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Abstract: 3D object detection based on LiDAR point cloud has always been challenging. Existing
point cloud downsampling approaches often use heuristic algorithms such as farthest point sampling
(FPS) to extract the features from a massive raw point cloud. However, FPS has disadvantages
such as low operating efficiency and inability to sample key areas. This paper presents an attention-
guided downsampling method for point-cloud-based 3D object detection, named AGS-SSD. The
method contains two modules: PEA (point external attention) and A-FPS (attention-guided FPS). PEA
explores the correlation between the data and uses the external attention mechanism to extract the
semantic features in the set abstraction stage. The semantic information, including the relationship
between the samples, is sent to the candidate point generation module as context points. A-FPS
weighs the point cloud according to the generated attention map and samples the foreground points
with rich semantic information as candidate points. The experimental results show that our method
achieves significant improvements with novel architectures against the baseline and runs at 24 frames
per second for inference.

Keywords: 3D single-stage object detection; point downsampling; external attention

1. Introduction

With the development of society and growth of the economy, the market share of
vehicles powered by renewable energy is steadily increasing owing to their advantages
of environmental friendliness and high efficiency. In addition, the autonomous driving
technology is gradually maturing. The environment perception system is a core component
of autonomous driving and is responsible for vehicle planning and motion. Improvements
in deep learning and computing power have enabled environmental perception technology
to solve complex recognition and perception problems that cannot be solved via traditional
methods. An important task for which the environmental perception system is responsible
is 3D object detection.

Three-dimensional (3D) object detection entails identifying the category of the object
in 3D space and marking it with the smallest 3D bounding box. Compared with 2D object
detection, the representation of the 3D bounding box has three additional attitude angles
and one additional dimension of position and size. In this regard, LiDAR can provide
high precision, high adaptability, continuous detection and tracking capabilities under
unfavourable lighting conditions such as that obtained with a backlight at night, and
the collected laser point cloud data have accurate depth information and obvious three-
dimensional spatial characteristics. Point cloud data have gradually become indispensable
for perception in autonomous driving. The point cloud 3D object detection algorithm
obtains the spatial information in the point cloud data for detecting vehicles, pedestrians,
objects and other targets in the autonomous driving scene. The detection results provide
path planning information and warn against potential threats to enable the autonomous
driving vehicle to drive smoothly and safely [1].
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Because laser point cloud data are characterised by sparseness, unstructuredness
and massiveness, the direct application of a convolutional neural network [2,3], as is
commonly used in 2D image processing to process point cloud data, is problematic in that
it is computationally intensive and produces poor results. Therefore, the development of an
efficient method to process point clouds for 3D object detection is an essential research topic.

Owing to the unstructured and disordered nature of point clouds, early studies
adopted the method of converting 3D point clouds into 2D images [4–6], for example,
transforming the 3D point clouds from a bird’s eye view or multi-view and then using ma-
ture 2D object detection technology for 3D object detection. Subsequent studies converted
the point cloud into voxels [7–9]. The development of sparse convolution greatly acceler-
ated the speed of 3D convolution, and the problem of addressing the sparsity of the point
cloud was solved more effectively. Thus, the voxel-based 3D object detection technology
has developed rapidly, and it continues to be extensively researched. However, regardless
of multi-view or voxel, a quantisation error inevitably occurs in the conversion process,
which fundamentally limits the performance of these methods. With the development of
PointNet [10] and PointNet++ [11], researchers have continuously extracted features di-
rectly from the original point cloud. These studies used set abstraction (SA), which involves
sampling, grouping and multilayer perceptron (MLP) learning of point-wise features, in
addition to using a symmetric function (max-pooling) to aggregate the features. Although
the point-based method can preserve the original information of the point to a significant
extent, it is still limited by the high computational and memory cost.

The attribution maps proposed by Schinagl et al. [12] make it possible to visualise the
importance of each point to the prediction results. The colour distribution of the point cloud
in Figure 1 shows that the foreground points play a decisive role in the target detection
result, whereas the contribution of the surrounding point cloud is of lesser importance.
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Figure 1. Attribution map examples for 3DSSD [13] detections on KITTI. Warmer colours (turbo
colormap) denote higher contribution of a point to this detection.

