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Abstract: Optical coherence tomography (OCT), as a new type of tomography technology, has the
characteristics of non-invasive, real-time imaging and high sensitivity, and is currently an important
medical imaging tool to assist ophthalmologists in the screening, diagnosis, and follow-up treatment
of patients with macular disease. In order to solve the problem of irregular occurrence area of diabetic
retinopathy macular edema (DME), multi-scale and multi-region cluster of macular edema, which
leads to inaccurate segmentation of the edema area, an improved Swin-Unet networks model was
proposed for automatic semantic segmentation of macular edema lesion areas in OCT images. Firstly,
in the deep bottleneck of the Swin-Unet network, the Resnet network layer was used to increase the
extraction of pairs of sub-feature images. Secondly, the Swin Transformer block and skip connection
structure were used for global and local learning, and the regions after semantic segmentation were
morphologically smoothed and post-processed. Finally, the proposed method was performed on
the macular edema patient dataset publicly available at Duke University, and was compared with
previous segmentation methods. The experimental results show that the proposed method can not
only improve the overall semantic segmentation accuracy of retinal macular edema, but also further
to improve the semantic segmentation effect of multi-scale and multi-region edema regions.

Keywords: OCT; Swin-Unet; macular edema; Resnet

1. Introduction

Macular degeneration is one of the three major blindness diseases of the human
eye [1], which is mainly caused by the lesions of the macular retina and its underlying
nutritional structures, the retinal pigment epithelium and choroid. Patients will encounter
clinical symptoms of visual dysfunction and central visual acuity decline. If they are not
screened and treated in time, they will face the danger of blindness. In addition, diseases
such as diabetes and hypertension may also accumulate lesions in the macular region.
Therefore, obtaining parameters related to the number and shape characteristics of key
tissue targets, such as fundus macular edema, is of great significance for the diagnosis of
macular degeneration and related diseases [2].

With the maturity of optical imaging technology, optical coherence tomography (OCT)
technology has been gradually applied to the construction of retinal images. It is an emerg-
ing technology firstly proposed by Huang D from the Massachusetts Institute of Technology
in 1991 [3]. It adopts optical coherent interferometer and confocal scanning microscopy
technology, with a longitudinal resolution of 3–15 microns and about 400 to 27,000 A-scans
per second [4,5]. It takes into account the advantages of high security, fast imaging, non-
contact and non-invasive, high longitudinal resolution, and lateral resolution, and has
become a biomedical optical imaging technology for detecting the internal microstruc-
ture of biological tissues in vivo, and can quickly obtain retinal microstructure images [6].
Figure 1a shows OCT images with macular edema, and Figure 1b shows red regions in the
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image that are annotations of edema lesions. In this way, the image diagnosis information
about on the lesions can be quickly obtained, and the ophthalmologist can make an accurate
diagnosis or follow-up treatment for the patients with macular degeneration.
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For example, in 2010, Stephanie et al. proposed an automatic segmentation method of 
retinal layer of spectral domain optical coherence chromatography images based on graph 
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between nodes was obtained to achieve segmentation of the edema region [7]. In 2011, 
Quan et al. proposed a connected component extraction and localization method based 
on threshold segmentation that combines global and local. The global threshold 
segmentation is used to remove the irrelevant information in the image, and the set of 
connected components in the image is obtained from the global perspective, and then the 
lesion information in the image is accurately located using the local threshold extraction 
and locally connected component recognition method. Experimental results show that 
this method can accurately locate microaneurysms and hard exudates in fundus images 
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reflection regions in the image were automatically segmented into candidate regions, and 
then the candidate regions were preprocessed and coarsened. A four-step process 
approach for segmentation, sub-segmentation, and quantitative analysis [9]. In 2014, 
Srinivasan et al. proposed an automatic segmentation method of the retinal layer of 
spectral domain OCT images based on sparse denoising, support vector machine, graph 
theory and dynamic programming, and obtained better results in segmenting the retinal 
boundary layer [10]. In 2015, Chiu et al. developed a fully automatic OCT segmentation 
method based on Kernel Regression classification and analyzed the seven-layer 
segmentation of retinal macular edema on SD-OCT images, combined this method with 
graph theory, and dynamic programming methods, and obtained a good segmentation 
effect [11]. In the same year, Zheng Shan proposed a new multiphase active contour 
segmentation model under ellipse constraints. According to the different area brightness 

Figure 1. OCT image with macular edema and annotated image of edema area in OCT image: (a) OCT
image with macular edema; (b) the annotations of the edema regions.

The early segmentation of macular edema in retinal OCT images was mainly per-
formed manually by ophthalmologists, which was not only time-consuming and labor-
intensive, but also prone to misclassification or omission due to the influence of doctors’
subjective factors. Therefore, in recent years, semi-automatic and fully automatic segmenta-
tion of macular edema in retinal OCT images has become a hot spot and focus of research
by scholars. These methods can be mainly divided into two categories: traditional methods
and semantic segmentation methods based on deep convolutional neural network learning.

