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Abstract: Learning discriminative features for facial expression recognition (FER) in the wild is a
challenging task due to the significant intra-class variations, inter-class similarities, and extreme
class imbalances. In order to solve these issues, a contrastive-learning-based extra-contrast affinity
network (ECAN) method is proposed. The ECAN consists of a feature processing network and
two proposed loss functions, namely extra negative supervised contrastive loss (ENSC loss) and
multi-view affinity loss (MVA loss). The feature processing network provides current and historical
deep features to satisfy the necessary conditions for these loss functions. Specifically, the ENSC loss
function simultaneously considers many positive samples and extra negative samples from other
minibatches to maximize intra-class similarity and the inter-class separation of deep features, while
also automatically turning the attention of the model to majority and minority classes to alleviate the
class imbalance issue. The MVA loss function improves upon the center loss function by leveraging
additional deep feature groups from other minibatches to dynamically learn more accurate class
centers and further enhance the intra-class compactness of deep features. The numerical results
obtained using two public wild FER datasets (RAFDB and FER2013) indicate that the proposed
method outperforms most state-of-the-art models in FER.

Keywords: contrastive learning; deep metric learning; imbalance classification; facial expression
recognition

1. Introduction

Facial expression is one of the most direct, fundamental, and universal signals in
non-verbal communication. The analysis of facial expressions is an active area of computer
vision research. Furthermore, FER is widely used in numerous aspects of modern society,
such as human–computer interaction (HCI), facial expression synthesis, education, psy-
chotherapy, and social robotics. Ekman et al. defined six basic expressions: anger, disgust,
fear, happiness, sadness, and surprise [1]; neutrality and contempt have been recently
included in FER datasets as additional categories. In recent years, methods based on deep
neural networks have not only outperformed traditional methods of FER but also achieved
remarkable success in many other fields [2–6].

FER applications in the real world require wild FER datasets that contain a massive
number of annotated images acquired in an unconstrained environment. Two obstacles
hinder the ability of a convolutional neural network (CNN) to learn from wild FER datasets.
One is the significant intra-class variation and inter-class similarity, and the other is the
extreme class imbalance. A contrastive learning method named ECAN is proposed in this
paper to solve these issues. It includes three main components: the feature processing
network, the ENSC loss function, and the MVA loss function. The first component uses
the classic Siamese network and memory-bank-based architecture along with contrastive
learning methods, as used by MOCO [7]. The other two components are proposed for the
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first time in this paper; they are introduced briefly in this section, and more details can be
found in Section 3.

Intra-class variation and inter-class similarity are noteworthy features of wild FER
datasets; as a result, discriminative features are easily confusable. An effective way to
solve this issue is to use deep metric learning (DML) to enhance the discrimination of
confusable facial features. One typical idea that is widely employed is utilizing pairs of
positive and negative samples; the loss functions bring anchors and positives closer and
push away negatives in the deep feature space. The triplet loss function [8] was designed
to consider an anchor with a sample that had the same label (i.e., a positive sample) in
the current minibatch as a positive pair and a sample that had a different label (i.e., a
negative sample) as a negative pair; it learned by decreasing the distance between positive
pairs and increasing the distance between negative pairs. The N-pair loss function [9]
improved upon the learning effect of the triplet loss function by expanding the number of
negative pairs. Recently, with contrastive learning methods, a novel selection strategy has
been proposed that refers to positive and negative pairs. Since no labels are available in
self-supervised contrastive learning methods, the positive pair usually consists of a pair of
data augmentations (also known as “views”) of the same sample, and the negative pair
consists of anchors and other views in the minibatch. In the case of supervised learning,
the supervised contrastive (SupCon) loss function proposed by Prannay et al. reasonably
utilized labels to add multiple positive pairs. The ENSC loss function considers not only
the negative samples in the current minibatch but also a large number of extra negative
samples from other minibatches to improve upon the SupCon loss function. This idea more
effectively promotes the inter-class separation of deep features. It also greatly expands
negative pairs, which is another benefit.

Furthermore, another commonly used loss function in DML is the center loss func-
tion [10], which aims to increase the intra-class compactness of deep features. There are
many ideas inspired by the center loss function, such as the island loss function [11], which
trained class centers while also pushing them away from each other; DACL [12], which
improved upon the center loss function by adaptively selecting a subset of important
feature elements; and DAN [13], which promoted the separation of class centers using a
simple idea that barely increased the computational cost. The above-mentioned methods
improved upon the center loss function from different perspectives; however, they only
focused on the deep features of the current minibatch to optimize feature distribution and
learn the class centers. In contrast, in our proposal, the MVA loss function simultaneously
considers the deep features of multiple minibatches to dynamically and more accurately
learn the class centers. Moreover, our method can further improve the compactness of
intra-class features using the MVA loss function.