In this study, we investigated point-based frameworks and explored the currently
popular strategies for optimising point cloud downsampling, which is a major phase in
SA. The experiments showed that the efficiency of existing heuristic sampling methods
such as FPS is unsatisfactory. Before the final bounding box regression, visualisation of the
sampling points revealed that the points of interest of distant sparse targets were missed
before feature extraction. The dense point cloud in the immediate vicinity comprised
a concentration of a large number of useless sampling points. Zhang et al. [14] proposed
an instance-aware method to distinguish the points in the foreground from those in the
background, but this method requires accurate extraction of the semantic information
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from the point clouds, which is limited if tasks have more categories of objects. Semantics-
augmented set abstraction (SASA) [15] is simple and effective, and the foreground points
can be preserved as much as possible by using the weighted Euclidean distance of the
foreground points. In the process of downsampling from 4096 to 1024 points, the original
F-FPS technique could retain only 9.09% of the foreground points, whereas SASA could
maintain a foreground rate of approximately 35.23% through the semantic-guided sampling
module. In addition, almost all foreground points in the previous stage were retained in this
stage, which contributed significantly to improving the candidate point generation accuracy
and detection efficiency. This method generates its candidate points using VoteNet [16]
(a Hough voting network).

Classifying point clouds also consumes computing resources compared to using FPS
which samples points equally. This study attempted to achieve a balance between effectively
distinguishing foreground and background points and efficient computation. In 3DSSD,
many negative points are discarded during downsampling, which supports regression but
is harmful for classification. Therefore, D-FPS needs to be additionally used to increase the
negative points to provide semantic information for the candidate points. The classification
accuracy can be improved by attaching sufficient semantic information to the candidate
points in the feature extraction stage. Thus, the algorithm of a feature extraction method
will be highly efficient if it is used to segment the category of the point cloud and attach
rich global semantic information to be applied in the candidate generation (CG) stage. The
attention mechanism in self-attention can adaptively aggregate the global features and
achieve a similar feature enhancement effect by appending to the source features.

Traffic scenes have strong semantic correlations, such as the correlation between vehi-
cles and road surfaces, driving directions while maintaining the same lane, and correlation
between pedestrians and pedestrian crossings. The self-attention mechanism [17] captures
long-range interactions and provides guidance for the selection of key points. It uses its
contextual information for the classification task of the CG layer to create a positive effect.
However, the self-attention mechanism is computationally expensive, which limits its use
for complex datasets. Hence, a computationally cost-effective alternative that can simplify
self-attention is needed.

Motivated by the above analysis, we propose architecture based on 3DSSD, namely
AGS-SSD. We applied the foreground point semantic segmentation module proposed for
SASA and added the point external attention (PEA) module to the SA of the PointNet++
architecture along with A-FPS (attention-guided farthest point sampling). Specifically,
we used the external attention mechanism to learn the key points obtained by S-FPS and
calculated the global pairwise interactions of these points. The attention map module
obtained in the process was used to obtain the attention scores for A-FPS, in which the
Euclidean distance was reweighted and the number of foreground points in the sampling
points output by the A-FPS layer was increased. The semantic points output by the SA
layer contain richer semantic information. When these points are supplied to the CG layer,
the PSA is used to extract the contextual information again and provide it for the regression
and classification tasks of the bounding box. Owing to its global features, the proposed
approach can improve the efficiency and accuracy of 3D object detection, and enhance the
detection effect of distant sparse targets.

The following are the key contributions of this study:

1. This study identified and addressed the main problems in the point cloud down-
sampling method used in the existing point-based 3D object detection process, and
developed an efficient and accurate 3D object detection framework based on 3DSSD,
which contains two new modules: PEA and attention-guided sampling (AGS).

2. AGS-SSD is an efficient and high-performance single-stage 3D object detection frame-
work that can detect multiple classes of objects simultaneously. Our proposed PEA
utilises an external attention mechanism to extract the long-range dependencies
between the point clouds, which can save computation when compared with the
self-attention approach. The PEA memory unit is more suitable for a relatively single
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target in traffic scenarios. Our proposed AGS uses the attention map generated by
PEA to weigh the point cloud, which enables the targeting of a greater number of
sampling points and retention of a greater number of foreground points.

3. Experimental investigations on the KITTI dataset revealed that our method adequately
outperforms 3DSSD on each object level and that its performance is similar to that
of state-of-the-art methods, whereas its efficiency is only slightly lower than that of
the baseline.

The remainder of this paper is organised as follows. Section 2 offers a detailed
literature review and explains the core concepts of this study. Section 3 describes the
proposed framework and the PEA and AGS modules. Section 4 presents the experimental
verification of the proposed method. Finally, Section 5 presents the concluding remarks.

2. Related Work

In this section, we introduce point-based 3D target detection, followed by point
downsampling and attention for point cloud tasks.