Traditional retinal OCT image macular edema segmentation methods mainly include
classical image segmentation methods based on graph theory, threshold segmentation,
dynamic programming, coarse granularity, and fine granularity, and active contouring.
For example, in 2010, Stephanie et al. proposed an automatic segmentation method
of retinal layer of spectral domain optical coherence chromatography images based on
graph theory and dynamic programming, using a strong gradient method to estimate
the edge weights of OCT images, and then through dynamic programming, the shortest
path between nodes was obtained to achieve segmentation of the edema region [7]. In
2011, Quan et al. proposed a connected component extraction and localization method
based on threshold segmentation that combines global and local. The global threshold
segmentation is used to remove the irrelevant information in the image, and the set of
connected components in the image is obtained from the global perspective, and then the
lesion information in the image is accurately located using the local threshold extraction
and locally connected component recognition method. Experimental results show that
this method can accurately locate microaneurysms and hard exudates in fundus images of
diabetic retinopathy [8]. In 2013, Zheng et al. proposed an automatic segmentation method
based on intraretinal fluid and subretinal fluid in OCT images. Firstly, all low-reflection
regions in the image were automatically segmented into candidate regions, and then the
candidate regions were preprocessed and coarsened. A four-step process approach for
segmentation, sub-segmentation, and quantitative analysis [9]. In 2014, Srinivasan et al.
proposed an automatic segmentation method of the retinal layer of spectral domain OCT
images based on sparse denoising, support vector machine, graph theory and dynamic
programming, and obtained better results in segmenting the retinal boundary layer [10].
In 2015, Chiu et al. developed a fully automatic OCT segmentation method based on
Kernel Regression classification and analyzed the seven-layer segmentation of retinal
macular edema on SD-OCT images, combined this method with graph theory, and dynamic
programming methods, and obtained a good segmentation effect [11]. In the same year,
Zheng Shan proposed a new multiphase active contour segmentation model under ellipse
constraints. According to the different area brightness of the view disc cup in the grayscale
image, the model establishes a multiphase active contour model to achieve simultaneous
segmentation of the viewer disk cup. The results show that the method can segment
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the optic disc and optic cup in medical fundus images and provide quantitative shape
description information [12].

In traditional methods, there are also 3D-based methods to solve the segmentation
problem of medical images. In 2017, by combining the watershed transformation of
grayscale labels with robust optimization algorithms, an automatic 3D medical image
registration method was proposed by Ruppert et al., and can effectively reduce the number
of key points required for registration, resulting in the fast estimation of the mapping
function [13].

Due to the expansion of dataset size and the improvement in computer computing
performance, deep learning methods have been rapidly developed. In this context, a
large number of deep learning-based semantic segmentation methods have also been
introduced to the field of medical image segmentation, and these methods have achieved
many outstanding achievements in retinal macular degeneration segmentation.

In May 2017, Abhay Shah et al. utilized Convolutional Neural Networks (CNN) to
segment surfaces in 3D medical images by learning basic features and transformations
from training data, without any human expert intervention, using a regional approach
to learn local surface contours, and finally combined surfaces to obtain boundary maps,
through this method, effective boundary segmentation is achieved on OCT images with
normal and age-related macular degeneration [14]. In the same year, Roy et al. proposed a
ReLayNet network of OCT macular edema segmentation using U-Net [15] as a framework,
using the encoder’s contraction path to learn the hierarchy of contextual features, and
then using the decoder’s expansion path of semantic segmentation, the network achieved
end-to-end segmentation of retinal layers and liquid patches for the first time, and achieved
good segmentation results [16]. In 2018, Venhuizen et al. proposed a two-stage fully
convolutional neural network based on U-Net, including a two-stage architecture. The
first stage is used to extract features, and the second stage is used for edema segmentation
to reduce the impact of background classes on the segmentation effect [17]. In 2019, in
order to solve the class imbalance problem of retinal OCT images, Li et al. used a 2D fully
convolutional network for retinal segmentation and modified the network parameters and
loss functions. In order to enhance the correlation between corresponding positions between
adjacent images in space, a 3D fully convolutional network was proposed for retinal OCT
image segmentation with improved segmentation accuracy [18]. In 2020, Liu et al. proposed
an enhanced nested U-Net structure using multi-scale input, multi-scale side output, and
dual attention mechanism, which achieved excellent segmentation performance on multi-
layer segmentation and multi-fluid segmentation [19]. In the same year, Gao et al. used
ResNet as the backbone network in U-Net++ [20], redesigned the skip connection structure,
used ResNeSt [21] to improve the synthesized structure, studied the edema region in OCT
images, and obtained good segmentation results [22]. In the same year, Xie et al. used image
enhancement and improved 3D U-Net to implement a fast and automatic hyper-reflection
focus segmentation method, and also obtained good segmentation results [23]. In 2021,
Acevedo-Jake et al. used anti-angiogenic peptide hydrogel and pro-angiogenic peptide
hydrogel to treat neovascular age macular degeneration [24].