Another problem from which wild FER datasets suffer is extreme class imbalance.
Usually, classes such as fear and disgust are in the minority due to a lack of representative
data. Other expressions, such as neutral, happy, sad, surprised, and angry, are in the
majority [14]. Deep neural networks tend to focus more attention on training the majority
classes than the minority classes. The proposed negative sample screening strategy for
the ENSC loss function implicitly addresses this issue. It regulates the attention paid by
the deep neural network to the majority and minority classes based on their contribution
percentages while calculating loss, which means that the majority classes provide less
of a contribution and the minority classes provide more of a contribution. This strategy
alleviates the negative impact of the class imbalance issue on feature learning. As shown in
Figure 1, the ECAN method does not take a two-step training approach (i.e., first train the
feature extraction network and then train the classifier) like the conventional scheme for
self-supervised contrastive learning; in contrast, it employs a one-step training approach
combined with cross-entropy loss (CE loss) to obtain classification results directly.
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Figure 1. Overview of our proposed ECAN method.

The main contributions of this paper are summarized as follows:

• This paper proposes the ENSC loss function, which can utilize multiple minibatches
of extra negative samples to increase inter-class separation and alleviate the effects of
class imbalance.

• To further increase intra-class compactness, the MVA loss function is proposed to
dynamically and more accurately learn class centers with the help of multiple mini-
batches of deep features.

• This paper presents the results of extensive experiments on two standard wild FER
datasets. Experimental results show that the proposed ECAN method achieved 89.77%
accuracy and 83.14% average accuracy on the RAFDB dataset and 73.73% accuracy
on the FER2013 dataset; these results are consistent with current state-of-the-art
FER performance.

The rest of this paper is organized as follows. Section 2 reviews related work, with
a particular focus on deep metric learning and contrastive learning. Section 3 elaborates
the proposed method. Evaluation and experimental results are demonstrated in Section 4.
Discussion and analysis of the proposal can be found in Section 4.7. Finally, Section 5
summarizes the paper.

2. Related Works
2.1. DML for FER

DML can strongly modulate the distribution of deep features to tackle large intra-class
variations and inter-class similarities. Most existing DML methods were developed for
facial recognition applications, but FER applications can also benefit from DML. Meng et
al. proposed an identity-aware convolutional neural network (IACNN) [15] that could
distinguish expression-related features and identity-related features. Liu et al. proposed
an (N+M)-tuplet clusters loss function [16] that could utilize tuples to form deep feature
clusters on the same expression and then separate them from each other. The foundation for
this approach was laid by the N-pair [9] and triplet [8] loss functions. Wen et al. proposed
a center loss function [10] to learn the center distribution of each class; it penalized the
distance between deep features and their corresponding class centers. Farzaneh et al.
proposed a discriminant distribution agnostic (DDA) loss function [16] that could utilize
the center loss function to cluster features of the same class and the softmax loss function
to separate adjacent classes. Cai et al. improved on the center loss function by adding an
extra objective function called the island loss function [11] that learned the cosine distance
between class centers. The separate loss function [17] proposed by Li et al. further extended
the island loss function; it simultaneously maximized the cosine similarity between deep
features and their corresponding class centers and minimized the cosine similarity between
class centers. Farzaneh et al. proposed a deep attentive center loss function [12] that
optimized the center loss function by learning the relationship of each class center. Most
of the above methods did not adopt a special strategy for training class centers, so it was
necessary to improve upon the center loss function using a novel strategy.

2.2. Contrastive Learning

Contrastive learning is a DML method, and its core idea recently inspired a series of
self-supervised contrastive learning methods [18]. Specifically, it maximizes the consistency
between two “views” of the same image while repelling “views” from different images. These
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views can be obtained through various approaches, including data augmentation [19], color
decomposition [20], patch cropping [21], and image segmentation [22]. The tactic chosen
for the selection of views can greatly affect the performance of contrastive learning. In the
work of Chen et al., an in-depth study of views obtained through data augmentation was
performed [19]. A special multi-crop method of obtaining views was adopted in the work of
Mathilde et al. [23]; they introduced clustering ideas to improve contrastive learning. Similarly,
Li et al. proposed a clustering-based method called PCL [24] that was suitable for large-scale
classification tasks due to the large number of cluster centers. He et al. proposed the MOCO
method [7], which only required small batches to achieve good learning results because it
designed a memory bank to store historical features. Recently, some methods were proposed
that did not fully follow the core idea of self-supervised contrastive learning. For example,
the BYOL method [25] only optimized the consistency of positive pairs without considering
negative pairs. Prannay et al. proposed supervised contrastive learning [26], which was
different from self-supervised contrastive learning because it simultaneously narrowed the
distances between many positive pairs in the deep feature space. Supervised contrastive
learning did not improve on negative pairs, although it made full use of positive pairs. In
addition, it also did not take into account the possible impact of the class imbalance issue on
training. Therefore, it was necessary to design a more comprehensive loss function.