2.1. Point-Based 3D Object Detection

The point-based 3D object detection algorithm uses the original point cloud to extract
the point-level features. PointRCNN [18] is the first 3D object detection algorithm to com-
pletely adopt the original point cloud. This method uses PointNet++ as the backbone for
feature extraction, performs the RPN operation based on the obtained original point cloud
features and adopts the standard two-stage object detection architecture. In PointGNN [19],
a graph neural network is used to build a graph model based on the pre-set distance
threshold; then, each vertex is updated to obtain the information on the neighbourhood
points, and finally, multiple vertices are integrated to output the 3D bounding box. Point-
based detection can retain the structural information of the original point to the greatest
extent, and the detection accuracy has a high upper limit. However, owing to the need for
expensive sampling and feature extraction, the training and reasoning time is longer than
that of the voxel-based method.

2.2. Point Downsampling

Point cloud downsampling is a fundamental step in most point-based neural archi-
tectures, and is commonly used to refine the raw input and improve the computational
efficiency for multiple downstream tasks. Recent studies have explored advanced and
complex sampling schemes [20,21]. Nonetheless, despite significant progress in point cloud
sampling, these methods are task-independent and fairly common, lacking knowledge of
the important features that may be required for a particular task. Zhou et al. [22] builds
a dense-to-sparse projection field (DBAF), obtain coordinates of keypoints and through
jointly predicting confidence maps and 2D local offset fields. It provides a new approach
for instance-aware downsampling.

In relation to point cloud sampling, farthest point sampling (FPS) is widely used in
many models to handle the downsampling issue encountered in the use of point clouds.
However, FPS has many shortcomings such as sensitivity to outliers, poor sampling effect
on small samples and poor sampling effect of sparse targets. Yang et al. [23] proposed
point attention transformers and the Gumbel subset sampling module, removed FPS from
PointNet++ to calculate the importance of each point using Gumbel Softmax, and then
selected the downsampling points according to this probability. Wang et al. [24] proposed
a novel sampling method named LSNet, which can sample important points using deep
learning and produces superior results regarding the number of sampling points. Yang
et al. [13] proposed 3DSSD by introducing feature-FPS and fusion sampling to replace the
Euclidean distance in FPS with the distance in the feature space to remove a greater number
of negative points in the background. Zhang et al. [14] proposed IA-SSD, which utilises both
class-aware and centroid-aware sampling strategies to retain the pre-attractions during the
sampling process. Contextual centroid perception (similar to VoteNet centre-point voting)



Electronics 2022, 11, 2268 5 of 16

has been proposed to regress the centre by using meaningful contextual information around
the bounding box.

2.3. Attention Mechanism for 3D Object Detection

Owing to the disordered state of point clouds, which are essentially collections of
points irregularly embedded in the metric space, the attention mechanism is well adapted
for point cloud processing.

Point cloud encoders based on the attention mechanism usually perform dense pre-
diction tasks such as objection detection and semantic segmentation. Xie et al. [25] pro-
posed MLCV, which exploits the multi-level context of VoteNet to improve the detection
performance in indoor scenes by encoding the contextual information. Specifically, the
self-attention mechanism is used to strengthen the corresponding feature representations by
capturing the relations within the point patches and vote clusters. Pan et al. [26] proposed
Pointformer, which follows the U-Net architecture, wherein the following transformer-
based blocks are proposed: local transformer (LT), local-global transformer (LGT) and
global transformer (GT); this structure encodes long-range dependencies to enhance the
feature representation and enhance the performance on both indoor and outdoor datasets.
By following the DETR [27] framework, Nguyen et al. [28] designed Box-attention, which
also serves as a multihead attention approach used to focus on the box of interest in the im-
age feature map. To this end, it samples a grid within each box and calculates the attention
weights of the sampled features from the grid structure, which makes it easy to generalise
the module for 2D or 3D object detection and instance segmentation. In each attention
computation head, a box of interest is generated by predicting a geometric transformation
of a predefined reference window (e.g., translation, zoom and rotation).

3. Method

As shown in Figure 1, the AGS-SSD framework employs a PEA module to produce
more powerful and robust global context representations from the features extracted by
the backbone network. The AGS-SSD also replaces the D-FPS (Euclidean distance farthest
point sampling) in the SA layer with A-FPS (attention-guided FPS), which aims to achieve
higher foreground point recall. In brief, we make full use of the point cloud context
feature extracted from PEA to boost the limited precision of 3D object detection caused by
foreground point sampling loss and the lack of semantic information.