After the rise of the U-Net network, the combination of various convolutional neural
network model algorithms appeared in the research field of image semantic segmentation.
In 2017, Google proposed a Transformer model based on the self-attention mechanism
structure to deal with sequence-related problems and achieved good results [25]. In 2020,
Dosovitskiy et al. proposed Visio Transformer [26], and many subsequent applications
of transformer-based medical image segmentation model algorithms have laid a solid
foundation for application, such as Swin Transformer [27] and TransUNet [28].

At present, although the Transformer model has a good global capture ability, when
performing image segmentation and lesion detection in deep learning, only the global
feature representation of the image is considered, and the local representation of learning
details needs to be strengthened. In order to overcome the difficult problem of diffi-
cult segmentation of macular edema in OCT images with macular degeneration, such as
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multi-region, multi-scale, irregular shape, non-uniform gray level, and non-fixed position,
Swin-Unet [29] has local and global feature semantics. Inspired by learning and pixel-level
segmentation features, this paper constructs an improved Swin-Unet model for semantic
segmentation of macular edema in retinal OCT images. First of all, this paper uses the net-
work layer of ResNet [30] to improve the bottleneck of Swin-Unet, consequently enhancing
the extraction and learning of sub-feature maps and preventing the calculation of image
features in a deep transformer network from poot convergence [31]. Second, global and
local learning is performed using Swin Transformer blocks and skip-connected structures.
Then, morphological processing is performed on the lesion area after the semantic segmen-
tation is completed, and finally, training, testing, and comparative analysis are performed
on the OCT image dataset of macular edema patients published by Duke University.

The model utilizes the Swin Transformer block to implement a local-to-global self-
attention mechanism in the encoder, and combines the captured global features with the
patch extension layer and Swin Transformer block for pixel-level segmentation and pre-
diction in the decoder, and Swin Transformer is based on Transformer, therefore, while
reducing the loss of feature extraction in the deep network, it can also improve the segmen-
tation accuracy of macular edema in retinal OCT images.

Specifically, the contributions of this paper can be summarized as:

(1) By introducing the Swin-Unet model, it can effectively extract context information
and restore spatial resolution of the macular edema in retinal OCT images, so that the
generalization performance of semantic segmentation for macular edema is improved
in retinal OCT images.

(2) By using the fifth-layer network of ResNet34 as the bottleneck of the Swin-Unet model
to increase the extraction of the sub-feature map, which improves the accuracy of
lesion area segmentation.

(3) The edge of the predicted edema area is smoothed and denoised by the morphological
opening operation to eliminate speckle noise in the image, improve the segmentation
accuracy and increase the visual effect.

The rest of the paper is structured as follows: Section 2 details the Swin-Unet method,
and introduces the improved network model, Section 3 describes the dataset and exper-
imental related configurations, and presents the experimental results and comparative
analysis, Section 4 gives the discussion and ablation experiments are carried out, and
Section 5 summarizes the full text and draws the research conclusions.

2. Materials and Methods

The model in this paper is based on the improved Swin-Unet network model and
performs two-level semantic high-precision segmentation operations on the macular edema
region and the image background region in retinal OCT images. Figure 2 shows the
flow chart of the proposed method, which is divided into five stages. The first stage
is the input operation of retinal OCT images. In the second stage, in order to improve
the generalization performance of model learning, mirror, rotation, color jitter, random
deduction, scale transformation, and shift data amplification are performed on the data.
The mirror operation uses the remap function, and the interpolation method uses bilinear
interpolation. The rotation angle is 0–15◦. Color dither operation is to add a slight noise to
the original pixel value of some images. The scaling operation is to change the resolution
of some images to 0.6, 0.9 and 1.2 times the original image. The translation operation shifts
the original image 20 pixels to the right and 30 pixels to the top. In the third stage, the
augmented data is inputted into the improved Swin-Unet model for two-level semantic
segmentation. In the fourth stage, in order to eliminate the smoothness of some lesion
areas after network segmentation, morphological method [32] is adopted to conduct post-
processing operations on the segmented image, so that can achieve the best visualization
effect after segmentation. Finally, the morphologically processed image data is outputted
in the fifth stage.
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Figure 2. Flow chart of the proposed method.

2.1. Swin-Unet Network Structure

The Swin-Unet network structure is a U-shaped architecture, and the encoder, bottle-
neck, and decoder in this network are implemented based on Swin Transformer blocks.
The patch merging layer and the patch expanding layer are developed in Swin-Unet. The
patch merging layer can increase the feature dimension of the image, and the patch ex-
panding layer can realize the operation of upsampling the image. Additionally, this model
has achieved results on the multi-organ segmentation dataset Synapse and the automatic
cardiac diagnosis challenge dataset ACDC. In the process of encoding and decoding im-
ages, this network structure realizes local-to-global self-attention, performs pixel-level
segmentation and prediction tasks from global features, better preserves image features,
and effectively prevents the misclassification of the macular edema region in this paper.
The network structure of Swin-Unet is shown in Figure 3a, the architecture of Swin-Unet
consists of encoder, bottleneck, decoder and skip connections, in which encoder, bottleneck,
and decoder are all composed of Swin Transformer blocks. Among them, the Swin Trans-
former is based on the shift window. As shown in Figure 3b, there are two consecutive
Swin Transformer blocks. Each Swin Transformer block includes a LayerNorm (LN) layer, a
multi-head self-attention (MSA) module, residual connections, and 2-layer MLP with GELU
non-linearity. In two successive Swin Transformers blocks, the window-based multi-head
self attention (W-MSA) module and the shifted window-based multi-head self attention
(SW-MSA) module are used respectively.
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Based on this window division mechanism, continuous Swin Transformer blocks can
be represented by Formulas (1)–(4):