3. Method

This explanation of the ECAN method is organized into 3 subsections that correspond
to its three 3 main components: the feature processing network, the ENSC loss function,
and the MVA loss function. Figure 2 shows a detailed overview of the ECAN method.
First, random data augmentation is twice performed on the same expression image to
generate two views. Then, the feature processing network extracts the deep features from
the views. The features used for training are composed of the extracted deep features of the
current views and the historical deep feature groups from the memory bank. Finally, the
deep features of the current minibatch are linked with a linear classification layer, and the
classification loss is calculated using the CE loss function. At the same time, the proposed
ENSC and MVA loss functions are computed at the deep-feature level.

Figure 2. A detailed representation of the process of our proposed ECAN method. The hollow
circle in the middle of the ENSC loss function diagram represents the anchor, the three dark blue
circles represent the positives of the current minibatch, and the other colored circles represent the
negatives. The symbol “||” indicates the blocked gradient update. In addition, the yellow linear layer
is connected to zq alone and not to any other feature groups.

3.1. Feature Processing Network

The feature processing network uses a similar architecture to MOCO [7], consisting of
a Siamese network and a memory bank. The memory bank provides the necessary deep
feature groups for the two loss functions. The deep features belonging to a single minibatch
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are called one deep feature group in this paper. For a set of N random sample/label pairs,
{xn, yn}n=1...N , the data used for minibatch training consist of 2N pairs, {x̃`, ỹ`}`=1...2N ,
where x̃2n and x̃2n−1 are two random data augmentations (also known as “views”) of
{xn}n=1...N and the labels ỹ2n−1 = ỹ2n = yn, which is called the “two-view minibatch”
in this paper. Let the random data augmentation be Aug(·); then, x̃2n = Aug(xn) and
x̃2n−1 = Aug(xn). Since the base of contrastive learning is feature invariance (i.e., image
transformation does not change the discriminative features of the image), it requires not
only differences between views but also fully preserved discriminative features. So, the
choice of the data augmentation approach can affect the performance of contrastive learning
considerably. In this research, three levels of data augmentation (none, weak, and strong)
are deployed to study their impacts on model performance.

The Siamese network extracts the deep features of these views. Let two encoders
of the Siamese network be Encq(·) and Enck(·), and the deep features extracted by the
Siamese network are zq = Encq(x̃2n) and zk = Enck(x̃2n−1) for a two-view minibatch.
The total feature of the two-view minibatch is z = zq ∪ zk. The Siamese network does not
train both encoders at the same time for the purpose of accelerating model training and
saving computing resources. If we set the parameter of Encq(·) to θq and the parameter of
Enck(·) to θk, only θq is updated during back-propagation, and θk is updated according to
the following formula after each step of training.

θk ← mθk + (1−m)θq (1)

where m ∈ [0, 1) represents the hyper-parameters of the momentum coefficient, which is
set to 0.999 based on the experience of MOCO [7].

zk and the corresponding label yk of the current and historical minibatches are stored
in the memory bank. Since the quality of zk improves along with updates to the Siamese
network, the oldest historical zk is the most outdated. The memory bank needs to update
dynamically to remove outdated feature groups. The update process of the memory bank
can be expressed as the following, if we denote a memory bank that stores K groups of zk
as zm.

znew
m ← Push

(
[zk, yk], Pop

([
zm(K), ym(K)

]))
(2)

where znew
m is the new memory bank after updating, Push(z, m) means to insert the given

feature group z into the m queue, [zk, yk] is the feature group/label pair of the current
minibatch, Pop(zm(K)) means to dequeue the oldest feature group/label pair [zm(K), ym(K)]
in the memory bank, and the memory bank is updated synchronously with θk after each
step. An initialization process that freezes all parameter updates is performed to populate
the memory bank at the beginning of training since the memory bank has no features. The
acquired total feature z of the current two-view minibatch and the memory bank zm are
used for subsequent loss calculations.

3.2. The Extra Negative Supervised Contrastive Loss Function

In this subsection, we review the SupCon loss function and discuss the improvements
made to it by the proposed ENSC loss function.