3.1. Overall Structure

The overall architecture of AGS-SSD is shown in Figure 2. The framework contains
three parts: a point feature extraction backbone, CG layer and prediction head. The input
to the network is the original point cloud, and the backbone is based on PointNet++, which
contains three SA layers. One SA layer is divided into three parts—downsampling, group-
ing and MLP layers—which extract the global and local features of the points of interest
at different scales. By referring to 3DSSD, our backbone retains only the encoder layers
and abandons the decoder layers, which are the expensive FP up-sampling layers. The
extracted features are provided to the CG layer, which contains a vote head for processing.
The vote head contains a simplified version of PointNet; it uses MLP to return the offset of
the point of interest, which provides the centre of the object and the centre of its features.
Finally, the CG layer sends the resulting object centre and candidate box to the classification
and regression network using the fully connected layer to obtain the final result.
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Figure 2. Illustration of the entire AGS-SSD framework. First, the network performs feature extraction
using three SA layers. Second, the PEA module is inserted between SA2 and SA3 to extract the
contextual information on the features extracted by SA2. The PEA module is also added to the CG
layer to shift the sampled points to the corresponding instance centres. Third, the A-FPS module
samples the key point set K based on the point coordinates X and attention scores P. Finally, the
prediction head gives the class score and regression bounding box prediction. In the lower part of
the image, the blocks output by SA represent the ratio of the cloud of the downsampling points, i.e.,
16:4:2:1.

The three SA encoding modules can be classified as SA1, SA2 and SA3. The correspond-
ing numbers of subsampled layers are level1, level2 and level3, which are used to extract
the point-wise feature vectors. In contrast to the original 3DSSD implementation, we refer
to SASA and replace the F-FPS of the 3DSSD with S-FPS at SA2. Compared with D-FPS
(Euclidean distance-based FPS), the S-FPS adds a two-layer MLP structure as a simple
foreground point segmentation module. The number of downsampled point clouds is
[16,383 → 4096 → (512,512) → (256,256)]. The output (512,512,512) of the level2 stage
passes through the PSA module and outputs the global context features; it then performs
splicing with the point-wise feature vectors output from the level2 stage. The sampling
points of the S-FPS module are sent to the AGS module for attention-weighted sampling.
The input 512 point clouds are weighted by the attention weights and distance weights to
obtain the score, and the top 256 points are removed and sent to VoteNet as the candidate
generating points. VoteNet takes the input candidates as the central points, combines the
semantic features obtained from the D-FPS sampling and extracts the features using the
SA layer containing the PEA module. These features are sent to the prediction head for
regression and classification.

3.2. PEA Module

Attention mechanisms are often used to extract the local–global relationships and to
reinforce key features and suppress useless features. The attention mechanism is widely
employed in 2D image target detection. Self-attention modelling helps achieve state-of-
the-art results in machine translation, and self-attention is commonly combined with
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convolution in natural language processing, image recognition, two-dimensional object
detection, segmentation, reinforcement and learning.

Inspired by the external attention proposed by Guo et al. [29], the scheme proposed
in this paper applies the PEA module, which is less computationally intensive when
compared with the self-attention mechanism, yet it captures the relationship between
the samples. Such a structure would be considerably effective in a scenario wherein the
vehicle, pedestrian, bicycle and other targets have an obvious semantic correlation with the
pavement and sidewalk background.

Our PEA module is shown in Figure 3b. Compared with the point cloud self-attention
module [30] in Figure 3a, PEA adopts the external attention method. As shown in the figure,
the PEA module first calculates the attention map by calculating the similarity between
the self-query vector and the external learnable key memory Mk. It then multiplies the
attention graph with another memory unit Mv to obtain the feature graph. An optional
training module is available for use when the sampling points are required to be focused
within the former attractions as much as possible.
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The matrix M can be shared to learn the macrorelationship between the overall data
samples. Similar to the shared MLP operation of PointNet, the memory units calculate the
attention for each point and establish the microrelationships (relationships between the
self-attention pairs).

Complexity. The complexity of the self-attention calculation is O (N2d); the complexity
of the external attention module is O (Nsd), where s is the dimension of the memory block.
Based on the number of input point clouds, N, in the square relationship, a smaller value
of s was selected in this study to achieve a similar effect as SA. In this study, s was set
to 64, and the complexity of PEA was only 1/4 or 1/8 of that of SA for input N = 512 or
256. The inherent sparsity of the point cloud and efficient pairwise computing based on
matrix multiplication make PSA a feasible feature extractor in the current 3D detection
architecture.