ẑl = W_MSA
(

LN
(

zl−1
))

+ zl−1 (1)

zl = MLP
(

LN
(

ẑl
))

+ ẑl (2)

ẑl+1 = SW_MSA
(

LN
(

zl
))

+ zl (3)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (4)

Among them, in Formulas (1)–(4), where ẑl and zl represent the output of the (S)W-MSA
module and the MLP module for the l th block, respectively. The calculation formula of the
self-attention layer is shown in Formula (5):

Attention(Q, K, V) = So f tMax
(

QKT
√

d
+ B

)
V (5)

where Q, K, V ∈ RM2×d represents the query matrix, key matrix and value matrix respec-
tively. M2 represents the number of patches in the window, and d represents the dimension
information of the query or key. Since the axial values of the relative positions in the model
are all between [−M + 1, M− 1], a smaller deviation matrix needs to be parameterized as
B̂ ∈ R(2M−1)×(2M+1), and B takes the value from B̂ as the bias.

The annotated image patch is inputted into the encoder in the structure, which uses
the Swin Transformer block with a shifted window as the encoder to extract the context
information. The multi-dimensional features are up-sampled through the patch expanding
layer to restore the spatial resolution of the feature map, and the multi-scale feature
fusion is obtained by combining skip connections, so that the prediction effect of further
segmentation is achieved.
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2.2. Improved Swin-Unet Network
2.2.1. Introducing the Network Layer of ResNet

Swin-Unet is more effective in extracting context information and restoring spatial
resolution, but in the deep bottleneck, the transformer module cannot obtain good results
in the convergence of image feature calculation. In order to better extract the features of
the macular edema area and improve the overall segmentation effect, this chapter makes
improvements to the bottleneck in Swin-Unet. Because the design of the residual block in
the residual network will not cause the computing power of feature extraction to decrease
with the deepening of the network, it is appropriate to replace the two consecutive Swin
Transformer blocks in Swin-Unet at the bottleneck position with this residual block.

As a popular architecture in the current neural network, the ResNet network is mainly
composed of multiple residual modules. The specific design of the residual module solves
the problem of network degradation caused by the deepening of the network level, so
that the parameter calculation of the network is realized for the thousands of layers. After
optimization and comparison, the ResNet deep network is used as the bottleneck in Swin-
Unet to improve the segmentation accuracy of the model for small areas of macular edema
in the retina.

In the fifth-layer structure of ResNet34 and the Swin-Unet bottleneck, the image
resolution and feature dimension remain unchanged, so the fifth-layer network of ResNet34
is used as the bottleneck of the model in this paper, which can achieve the resolution and
dimension of the sub-feature map at the bottleneck, the purpose will not change. As shown
in Figure 4a, the fifth-layer network structure of ResNet34 includes 3 residual modules, and
is used to replace the two Swin Transformer blocks at the bottleneck in Swin-Unet. Figure 4b
shows that the specific structure of each residual module is a residual block layer with two
convolution blocks, two layers of Batch Normalization (BN), and a RELU. The structure
on the side becomes the shortcut layer. In order to ensure that the number of calculated
feature channels from the two channels before the last RELU in each residual block is the
same, the calculated channel dimensions in the residual block and shortcut are different,
and in a residual block, the channel dimension of shortcut is twice the channel dimension
of the residual block. This designed structure can ensure that the feature extraction of
the deep convolution can be completed, and the dimension of the feature map can also
remain unchanged.

2.2.2. The Network Architecture of This Paper

Using the fifth layer network of ResNet34 to replace the bottleneck in Swin-Unet, the
improved Swin-Unet network achieves a significant improvement in the segmentation of
macular edema regions in retinal OCT images.

As shown in Figure 2, the improved Swin-Unet network structure in this paper is
composed of encoder, bottleneck, and decoder.

In the encoder, firstly, in order to realize the sequence input, the patch partition layer is
used to divide the image into patch blocks, and the C-dimensional H/4×W/4 tokenization
operation is performed on the data through the linear embedding layer.

In the patch merging layer, the input patch is divided into four parts, and the four
parts are connected together through the patch merging layer, so that the resolution of the
patch is resized to 1/2 of the original. In fact, in the patch merging layer, the merged feature
dimension has become 4 times the original size, but a linear layer is added on top of the
spliced feature to unify the feature dimension to 2 times the original dimension.

At the bottleneck, according to the characteristic that the residual network block in
ResNet will not degrade as the layer deepens, this paper uses the fifth-layer network
structure in ResNet34 to make up for the inability of the transformer module to converge
in the calculation of the deep network. Therefore, deep feature learning and extraction
are performed on the lesion area of the OCT image. Using a convolution module at the
deep bottleneck can increase feature learning on tokenized data, where the input feature
resolution is W/32 × H/16.
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In the patch expanding layer, the purpose of image feature upsampling is achieved,
and the input feature is first doubled by the dimension of the linear layer feature. Fol-
lowing this, the rearrangement operation is used to double the resolution of the input
features, and the feature dimension also becomes 1/4 times the features before the input
rearrangement operation.