3.2.1. Review of the SupCon Loss Function

The contrastive loss approaches are divided into two types, namely self-supervised
learning and supervised learning. In the case of self-supervised learning, the contrastive
learning method treats each sample as an independent positive and the rest as negatives
due to the lack of labels. Negatives that are the same as true positives are called false nega-
tives. Obviously, false negatives are an obstacle to feature learning, but a self-supervised
contrastive learning method that completely eliminates the influence of false negatives has
not yet been developed.
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Within a two-view minibatch, let i ∈ I = {1 . . . 2N} be the index of a view, and let j(i)
be the index of the other view from the same source sample. In self-supervised contrastive
learning, the loss takes the following form:

Lsel f con = ∑
i∈I
Lsel f

i = −∑
i∈I

log
exp

(
zi · zj(i)/τ

)
∑a∈A(i) exp(zi · za/τ)

(3)

where zi represents the deep features of the view, called the “anchor”, zj(i) is the positive,
and A(i) = I\{i} due to the fact that it is meaningless to measure the distance between the
same samples. za contains both the positive and remaining samples (i.e., the negatives), the
symbol · denotes the inner product, and τ ∈ R+ is a temperature parameter. Note that for
each anchor, there is 1 positive pair and 2N-2 negative pairs. The denominator has a total
of 2N-1 terms (the positive and negatives).

In the case of supervised contrastive learning, each anchor has multiple positive pairs
since labels can be used. The SupCon loss function takes the following form:

Lsupcon = ∑
i∈I
Lsup

i = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp
(
zi · zp/τ

)
∑a∈A(i) exp(zi · za/τ)

(4)

where P(i) ≡
{

p ∈ A(i) : ỹp = ỹi
}

is the set of all positive indices except itself in the two-
view minibatch, and |P(i)| is its cardinality. Note that each anchor has more than one
positive pair and the others are negative pairs.

3.2.2. Improvement by the Extra Negative Supervised Contrastive Loss Function

The SupCon loss function is reviewed in Equation (4). Like with the end-to-end con-
trastive learning method [19], batch size can significantly affect training performance [26].
In the literature, the best results were achieved with a batch size of 6144, which was very
demanding on computational resources. Our experiments in Section 4.4.3 show that with a
batch size limit of 256, FER models trained with the SupCon loss function still have huge
room for improvement. According to our analysis, this is because the SupCon loss function
considers too few positives and negatives. In addition, empirically, negative pairs play a
larger role than positive pairs; positive pairs consider feature learning within a class and,
consequently, fewer positive pairs can usually meet the demand, whereas negative pairs
consider the feature distinctions between classes, which involves learning more classes of
discriminative features. This is more complicated; therefore, more negative samples are
needed to produce an effect. From a macro point of view, directly increasing the batch size
does not change the ratio of positives to negatives in a minibatch. So, even if the batch size
is increased, the negatives are still relatively limited.

In order to obtain more negatives, the ECAN utilizes the memory bank to provide
extra features. One simple extension method is to directly use all memory bank feature
groups as negatives; in this paper, that approach is called “extra supervised contrastive
loss” (ESC loss) and takes the following form:

Lesc = ∑
i∈I
Lesc

i = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp
(
zi · zp/τ

)
∑a∈A(i) exp(zi · (za + zm)/τ)

(5)

where zm represents all feature groups in the memory bank. In fact, this loss has the
same flaw as the self-supervised contrastive loss function even though it adds negative
samples. There is still a non-negligible number of false negatives in zm. Training with false
negatives is essentially equivalent to promoting inter-class separation, which is a negative
optimization. The ENSC loss function is a further improvement over the ESC loss function
because it only retains true negatives to ensure that negative optimization does not occur.
The ENSC loss function takes the following form:
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Lensc = ∑
i∈I
Lensc

i = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp
(
zi · zp/τ

)
∑a∈A(i) exp(zi · (za + zmn)/τ)

(6)

where zmn ∈ zm|ym 6=yi
represents all view features in zm that are different from the class of

zi (i.e., extra negative samples). Each anchor of the ENSC loss function can accurately push
away more negatives to elevate deep feature separation between different expressions. In
addition, the same intra-class learning effect obtained with the SupCon loss function can
be achieved because zp is not reduced.

On the other hand, our negative sample screening strategy also implies the suppression of
class imbalance. The number of zmn is significantly different for each expression class. When zi
belongs to the majority class, zmn provides more negatives, which makes it more difficult and
slower to reduce this part of the loss. After a period of training, the main contribution of the loss
comes from the minority class, which can make the network refocus on those minority classes
that were not valued originally. This alleviates the negative impact on the feature processing
network caused by the class imbalance issue of wild FER datasets.