Multihead attention. Point cloud self-attention module employs the multihead self-
attention mechanism. In contrast to single-head attention, multihead attention can capture
different relations between the tokens. Inspired by this idea, a multihead external attention
mechanism was designed in this study. Specifically, the input feature first passes through a
linear layer and is then divided into H heads; the matrix after the rank is Mk transformed
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and then normalised, followed by Mv transformation. Finally, feature splicing is performed;
the formula can be expressed as follows:

hi = PEA(Fi, Mk, Mv), (1)

Fout = MultiHEAD(F, Mk, Mv) = Concat(h1, . . . , hH)Lreduce, (2)

where hi is the i-th head, H is the number of heads and Lreduce is a linear transforma-
tion matrix, which reduces the dimensions of the output features to make it consistent
with the input features. Mk ∈ RS×d and Mv ∈ Rd×S are the shared memory units for the
various heads.

Unlike SA multihead mechanism, EA multihead mechanism uses a shared connection
layer. With this structure, the number of parameters can be reduced. In the shared memory
unit, H is multiplied by k and S is divided by k. The specific structure is shown in Figure 4.
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3.3. Attention-Guided Sampling

Inspired by SASA, the MLP prediction of the former attractions and background
points is of great help in improving the sampling efficiency. In SASA, a lightweight point
segmentation is embedded to improve the identification of the local semantics. Specially, it
is a simple 2-layer MLP and classifies the input points into foreground and background
points. The point segmentation module denotes the Ck-dimension point-wise features fed
to the k-th SA layer as {f 1

(l
k

), f 2
(l

k
), . . . fNk

(l
k

)}. The foreground score p ∈ [0, 1] for each point
is calculated as

pi = σ(MLPk( f (lk)i ), (3)
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where MLPk is a 2-layer MLP, which maps the input features to the foreground scores and
σ (·) is a sigmoid function.

Unlike SASA, AGS-SSD employs the attention map generated by the attention mech-
anism. The map is provided to the sigmoid network to obtain the confidence of the
region-of-interest point cloud in [0, 1], which is added to the sampling distance as the score.
As shown, the semantic labels are added according to the point cloud inside the bound box
in the ground truth.

The advantage is that the attention map can continue to operate with attention scores to
predict the properties of the point clouds to obtain the contextual information and provide
the precise candidate points for the CG layer. Given the point attention map extracted
by the previous PEA module and point coordinates from the input, the process of our
proposed A-FPS is described in Algorithm 1. The main purpose is to select a greater number
of foreground points by giving precedence to the points with higher attention scores. The
overall procedure of FPS remains unchanged; we rectify the sampling metric, which is
the distance to the already-sampled points, using the point attention scores. Specifically,
given the coordinates {x1, . . . , xN} and attention scores {A1, . . . , AN} of the input points,
a distance array {d1, . . . , dN} maintains the shortest distance from the i-th point to the
already selected key points. In each round of selection, we add the point with the highest
attention-weighted distance Di to the key point set. Di is computed as

Di = (Ai)
γ·di (4)

where γ is the balance factor controlling the contribution of the attention scores.

Algorithm 1: Attention-guided farthest point sampling algorithm. N is the number of input
points and M is the number of output points sampled by the algorithm

Input:
Coordinates X = {x1, . . . , xN} ∈ RN×3

Attention scores A = {A1, . . . , AN} ∈ RN

Output:
Sampled key point set K = {k1, . . . , kM} ∈ RM×3

1. Initialise an empty sampling point set K
2. Initialise a distance array d of length N with all +∞
3. Initialise a visit array v of length N with all zeros
4. for i = 1 to M do
5. if i = 1 then
6. ki = argmax(A)
7. else
8. D =

{
(Ak)

γ·dk
∣∣vk = 0

}
9. ki = argmax(D)
10. end if
11. add ki to K, vki = 1
12. for j = 1 to N do

13. dj = min(dj,
∣∣∣∣∣∣xj − xki

∣∣∣∣∣∣)
14. end for
15. end for
16. Return K

The role of AGS is shown in Figure 5. Suppose P1 is the starting point. If FPS is used,
select P2 such that D (P1, P2) > D (P1, P3). However, the attention scores of P2 and P3 are
related as a3 > a2 for P3 as the foreground point. Hence, a2

γ × D (P1, P2) < a3
γ × D (P1, P3)

is obtained using A-FPS, thus leading to P3 being selected instead of P2.
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4. Experiments
4.1. Dataset

We validated our AGS on the popular KITTI dataset. This dataset is a widely used
public dataset in the field of 3D object detection and is a prevailing benchmark. It contains
7481 LiDAR point clouds as well as the corresponding images with calibrated 3D bounding
boxes for training. The instances are divided into three categories: cars, pedestrians and
cyclists. The dataset also contains 7518 unlabelled samples for testing. The results of the test
can be obtained only by submitting the inferences to the official server dedicated to KITTI.