In the decoder, corresponding to the encoder, the patch expanding layer is used to
perform patch expansion and upsampling operations on the extracted deep features, so as
to realize the image reconstruction of the feature maps of adjacent dimensions. This process
doubles the resolution of the image features, and the corresponding feature dimension
becomes 1/2 times the original.

In skip connection, the multi-scale feature of the encoder and the up-sampled feature
are fused to connect the shallow features and deep features together to reduce the loss of
spatial information caused by down-sampling, and finally, a guaranteed connection feature
of the linear layer is the same size as the up-sampling feature.

2.3. Morphological Processing

In order to eliminate the problem of unevenness in some lesion areas after network
segmentation, an open operation of the morphological method is used to post-process the
segmented images, eliminate speckle noise in the images, improve segmentation accuracy,
and increase visualization effects.

The proposed algorithm flow is shown as Algorithm 1.
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Algorithm 1 The Proposed Algorithm.

1. Data input
2. Data augmentation of dataset
3. Input augmented dataset into the proposed method
4. While ε has not converged do
5. For t = 0, 1, . . . , n do
6. Sample {Xi}m, {Yi}m → Pdata (H, W, 3) a batch from the dataset
7. Pdata (H, W)→ Pdata (H, W, C)
8. Patch partition(Pdata)
9. Linear embedding(Pdata)
10. Swin transformer(Pdata)
11. Patch merging(Pdata)
12. Conv (Pdata)
13. Patch expanding(Pdata)
14. Linear projection(Pdata)
15. Gε

(dice) ←∇wLossdice(Pdata)
16. ε← ε + ξGε

(dice)

17. end for
18. end while
19. Data morphological processing
20. Output the segmented OCT image.

Where n is the number of iterations, m is the batch size, and ε is the model parameter.

3. Experimental Results
3.1. The Dataset

The proposed method is trained and tested on the DME patient dataset publicly
available from Duke University [33], which consists of 110 SD-OCT B-scan images with
a size of 512 × 740, these images were obtained from 10 patients with DME. In these
110 pictures, ophthalmology expert 1 and expert 2 mark the macular edema region in the
retinal layer. In this experiment, the annotations of expert 1 and expert 2 are used as the
gold standard for training the network respectively, and the method proposed is compared
and evaluated with the existing main methods.

3.2. Experimental Configuration

In the experiment, the 1.10.1 version of Pytorch (Sunnyvale, CA, USA) was used as
the deep learning framework, the Nvidia version (Santa Clara, CA, USA) of the RTX3090
24 GB video memory was used, the 2021.05 version of Anaconda (Austin, TX, USA) and
the 11.2 version of Cuda (Menlo Park, CA, USA) were used. The weights pre-trained on
ImageNet is used to initialize the model parameters, the impulse of the stochastic gradient
descent optimizer is set to 0.9, weight decay is set to 0.0001, and the initial learning rate is
set to 0.01, used to optimize the backpropagation of the model. Firstly, the OCT image data
is augmented, including data augmentation operations such as mirroring, rotation, color
jitter, etc., augment the image data to 50 times the original, and then randomly select 70% as
the training set, 20% as the validation set, 10% as a test set. In the experiment, 500 epochs
of training were performed on the training set, the batch size of the training was 24, and the
quantification index value of the validation set was outputted every 5 epochs of training.

3.3. Quantitative Indicators

The proposed algorithm uses the Dice, IOU, Recall and Precision as quantitative
indicators in the experiment, which are calculated as Formulas (6)–(9). The higher the
quantization value, the better the effect of model segmentation.

Dice = 2×
area(Np ∩ Ngt)

area(Np) + area(Ngt)
(6)
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Iou =
area(Np ∩ Ngt)

area(Np ∪ Ngt)
(7)

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

where Np represents the predicted area of macular edema, Ngt represents the area of
macular edema marked by experts, TP is the number of pixels correctly predicted by the
model for the area of macular edema, FN is the number of pixels in the non-real area of
macular edema predicted by the model, and FP is the number of pixels in the non-real
macular edema area predicted by the model.

3.4. Results

In this paper, the existing main methods are introduced to perform macular edema
segmentation on OCT images. The results of the proposed segmentation method are
compared with the results marked by expert 2 (expert 1), the segmentation results of the
FCN [34], TransUNet, and Res-UNet++ methods through quantitative indicators. The
comparison results of the corresponding methods are listed in Table 1 below. When the
annotation of expert 1 is marked as the golden annotation, the Dice of the proposed method
is 0.82, Iou is 0.80, Recall is 0.85 and Precision is 0.82, which are 0.02, 0.02, 0.01 and 0.02
higher than the previous best Res-UNet++ quantization index respectively. When the
annotation of expert 2 is marked as the golden annotation, the Dice of the proposed method
is 0.80, Iou is 0.81 and Precision is 0.79, which are 0.02, 0.05 and 0.01 higher than the
previous best Res-UNet++ quantization index respectively, and Recall were both equal
at 0.82. Therefore, the proposed method achieves the best segmentation effect on these
four quantitative indexes, it demonstrates that the proposed method has good model
generalization performance and strong algorithm robustness.

