methods and collision-avoidance
methods have been proposed and simulated in the field of AUV technology. Nevertheless,
there are only a few practical AUV implementations with an effective and efficient system
of optimal path planning and collision avoidance. In the coming years, it will be necessary
to focus more on practical implementations by using the existing knowledge gained in sim-
ulation studies. Technological development provides better possibilities for more accurate
detection, and more precise navigation or increasing the computing speed. The appropriate
use of evolving technology is crucial in the further development of collision avoidance
and path-planning systems for AUVs. Many problems in this field have already been
resolved. However, there are still issues that require extensive research. AUVs are still not
able to achieve high speeds during collision-avoidance maneuvers. Additionally, despite
the developing technology, the navigational uncertainties still have to be compensated
with algorithms that approximate the exact location. Recently, research on the methods of
following a designated path and compensating for navigational error has been developing
very intensively. Another aspect that requires more analysis and further work is navigation
of the AUV in shallow water. This applies particularly to AUVs that use obstacle-detection
sonars, where ground and water surface reflections create fictional obstacles.
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4.3. Bottlenecks of Future Development

Artificial intelligence methods usually require a large amount of computation when
processing 3D data in a complex environment. The vehicle’s speed depends on how quickly
the system makes decisions when detecting an obstacle or a group of obstacles. Increasing
the computing power allows for more efficient operation of the control system and faster
data processing and consequently making faster decisions on how to avoid collisions.
Ensuring high computing power, however, requires increasing the vehicle’s size, which
limits the vehicle’s maneuvering parameters. Furthermore, highly efficient systems that
provide high computing power consume more energy and require more financial outlay.
The solution to this problem could be, for example, the creation of wireless charging stations
for underwater vehicles; however, there are still limitations related to the specificity of the
underwater environment, which inhibits the development of such infrastructure [23]. Thus,
the optimal selection of the computing power for path planning and collision-avoidance
drivers is crucial. Another aspect that limits the development of AUV in collision avoidance
and path planning is the rough conditions in the underwater environment. The greater the
operating depth, the higher the technical requirements for the AUV design. The lack of
reference points, poor visibility and high signal attenuation make it challenging to navigate
AUVs. Moreover, sea currents make it difficult to predict the environmental impact on
AUVs. Another issue is the nonlinear dynamics of AUVs. Methods based on machine
learning can achieve the ability to correctly control taking into account the dynamics of the
vehicle. However, this requires a very long training time and does not guarantee correct
vehicle control in situations that differ slightly from those covered by the training. For this
reason, vehicle dynamics plays a vital role in practical implementations.

5. Conclusions

This article presented quantitative and qualitative comparisons of path-planning and
collision-avoidance systems verified by using numerical tests and also real applications. We
performed a literature review and analysis, summarizing the achievements, future works,
and aspects limiting the further development of AUVs, especially in terms of path planning
and collision avoidance.

Although since the 1990’s many of the AUV’s collision avoidance-related issues, such
as the local minima problem, mapping the optimal path in an unknown environment,
3D path planning, re-planning and real-time decision-making, have been addressed and
resolved by using mainly numerical studies, there are still many issues, which have not been
entirely resolved, e.g., moving in a complex environment at high speed, nonlinear dynamics
of the AUV, detection disruptions related to shallow water and a limited environment,
or accurate navigation in the underwater environment. Moreover, it is difficult to indicate
the best method or group of methods for collision avoidance, based on the state-of-the-
art analysis. Depending on the circumstances, various methods were used with success
for different cases. Quite often, hybrid methods showed good efficiency. Each method
has disadvantages that reduce its effectiveness in a challenging underwater environment.
The presented results show that the most frequently used algorithms tested in the simulated
environment are APF, RL, and FL. These algorithms appear to be the most suitable for use
in a real environment. Currently, in real implementations, the most frequently used method
is the application of behavioural rules based on reacting to changes in the environment in
a specific way. Although artificial intelligence methods have long dominated the field of
collision avoidance for robots [3], in AUV, they are used in numerical research as often as
classical methods. However, in real applications, mainly classical methods are still used.
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