3.3. Multi-View Affinity Loss

The center loss function is a widely adopted DML method in which the similarities
between the deep features and their corresponding class centers are measured. It aims
to partition the deep feature space into K clusters for a K-class classification problem.
The objective function in the center loss function minimizes the within-cluster sum of
squares between the deep features and their corresponding class centers. Assuming that a
minibatch has m samples, the deep features of each sample are represented by xi ∈ Rm×d,
and the corresponding class center is cyi ∈ Rm×d. The center loss function can be written
as follows:

Lcenter =
1

2m

m

∑
i=1

∥∥xi − cyi

∥∥2
2 (7)

In recent years, many variants of the center loss function have been proposed to
enhance its training effect, such as DAN [13], which proposes an affinity loss function for
the FER task. It can be written as follows:

La f =
∑m

i=1
∥∥xi − cyi

∥∥2
2

σ2
c

(8)

where σ2
c represents the variance between class centers. Like most center loss function

variants, the affinity loss function only measures the distance between the deep features
of the current minibatch and their corresponding class centers. The authors of this work
believe that not only the current minibatch deep features but also the deep features of the
other minibatches have the potential to contribute to learning class centers. To test this idea,
this paper presents the newly designed MVA loss function, which takes full advantage of
the historical features of the memory bank.

Notably, since historical feature groups cannot directly optimize the network weights
through back-propagation, we treat them as an adjustment coefficient αv in order to weight
the affinity loss. If we denote v ∈ {1 . . . V} as the index of zq and consider V − 1 historical
feature groups, the αv takes the following form:

αv = 1 +
∑V

v=1

(
La f

v −La f
)2

V
(9)

where La f
v represents the v-th feature group value of the affinity loss, and La f represents the

mean of the La f
v of all V feature groups. The MVA loss function takes the following form:



Electronics 2022, 11, 2288 8 of 16

Lmva = αv ·
∑m

i=1
∥∥xi − cyi

∥∥2
2

σ2
c

(10)

In fact, αv is dynamically adjusted following the La f
v of all V feature groups. When

αv is large, it indicates that the current class center has seriously deviated from the true
class center; thus, the MVA loss function punishes the model more severely to learn the
true class center. On the contrary, when all values of La f

v are nearly equal, it indicates that
the current class center is close enough to the true value. The value of αv approaches 1 in
this case, and the MVA loss function degenerates into the affinity loss function. Optimizing
the MVA loss function can increase the compactness of intra-class features and eventually
leads to learning more accurate class centers.

In the end, the loss functions employed in this paper are the ENSC loss function, the
MVA loss function, and the cross-entropy loss function for classification. The total loss can be
summarized in the following form:

L = (1− λ1)Lcls + λ1Lensc + λ2Lmva (11)

where λ1 represents the ratio between Lensc and Lcls, and λ2 represents the individual
weight coefficient of Lmva.

4. Experiment and Results

In this section, we describe the experimental evaluation results of the proposed method
in detail. The data augmentation experiments were designed first to study the impact of
data augmentation on the ECAN. Ablation experiments were then designed to evaluate the
impact of hyper-parameters and analyze the improvements offered by the ENSC and MVA
loss functions compared to the SupCon and center loss functions, respectively. Next, the
effect of ECAN on the class imbalance issue was visually demonstrated using a confusion
matrix. Finally, the performance of the proposed method compared to other state-of-the-art
methods was evaluated on two widely used wild FER datasets.

4.1. Datasets

RAFDB. The RAFDB dataset [27] is a real-world FER dataset with over 29,670 face
images downloaded from the Internet. The dataset adopts labeling methods such as the
manual labeling of single-label and double-label subsets, as well as the automatic labeling
of landmark locations. There are a total of 15,339 images that can be used for seven classes
of expression classification; each image is cropped to 100 × 100 fixed pixels, and the images
are divided into 12,271 training images and 3068 test images. This dataset suffers from an
extreme class imbalance issue.

FER2013. The FER2013 dataset [28] was released for the FER competition of the
ICML2013 Expression Learning Challenge. The dataset consists of 35,886 facial expres-
sion images collected outside the laboratory, with different light intensities and shooting
backgrounds. The dataset consists of 28,708 training set images, 3589 public validation
set images, and 3589 public test set images. It has the same classes of expressions as the
RAFDB dataset and also has the issue of class imbalance. We used the training set for
training and reported the recognition accuracy obtained on the public test set.