By adopting the OpenPCDet setting, the 7481 training samples were divided into train
split (3712 samples) and val split (3769 samples) in this study. All experimental models
were trained on the train split and tested on the val split in the evaluation stage. Following
the training protocol suggested for PV-RCNN [31], the model was trained with 80% of all
the data in the training set and the remaining 20% of the data were used for validation.

Because the dataset annotates only the objects that are visible in the image, the point
cloud was processed within the field of view of the image. We performed all experiments on
three objects: cars, pedestrians and cyclists. Three difficulty levels (easy, medium and hard)
were considered depending on the size of the 3D object, occlusion level and truncation. For
training purposes, samples that did not contain objects of interest were removed.

Average precision (AP) is the main evaluation metric for object detection models. The
evaluations of both the test set and val set used 40 recall positions, represented as AP_40,
which is more scientific than the assessment method based on 11 recall positions.

4.2. Implementation Details

Baseline. 3DSSD was selected as the baseline, as it has an efficient 3D single-stage
detector. Our experimental model for evaluation was built on OpenPCDet, a widely
used and clean 3D object detection framework. It supports most 3D object detection
algorithms, including single-stage and two-stage, voxel-based and point cloud-based, and
offers a variety of detection heads.
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Traning. The reproduction of other methods was based on the official configuration
provided by OpenPCDet. As in the case of the baseline, all networks were trained using
the ADAM optimiser with an initial learning rate of 0.001 and batch size of 16 equally
distributed across 4 TESLA V100 GPUs. All models were trained for 80 epochs. To align the
network input, each point cloud contained 16,384 randomly selected points. If the number
of points in one scene was fewer than 16,384, the points were randomly repeated to obtain
16,384 points.

Data Enhancement. To avoid overfitting, we employed manifold data augmentation
strategies on the KITTI dataset. First, we randomly added the foreground instances and
their interior points from other scenes to the current point cloud by using the same mixing
strategy ∆θ1 ∈ [−π/4, +π/4]. Next, we rotated each bounding box by following a uniform
distribution and added a random translation [∆x, ∆y, ∆z]. Third, we applied random
scaling with a scale from [0.9, 1.1] and each point cloud was randomly flipped along
the x-axis.

4.3. Results

As indicated in Table 1, our AGS-SSD outperformed the 3DSSD baseline by a large margin
in all aspects, thus establishing itself as a state-of-the-art point-based single-stage detector.

Table 1. Quantitative detection performance achieved by different approaches on the KITTI test set.
All results were evaluated based on mean average precision with 40 recall positions via the official
KITTI evaluation server. The results of our AGS-SSD are shown in bold, and the best results are bold,
and the second best results are underlined.

Method Type
Car 3D Detection (IoU = 0.7) Ped.3D Detection (IoU = 0.7) Cyc.3D Detection (IoU = 0.7)

Speed
Easy Mod. Hard. Easy Mod. Hard. Easy Mod. Hard.

SECOND [7] 1-stage 84.65 75.96 68.71 45.31 35.52 33.14 75.83 60.82 53.67 20
PV-RCNN [31] 2-stage 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65 12.5

Voxel R-CNN [9] 2-stage 90.90 81.62 77.06 - - - - - - 25
PointPillars [32] 1-stage 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92 42.4
PointRCNN [18] 2-stage 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53 10
PointGNN [19] 1-stage 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08 1.6
3D IoU Net [33] 1-stage 86.16 76.50 71.39 - - - - - - 12.5

Fast Point R-CNN [34] 2-stage 85.29 77.40 70.24 - - - - - - 16.7
Part-A2 [35] 2-stage 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93 12.5
TANet [36] 2-stage 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53 28.5

3DSSD (Official) [13] 1-stage 88.36 79.57 74.55 - - - - - - 25
3DSSD (OpenPCDet) 1-stage 87.91 79.55 74.71 35.03 27.76 26.08 66.69 59.00 55.69 26