Table 1. Comparison of test results of different methods in images of macular edema area.

Golden Annotation Method Dice Iou Recall Precision

Expert 1

Expert 2 0.59 0.62 0.63 0.59
FCN 0.63 0.68 0.69 0.66

TransUNet 0.78 0.77 0.80 0.77
Res-UNet++ 0.80 0.78 0.84 0.80

The proposed method 0.82 0.80 0.85 0.82

Expert 2

Expert 1 0.58 0.61 0.62 0.57
FCN 0.60 0.63 0.65 0.62

TransUNet 0.76 0.75 0.79 0.78
Res-UNet++ 0.78 0.76 0.82 0.78

The proposed method 0.80 0.81 0.82 0.79

Excepted where noted, taking the annotation of expert 1 as the golden annotation
standard as follows.

The confusion matrix comparison results are shown in Figure 5, in terms of the mean
number of pixels for macular edema prediction, it can clearly illustrate that the prediction
effect of the proposed method is much better than that of FCN, TransUNet and Res-UNet++
networks. Compared with the existing main method, the mean number of pixels predicted
by the proposed method for macular edema is 612, 188, and 62 more, respectively, and the
Recall is increased by 16%, 5%, and 1%, respectively. It illustrates that the proposed method
has fewer missed and misclassified phenomena, and a better binary segmentation effect.
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As shown in Figure 6, the ROC curves of the FCN, TransUNet, Res-UNet++ networks 
and the proposed method are compared, and the area under the ROC curve (AUC) is used 
as an indicator to evaluate the model. The AUC value of the proposed method is 0.996, 
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In the actual area of macular edema, the existence of macular edema area size is
irregular, some disease area is large, some disease area is lesser, disease area smaller
existing background region of the retina becomes big, and now classified as a kind of
unbalanced phenomenon in a data set, namely, the negative samples more than positive
samples. In response to this problem, the receiver operating characteristic (ROC) curves
are introduced to solve this problem in actual or experimental datasets.

As shown in Figure 6, the ROC curves of the FCN, TransUNet, Res-UNet++ networks
and the proposed method are compared, and the area under the ROC curve (AUC) is
used as an indicator to evaluate the model. The AUC value of the proposed method
is 0.996, which is 0.003, 0.081 and 0.165 higher than FCN, TransUNet and Res-UNet++
respectively. It indicates that the proposed method has a better semantic segmentation
effect on unbalanced samples.
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As shown in Figure 7, the original image, the image marked by expert 1, the image
marked by expert 2, the segmentation results of the TransUNet model, the Res-UNet++
model and the proposed method are shown on two OCT images respectively.
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It is not difficult to see from Figure 7 that the macular edemas are difficult to segment
in the two OCT images due to factors, such as multi-scale and multi-region, irregular
shape, non-uniform grayscale, and non-fixed position. The semantic segmentation results
of the proposed method are better close to the golden segmentation standard of Expert 1,
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and there is almost no misclassification or omission, which further improves the overall
semantic segmentation performance of macular edema.

In essence, in the segmentation of macular edema in retinal OCT images, the improve-
ment of the above quantitative indicators and qualitative effects of the proposed semantic
segmentation method, which is mainly due to the improvement of the network structure at
the bottleneck of the proposed method. The deep convolution operation is used to achieve a
better calculation convergence effect, reduce the misclassification or missed classification of
multi-scale and multi-regional macular edema, and achieve better segmentation results of
multi-scale and multi-regional edema. Further, this paper selects 100 OCT images including
multi-scale and multi-region macular edema from the augmented overall data set as the test
set to verify the good segmentation effect of this method on multi-scale and multi-region
macular edema OCT images.

On the test set of 100 OCT images with multi-scale and multi-region macular edema,
the FCN, TransUNet, and Res-UNet++ methods are used to compare with the proposed
method. The comparison results are listed in Table 2. When the annotation of expert 1 is
marked as the golden annotation, the Dice of the proposed method is 0.83, Iou is 0.82, Recall
is 0.86 and Precision is 0.84, which are 0.02, 0.01, 0.01 and 0.02 higher than the previous best
Res-UNet++ quantization index respectively. When the annotation of Expert 2 is marked
as the golden annotation, the Dice of the proposed method is 0.81, Iou is 0.79, Recall is
0.86 and Precision is 0.84, which are 0.01, 0.02, 0.02 and 0.01 higher than the previous best
Res-UNet++ quantization index respectively. Therefore, the proposed method obtains
the best segmentation effect on these four quantitative indicators, which demonstrates
that the prosed method has good model generalization performance and strong algorithm
robustness on OCT images with multi-scale and multi-region macular edema.

Table 2. Comparison of test results of different methods in macular edema OCT images with multi-
scale and multi-region.