4.2. Implementation Details

For the RAFDB dataset, we used the official aligned samples, and the input im-
ages were reshaped to 224 × 224 pixels. For the FER2013 dataset, we used the original
48 × 48 pixel grayscale samples. The three levels of data augmentation were not exactly
the same for these two datasets due to the large differences in samples. The baseline of this
paper consists of the ResNet-18 network and the cross-entropy loss function. We used a
model pretrained on the MS-Celeb-1M facial recognition dataset as the backbone of the
Siamese network for the RAFDB dataset.
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We used Pytorch to implement the experimental code and trained it on an Nvidia
RTX-3090 GPU. For all tasks, the weight hyper-parameters of total loss were set to λ1 = 0.2
and λ2 = 0.7 by default. The number of historical feature group hyper-parameters (v) of
the proposed MVA loss function was set to 5 by default.

For the training strategy, we trained the model using the SGD optimizer with the same
configuration as GAF [29]. The batch size was set to 256, and the initial learning rate was 0.1.
We trained 40 epochs on the RAFDB dataset because the RAFDB dataset uses a pretrained
model. For the FER2013 dataset, we trained 200 epochs to achieve the best results.

4.3. Data Augmentation Experiment

Research by SIMCLR [19] in the context of self-supervision shows that data augmenta-
tion can have a significant impact on contrastive learning. In this paper, data augmenta-
tion was divided into three levels (none, weak, and strong) to evaluate the performance
gap between the baseline and ECAN methods. Table 1 shows the data augmentation
configurations for the RAFDB and FER2013 datasets. Table 2 shows the corresponding
accuracy results.

Table 1. Configurations of different data augmentation levels for the RAFDB and FER2013 datasets.

RAFDB FER2013
Augment Level No Weak Strong No Weak Strong

RandomCrop - - X - X X
RandomColorJitter - - X - - X

RandomHorizontalFlip - X X - X X
RandomRotation - - X - X X
RandomErasing - X X - X X

RandomGrayscale - X X - X X
RandomGaussianBlur - - X - - -

RandomAffine - - - - - X
FiveCrop - - - - - X

Table 2. The accuracy results of the baseline and ECAN methods at different data augmentation
levels.

RAFDB FER2013
Method No Weak Strong No Weak Strong

Baseline 85.69% 86.70% 87.97% 62.02% 70.60% 72.33%
ECAN 86.80% 87.97% 89.77% 63.53% 72.28% 73.73%

As can be seen from the results, our ECAN method achieved the highest accuracy
with a strong level of data augmentation. In addition, ECAN was more accurate than
the baseline at all levels of data augmentation. This suggests that ECAN still works even
when the level of data augmentation is inappropriate. This paper uses the strong data
augmentation level as the default setting for the following experiments.

4.4. Ablation Studies

To verify the effectiveness of the proposed ECAN, we conducted an ablation study on
the RAFDB dataset. This paper provides data not only on the accuracy but also the average
accuracy, which is a more precise metric for the imbalanced samples in the RAFDB dataset.

4.4.1. Different Values of the Weight Hyper-Parameters λ1 and λ2

We first investigated the ratio between the proposed ENSC loss function and the
cross-entropy loss function. The value of λ1 controls how much they contribute; a larger
λ1 makes the total loss more concentrated in the ENSC loss function. Figure 3a shows
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the accuracy and average accuracy data obtained for the RAFDB dataset with different
values of λ1. It can be seen that the ENSC loss function significantly improved average
accuracy. When λ1 = 0.2, the average accuracy was significantly improved, but accuracy
did not increase proportionally. This result shows that the ENSC loss function effectively
improves the prediction accuracy of the minority class, resulting in an increase in average
accuracy. However, since the majority class contributes more to the accuracy, there was no
significant increase in accuracy. When λ1 > 0.2, both the accuracy and average accuracy
started to decrease steadily. This was because the linear classification layer could not be
trained efficiently due to the reduced contribution of the cross-entropy loss function.

Next, we studied the effect of different values of λ2 on FER performance when λ1 = 0.2.
Figure 3b shows the accuracy and average accuracy data obtained for the RAFDB dataset
with different values of λ2. It can be seen that the best result was obtained at λ2 = 0.7 and
that a larger value (1.1 > λ2 > 0.7) was better than a smaller value (0.2 < λ2 < 0.7). This
was because the MVA loss function requires the training of class centers, and a small value
of λ2 caused the training of class centers to be slower.

(a) (b)

Figure 3. Ablation studies using the RAFDB dataset. (a) The impact of the weight hyper-parameter
λ1. (b) The impact of the weight hyper-parameter λ2.