SASA [15] 1-stage 88.76 82.16 77.16 - - - - - - 27
AGS-SSD (Ours) 1-stage 88.38 81.02 76.45 46.10 38.53 35.40 77.40 62.15 56.14 24

Regarding the main metric, i.e., AP_40 on objects in the car category at the “moderate”
level, our method outperformed 3DSSD and PointRCNN by 1.45% and 5.38%, respectively.
We should note that many methods evaluate only one class on the KITTI test set, mainly
the “car” class. This is mainly because of the following considerations: first, the samples in
KITTI have a highly unbalanced distribution, with the proportion of cars and pedestrians
approximating 10:1. However, the test set contains a small number of images of pedestrians
and bicycles, which easily leads to huge fluctuations in the test results, making the results
meaningless. The second reason is that some algorithms adopt a task-driven detection
strategy, and corresponding optimisations are conducted in the stages of setting the target
anchor frame and constructing the loss function. This makes them unsuitable for multi-
category target detection. However, this does not mean that the methods cannot be applied
to other categories. We also mention the detailed results of the 3DSSD test, as it is important
to evaluate the performance of the baseline. 3DSSD does not provide official replication
implementations or pre-training models for pedestrian and cyclist data. Because our AGS-
SSD was built on the basis of OpenPCDet, we used a duplicate version of OpenPCDet for
fair comparison.
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The AP_40 scores of cars in the test set at the easy, moderate and hard levels, obtained
by AGS-SSD, were 88.38%, 81.02% and 76.45%, respectively. The proposed method outper-
formed most of the recent detectors, e.g., PointRCNN, 3DSSD and SECOND. Its detection
accuracy slightly inferior to that of PV-RCNN and Voxel R-CNN but its inference speed is
faster than that of them.

The KITTI server limits the number of test set submissions. Hence, to compare the
performance more comprehensively, the method proposed in this paper was compared
with the current state-of-the-art method. The AP for 3D object detection by our AGS-SSD
method on the KITTI dataset is presented in Table 2. The results in this table depict the
AP_40 value calculated with the same (IoU) setting on the test set. As shown in the table,
our AGS-SSD delivers the best performance for the easy level on the car class of the val
set. AGS-SSD performs slightly more accurate than 3DSSD SASA in every aspect. It is not
uncommon for our algorithm to deliver far superior performance on the val set than on the
test set. Classical algorithms such as PointRCNN have similar performance characteristics
owing to the imbalance between the categories and some differences in the algorithm
design. Figure 6 presents the visualization results of AGS-SSD on the KITTI dataset.

Table 2. Quantitative detection performance achieved by different methods on the KITTI val set.

Method
Car 3D Detection Ped. 3D Detection Cyc. 3D Detection

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PV-RCNN [31] 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65
3DSSD (OpenPCDet) 91.04 82.32 79.81 59.14 55.19 50.86 88.05 69.84 65.41

IA SSD [14] 91.88 83.41 80.44 61.22 56.77 51.15 88.42 70.14 65.99
CT3D [37] 92.34 84.97 82.91 61.05 56.67 51.10 89.01 71.88 67.91
PDV [38] 92.56 85.29 83.05 66.90 60.80 55.85 92.72 74.23 69.60

SASA [15] 91.82 84.48 82.00 62.32 58.02 53.30 89.11 72.61 68.19
AGS-SSD (car) 92.4 85.28 82.01 - - - - - -

AGS-SSD (multi) 92.22 85.08 82.35 62.55 59.35 54.16 90.65 74.19 69.79
Improvement on 3DSSD +1.18 +2.76 +2.54 +3.41 +4.16 +3.30 +2.60 +4.35 +4.38Electronics 2022, 11, x FOR PEER REVIEW 13 of 17 
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Overall, the results of the model on both the val and test sets consistently demonstrate
that our proposed AGS-SSD achieves the state-of-the-art AP on 3D object detection and
high efficiency when compared with the baseline.

4.4. Ablation Experiments

Ablation on Modules. To further verify the effectiveness of the PEA and AGS mod-
ules, we considered the original 3DSSD SASA as the baseline. We replaced the original
S-FPS in Level 3 with A-FPS and added the PEA module to extract the contextual informa-
tion. The results are presented in Table 3 and show that, by adding the external attention
module, the accuracy was improved by 0.44%, 1.21% and 1.27% for car, pedestrian and
cyclist, respectively. The attention mechanism highlights the global contextual information
to improve the regression, and weakens the effect of the futile noise to make the algorithm
more robust. By adding A-FPS, we can obtain a greater number of targeted sampling points.