Golden Annotation Method Dice Iou Recall Precision

Expert 1

Expert 2 0.58 0.61 0.62 0.59
FCN 0.61 0.65 0.64 0.67

TransUNet 0.78 0.77 0.80 0.77
Res-UNet++ 0.81 0.81 0.85 0.82

The proposed method 0.83 0.82 0.86 0.84

Expert 2

Expert 1 0.56 0.57 0.58 0.61
FCN 0.62 0.63 0.65 0.63

TransUNet 0.79 0.76 0.82 0.79
Res-UNet++ 0.80 0.77 0.83 0.81

The proposed method 0.81 0.79 0.85 0.82

In OCT images with multi-scale and multi-region macular edema, the confusion
matrix comparison results are shown in Figure 8, in terms of the mean number of pixels for
macular edema prediction, it can clearly signify that the prediction effect of the proposed
method is better than that of FCN, TransUNet and Res-UNet++ networks. Compared with
the other three methods, the mean number of pixels predicted by the proposed method for
macular edema is 789, 157, and 63 more, respectively, and the Recall is increased by 22%,
6%, and 1%, respectively. It demonstrates that the proposed method has fewer missed and
misclassified in OCT images of multi-scale and multi-regional macular edema, and has and
much better binary segmentation effect.
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and the proposed method are compared, and the area under the ROC curve (AUC) is used 
as an indicator to evaluate the model. The AUC value of the proposed method is 0.995, 
which is 0.007, 0.089 and 0.183 higher than FCN, TransUNet and Res-UNet++ respectively. 
It indicates that the proposed method has a much better semantic segmentation effect on 
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the proposed method on a macular edema OCT image with multi-scale and multi-region 
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As shown in Figure 9, the ROC curves of the FCN, TransUNet, Res-UNet++ networks
and the proposed method are compared, and the area under the ROC curve (AUC) is used
as an indicator to evaluate the model. The AUC value of the proposed method is 0.995,
which is 0.007, 0.089 and 0.183 higher than FCN, TransUNet and Res-UNet++ respectively.
It indicates that the proposed method has a much better semantic segmentation effect on
multi-scale and multi-regional macular edema OCT images of unbalanced samples.
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Figure 9. Comparison of ROC curves of different models on the macular edema OCT images test set
with multi-scale and multi-region.

Figure 10 shows the original image, the image marked by expert 1, the image marked
by expert 2, the segmentation results of the TransUNet model, the Res-UNet++ model, and
the proposed method on a macular edema OCT image with multi-scale and multi-region
respectively. There are 11 edema areas marked in the expert 1 image, 10 edema areas
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marked by the expert 2, 6 areas are divided by TransUNet, and there exists a phenomenon
that the edema areas are merged and connected, and there are 8 edema areas segmented by
Res-UNet++, the proposed method segmented 10 edema regions, and the phenomenon
of unsegmented and edema regions merged between regions was greatly reduced. In
comparison, the semantic segmentation results of the proposed method are better close to
the golden annotation standard of expert 1, with almost no misclassification or omission,
which further improves the overall semantic segmentation performance of multi-scale and
multi-region macular edema.
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As listed in Table 3, on the selected edema OCT image test dataset with multi-scale
and multi-region, the average absolute mean error between the number of edema regions
segmented by each method and the golden annotation is calculated. The results show that
the average absolute error value of the proposed method is 2.37, which is the smallest,
which is 2.56, 1.09, and 0.61 smaller than expert 2, TransUNet and Res-UNet++ respectively.

Table 3. Absolute mean error of the number of macular edema regions.

Method Absolute Error

Expert 2 4.93
TransUNet 3.46

Res-UNet++ 2.98
The proposed method 2.37

4. Discussion

The two improvements of this paper are shown on the whole test set and the mac-
ular edema test dataset with multi-scale and multi-region, replacing the bottleneck and
morphological processing and the significant effect of the introduced Swin-Unet model
on improving the segmentation effect of macular edema in retinal OCT images. Through
the ablation experiment, the results of the Swin-Unet method, Swin-Unet+morphological
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processing, Swin-Unet+replacement bottleneck method and the proposed method are
compared on OCT images.

As listed in Table 4, on the whole test dataset, compared with Swin-Unet+ replacement
bottleneck method, Swin-Unet+morphological processing method and Swin-Unet method,
the proposed method is improved to 0.01, 0.04 and 0.05 on Dice, 0.02, 0.04 and 0.05 on Iou,
0.03, 0.06 and 0.08 on Recall, 0.03, 0.04 and 0.04 on Precision.

Table 4. The impact of methods based on different degrees of improvement on the model segmenta-
tion ability on the overall dataset.

Method Dice Iou Recall Precision

Swin-Unet 0.77 0.75 0.77 0.78
Swin-Unet+ morphological 0.78 0.76 0.79 0.78

Swin-Unet+ replacement
bottleneck 0.81 0.78 0.82 0.79

The proposed method 0.82 0.80 0.85 0.82

As listed in Table 5, on the macular edema test dataset with multi-scale and multi-
region, compared with Swin-Unet+replacement bottleneck method, Swin-Unet+ morpho-
logical processing method and Swin-Unet method, the proposed method is improved to
0.02, 0.04 and 0.05 on Dice, 0.02, 0.04 and 0.05 on Iou, 0.03, 0.06 and 0.06 on Recall, 0.02, 0.06
and 0.06 on Precision.