4.4.2. Different Values of the Historical Feature Group Hyper-Parameter v for the MVA
Loss Function

Figure 4 shows the effect of using different values of v on the MVA loss function. It
can be seen that the training results were not very stable when v was small (v < 4). This
was because the MVA loss function considered fewer historical feature groups, which
led to insufficient training robustness. The training results started to gradually decline
when v > 5, which was due to the outdated historical feature groups that could no longer
accurately represent the current model and thus impaired feature learning. In summary,
the hyper-parameter v needs to be adjusted according to the actual situation to achieve the
best effect.

Figure 4. Ablation studies for the historical feature group hyper-parameter v of the proposed MVA
loss function using the RAFDB dataset.
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4.4.3. Effects of the ENSC and MVA Loss Functions

Table 3 presents the results of the performance comparison of our ENSC and MVA loss
functions with other loss functions. The average accuracy is the mean of the diagonal values
in the confusion matrix, which is often used to evaluate the true performance of a model
on class-imbalanced datasets. It can be seen that our ENSC loss function displayed a large
improvement in average accuracy compared to the SupCon loss function. Likewise, the MVA
loss function also played a crucial role in the final performance.

Table 3. Performance comparison of different loss functions using the RAFDB dataset.

Loss Function Accuracy (%) Avg. Accuracy (%)

Cross-Entropy 87.97 80.43
Center 88.62 81.86

SupCon 88.01 79.45
ENSC 88.72 82.43

MVA + ENSC 89.77 83.14

Figure 5 shows T-SNE visualizations of different loss functions to more clearly assess
the impact of these loss functions on deep features. Figure 5b is the result of the baseline;
its inter-class boundaries are blurred, and the distribution of feature points is very chaotic.

(a) RAFDB class distribution (b) Baseline (CE Loss Function) (c) Center Loss Function

(d) SupCon Loss Function (e) ENSC Loss Function (f) ECAN Method

Figure 5. The T-SNE visualization results for different loss functions applied to the RAFDB test set.
The axes reflect the positions of all feature points on the two-dimensional plane. (a) Distribution
of classes for the RAFDB dataset. (b) Cross-entropy loss function (CE loss function). (c) Center
loss function. (d) SupCon loss function. (e) ENSC loss function. (f) ECAN (ENSC and MVA loss
functions).

From Figure 5c, it can be seen that the center loss function aggregated the “happy”
class, which had the largest sample size, into a single cluster while clustering other classes
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into a cluster of similar size; this was the result of the class imbalance issue. In addition,
the boundaries between different classes were also very blurred. Figure 5d is the best result
of the SupCon loss function at a batch size of 256. The SupCon loss function made the
feature points within the class dense by virtue of having multiple positive pairs. However,
it could not accurately cluster the feature points of each class. Not only are the feature
points of “surprise”, “disgust”, “happiness”, “neutral”, etc. clustered in the middle to form
false clusters, but the “sadness” class is also wrongly separated. Figure 5e is the result of
our ENSC loss function. It improved upon the results of the SupCon loss function because
it had enough negative pairs. It can be seen that most of the feature points are correctly
clustered, and the inter-class boundaries of each cluster are obvious. In addition, the
improvement of the ENSC loss function in terms of the class imbalance issue can be clearly
seen when compared with the results for the center loss function. Figure 5f is the final
result of our ECAN method. The MVA loss function further improved the compactness
of each cluster when compared to the results for the ENSC loss function alone. The near
absence of discrete feature points that do not belong to any cluster indicates that the MVA
loss function learned more accurate class centers.

4.5. Confusion Matrix Analysis

We analyzed the accuracy results for each expression class using a confusion matrix.
Figure 6 shows the distribution of the training sets for the RAFDB and FER2013 datasets.
Figure 7 shows the confusion matrix results for the baseline and ECAN methods when
applied to the RAFDB and FER2013 datasets.

(a) (b)

Figure 6. The distribution of training set samples in the RAFDB (a) and FER2013 (b) datasets. It can
be seen that surprise, fear, disgust, and anger belong to the minority class in the RAFDB dataset, and
disgust belongs to the minority class in the FER2013 dataset.