Table 3. Performance of proposed method with different configurations on KITTI val set. The results
are evaluated with the average precision calculated based on 40 recall positions.

Baseline PEA A-FPS Car Mod (IoU = 0.7) Ped Mod (IoU = 0.5) Cyc Mod (IoU = 0.5)
√

84.48 58.02 72.61√ √
84.92 59.23 73.88√ √ √
85.08 59.35 74.19

Sampling point recall. The detection performance and point recall, which is the ratio
of the number of ground truth (GT) boxes with at least one internal sample point to all
GT boxes for different samples, are compared in Table 4. The algorithm is based on the
3DSSD baseline. We adjusted only the point sampling policy; the other model settings
remained unchanged. The results showed that our A-FPS outperformed the F-FPS used in
the 3DSSD baseline by up to 2.28%. Furthermore, the candidates sampled by our A-FPS
could “hit” 0.24% additional real boxes when compared with S-FPS. As can be seen from the
visualisation results in Figure 7, FPS was used in Layer 1 and Layer 2 to obtain a uniform
sampling point, whereas A-FPS was used in Layer 3 to ensure a greater concentration of
the foreground points. Finally, the 256 sampling points output in the CG layer were almost
entirely concentrated around the instances.

Table 4. Analysis of point sampling by layer on 3DSSD, evaluated on the car class of KITTI val split.
The level 2 and level 3 SA layers exploit the fusion sampling strategy to individually sample half the
key points with two different sampling algorithms.

Method SA Layer
Total Points

SA1 SA2 SA3
4096 512 512 256 256

3DSSD
Sampling Method: FPS F-FPS FPS F-FPS FPS
Foreground Rate: 4.4 9.09 3.2 8.7 2.75

Point Recall: 98.35 97.75 96.73 96.65 91.58

3DSSD + SASA
Sampling Method: FPS S-FPS FPS S-FPS FPS
Foreground Rate: 4.4 35.23 3.2 31.24 2.75

Point Recall: 98.35 97.87 96.73 97.65 91.58

3DSSD + AGS
Sampling Method: FPS S-FPS FPS A-FPS FPS
Foreground Rate: 4.4 35.23 3.2 33.52 2.75

Point Recall: 98.35 97.87 96.73 97.89 91.58

AGS Improvement
on 3DSSD

Foreground Rate: - - - +2.28 -
Point Recall: - - - +0.24 -
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Effectiveness of hyper-parameter: The effectiveness of balance factor γ has been
compared in Table 5. The results show that only the appropriate γ can make the detector
play the best accuracy. It cannot be too small, otherwise the attentional information will be
difficult to function. It also cannot be too large, otherwise the sampling area will focus too
much on some salient regions, which is unfavourable for detecting sparse and small objects
at long distances. When γ = 1, we have a satisfactory result.

Table 5. Performance comparison with different balance factor settings on A-FPS.

Car Mod (IoU = 0.7) Ped Mod (IoU = 0.5) Cyc Mod (IoU = 0.5)

γ = 0.01 79.69 53.64 65.16

γ = 0.5 82.36 57.16 72.3

γ = 1 85.08 59.35 74.19

γ = 10 83.87 51.79 67.08

5. Conclusions

In this article, we proposed AGS-SSD, which employs a PEA module and an A-FPS
strategy to alleviate the problem of limited detection accuracy resulting from the point
cloud imbalance between the foreground and background points. The PEA module uses the
external attention mechanism by introducing a memory unit. Compared with self-attention,
the memory usage and computational cost of external attention is lower, and the global
memory stored by the memory unit is more suitable for situations where the combination
of semantic features such as traffic scenes does not change frequently. Therefore, the context
extracted by the external attention can provide more accurate semantic information to the
improved VoteNet and increase the accuracy of centre-point prediction. AGS reorders the
sampling points according to the attention weight, and the final results consider the sparse
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foreground points. The advantage of VoteNet in comparison with a simple segmentation
network is that it can extract deeper features of the target, and the extracted segmentation
results are more accurate. At the same time, the extracted features can also be used for
centre-point prediction in the CG layer. The experimental results indicate that AGS-SSD
outperforms the original 3DSSD on the KITTI benchmark. We consider the test on the KITTI
test set to be a long way from attaining its full potential, because all our results on the val
test have reached the state-of-the-art level. In the next step, we need to continue to study
ways in which to optimise the attention mechanism based on the point cloud, improve its
efficiency and endeavour to experiment on more complex datasets such as Once.
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