Table 5. The impact of different degrees of improvement on model segmentation ability on datasets
with multi-scale and multi-region edema.

Method Dice Iou Recall Precision

Swin-Unet 0.78 0.77 0.80 0.78
Swin-Unet+ morphological 0.79 0.78 0.80 0.78

Swin-Unet+ replacement
bottleneck 0.81 0.80 0.83 0.82

The proposed method 0.83 0.82 0.86 0.84

In the Swin-Unet model, the number of skip connections also has an effective influence
on the segmentation effect of macular edema in retinal OCT images. As shown in Figure 2,
in this model, skip connections are added at positions 1/4, 1/8, and 1/16. As listed in
Table 6, in the overall test set, except that the value of Iou with two skip connections is 0.01
higher than that with three hop connections, the other three quantitative indicators are the
highest when the jump connection is 3, and the segmentation ability of the model increases
as the number of skip connections increases, so the number of skip connections is set as 3
in this work.

Table 6. The effect of the number of jumps on the segmentation ability of the model.

Skip Connection Dice Iou Recall Precision

0 0.71 0.72 0.73 0.71
1 0.73 0.75 0.74 0.77
2 0.80 0.81 0.82 0.81
3 0.82 0.80 0.85 0.82

Aiming at the bottleneck structure of the Swin-Unet network, the proposed method
improves the fifth-layer network introduced by ResNet34. In the existing network, the
fifth-layer network structure in ResNet101 is modified as a bottleneck to realize the pairing
of sub-features. The deep feature extraction of the graph, and other structures are the same
as the model structure of this work. As listed in Table 7, for the two bottleneck replacement
models, compared with the network model introduced with ResNet101, except that the
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model introduced with ResNet34 in this paper reduced by 0.01 in Iou, the ResNet101
network model improved to 0.01, 0.01, and 0.02 in Dice, Recall, and Precision, respectively.

Table 7. Influence of layer 5 network with ResNet34 and ResNet101 on model segmentation capability.

Method Dice Iou Recall Precision

The method of introducing ResNet101 0.81 0.82 0.84 0.80
The proposed method 0.82 0.81 0.85 0.82

As shown in Figure 11, the confusion matrix comparison diagram shows the compari-
son results of the model introduced by ResNet101 and the proposed method. For the mean
number of pixels in the edema region is predicted, it can be clearly seen from the diagram
that the proposed method is 84 more than the ResNet101 network layer, and the Recall
improved by 1%. The prediction effect of the proposed method is much better than that of
the ResNet101 network layer method.
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Figure 12 shows the method of introducing the ResNet101 network layer and the ROC
curve of this method. It can be clearly seen from the figure that the AUC value of the
method in this paper is 0.996, which is 0.005 higher than the AUC value of 0.991 introduced
by the ResNet101 network layer model.
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As shown in Figure 13, the original image, the image marked by expert 1, the image
marked by expert 2, the ResNet101 network model, and the segmentation effect of the
proposed method on a macular edema OCT image are shown respectively. In comparison,
the semantic segmentation results of the proposed method are better close to the golden
annotation standard of expert 1 in terms of the shape, number, and area of macular edema,
which further improves the overall semantic segmentation performance of macular edema.
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tations; (d) the method of introducing ResNet101 predictions; (e) the proposed method predictions.

In summary, the two improvements in the proposed method replace the bottleneck and
morphological processing, which have a significant effect on improving the segmentation
accuracy of macular edema in retinal OCT images.

5. Conclusions

This paper constructs an improved Swin-Unet network learning model for semantic
segmentation of macular edema in retinal OCT images. In order to improve the generaliza-
tion ability of the model, the data set is augmented, and the network layer in ResNet34 is
used as the bottleneck of the Swin-Unet network for training, which increases the computa-
tional convergence in the deep network, and uses morphological operations to predict the
results. After smoothing, training and testing are performed on the OCT dataset of patients
with macular edema published by Duke University. The experimental results illustrate that
the method of this paper not only improves the overall segmentation accuracy of the model,
but also significantly improves the segmentation accuracy of multi-scale and multi-region
macular edema. Since this model still has the problem of high time complexity, we shall try
our best to reduce the time complexity of the model in future work. In addition, we shall
also discuss 3D semantic segmentation [35] on macular edema OCT images to strive for
better segmentation results.

Author Contributions: Conceptualization, Z.G. and L.C.; investigation, Z.G.; resources, Z.G.; formal
analysis, L.C.; methodology, Z.G. and L.C.; data curation, Z.G.; software, L.C.; validation, Z.G. and
L.C.; visualization, L.C. and Z.G.; writing—original draft preparation, L.C.; writing—review and
editing, Z.G. and L.C.; supervision, Z.G.; project administration, Z.G. All authors have read and
agreed to the published version of the manuscript.
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