Figure 7a,b reflects the results of the baseline and ECAN methods for the RAFDB
test set. It is observed that the accuracy of the ECAN method improved for the minority
class. The categories with the smallest sample sizes, such as fear and anger, had the largest
improvement, reaching 7% and 4%, respectively. These results fully reflect the effect of the
ECAN method on the class imbalance issue. Not only that, but the accuracy rates for all
other expression classes except the happy class were also improved, which shows that our
ECAN method effectively distinguished confusing expression features. Figure 7c,d shows
the results for the FER2013 dataset. The ECAN method improved accuracy for all classes
except disgust and pleasure. The authors believe that the ECAN method did not improve
the accuracy rate for disgust because the discriminative features of the disgust class are so
obvious that our baseline was sufficient.
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(a) Baseline (b) ECAN

(c) Baseline (d) ECAN

Figure 7. Confusion matrix results for the baseline and ECAN methods on the RAFDB and FER2013
test sets.

4.6. Comparison with Previous Results

We compared our ECAN method and recent state-of-the-art methods using the RAFDB
and FER2013 datasets, and the results are presented in Tables 4 and 5. This paper presents
not only the macro-f1 score results but also the average accuracy results for the RAFDB
dataset, given that some recent methods use average accuracy as a more refined evalua-
tion metric.

Table 4. Performance comparison for the RAFDB dataset.

Method Accuracy (%) Avg. Accuracy (%) Macro-F1 Score

DDA-loss [16] 86.90 79.71 -
Ad-Corre [30] 86.96 - 0.8057 *

SCN [31] 87.03 - -
DACL [12] 87.78 80.44 -

PSR [32] 88.98 80.78 -
EfficientFace [33] 88.36 - -

MviT [34] 88.62 - -
DAN [13] 89.70 82.75 * -

Baseline (Strong Augment) 87.97 80.43 0.8153
ECAN (ours) 89.77 83.14 0.8429

* Note: The average accuracy given in the original paper that presented DAN was 85.32%, but the true value
should be 82.75%. The authors of DAN acknowledged the true average accuracy value in their github issues. The
macro-f1 score of the Ad-Corre method was obtained by taking the mean value of the f1 score for each expression
category given in the original paper.
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Table 5. Performance comparison for the FER2013 dataset.

Method Accuracy (%) Macro-F1 Score

Attentional ConvNet [35] 70.02 -
Shao et al. [36] 71.14 -

MBCC [37] 71.52 0.7029 *

BreG-NeXt [38] 71.53 0.7100
Ad-Corre [30] 72.03 0.7123 *

VGG [39] 73.28 -
Baseline (Strong Augment) 72.33 0.7157

ECAN (ours) 73.73 0.7325
* Note: The macro-f1 score of the Ad-Corre and MBCC methods were obtained by taking the mean value of the f1
score for each expression category given in the original papers.

The proposed ECAN method achieved 89.77% accuracy and 83.14% average accuracy
on the RAFDB dataset and 73.73% accuracy on the FER2013 dataset, which is better than the
current state-of-the-art methods based on the ResNet-18 network architecture. These results
clearly demonstrate the robust learning effect of the proposed ECAN for wild FER datasets.

4.7. Discussion

In this section, we discuss some valuable information discovered during the devel-
opment of the ECAN method. When we conducted the data augmentation experiments,
we found that data augmentation had a very significant effect on our baseline; these ef-
fects sometimes even exceeded the results of some of the latest methods. Such results
suggest that data augmentation may be a key factor in improving performance not only
for contrastive learning but also for other methods. We did not consider the class imbal-
ance issue in the initial design of the ENSC loss function; the experimental results proved
that the ENSC loss function was effective at addressing the issue, but after consideration,
we believe that it may be a feasible idea to use historical minibatch samples to augment
those classes with insufficient sample sizes. Experiments have fully demonstrated that our
ECAN method is highly competitive with respect to wild FER datasets, but it still has some
problems and should be improved. Experience shows that when the number of historical
feature groups considered by the MVA loss function was larger, the training of the model
was more stable; however, at the same time, this led to performance degradation. The
question of how to solve this problem is one future research direction. Moreover, other
annotations, such as multi-label annotations and landmarks, provided richer supervised
information. In addition, if a scheme is designed to associate deep features with such
supervised information, the model should be able to learn more accurate feature clusters.

5. Conclusions

This paper proposes a contrastive-learning-based ECAN method, i.e., an extra-contrast
affinity network. It is used to effectively learn highly discriminative features in wild FER
scenes. ECAN contains two newly proposed metric loss functions to optimize deep feature
output using a feature processing network. The proposed ENSC loss function simultane-
ously considers multiple positive pairs and more extra negative pairs to effectively improve
inter-class separation and intra-class compactness in cases of extreme class imbalance. The
proposed MVA loss function utilizes historical feature groups to dynamically learn more
accurate class centers and can further improve intra-class compactness. Experiments on
two widely used wild FER datasets demonstrated the improvements of the ECAN over
other methods.
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