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Abstract: One of the problems encountered in the field of computer vision and video data analysis is
the extraction of information from low-contrast images. This problem can be addressed in several
ways, including the use of histogram equalisation algorithms. In this work, a method designed
for this purpose—the Contrast-Limited Adaptive Histogram Equalization (CLAHE) algorithm—is
implemented in hardware. An FPGA platform is used for this purpose due to the ability to run
parallel computations and very low power consumption. To enable the processing of a 4K resolution
(UHD, 3840 × 2160 pixels) video stream at 60 fps (frames per second) by using the CLAHE method,
it is necessary to use a vector data format and process multiple pixels simultaneously. The algorithm
realised in this work can be a component of a larger vision system, such as in autonomous vehicles
or drones, but it can also support the analysis of underwater, thermal, or medical images both by
humans and in an automated system.

Keywords: CLAHE; Contrast-Limited Adaptive Histogram Equalization; 4K; UHD; FPGA; SoC;
Zynq UltraScale+; real-time image processing; histogram equalization

1. Introduction

Image processing and analysis is currently an element of many automatic systems.
With the information obtained from vision sensors, many machines, robots, or autonomous
vehicles can operate correctly. In order to facilitate the extraction of relevant information
from an image, pre-processing methods are often used to improve its quality in some way
before the target algorithm is applied. Such operations include various types of filtering
(blurring, de-noising), colour space conversions, or contrast enhancement [1]. Many images
are characterised by low contrast, e.g., due to the conditions in which their acquisition
is performed. Typical examples are thermal imaging, underwater images, and also the
automotive industry (e.g., image enhancement of cameras supporting the view from car
mirrors), or medical imaging—e.g., X-ray or computed tomography (CT). In the case of the
latter two categories, image-contrast enhancement can make it easier for people to make the
right decisions (e.g., for drivers to change lanes, for doctors to make an effective diagnosis),
so it is an important component not only for fully automatic systems. Furthermore, it is
worth noting that this type of pre-processing can also be applied to solutions with deep
convolutional neural networks.

One of the widely used methods to improve image quality is histogram equalisation.
The basic algorithm is known as the Global Histogram Equalization (GHE) (in names we use
the US spelling, as more popular in the scientific world) and consists of the following steps:

• determining the histogram for the entire image frame (the image is assumed to be in
greyscale);

• calculating the cumulative histogram and normalising it (to the range of 0–255); and
• performing look-up table (LUT) operations on the image, with recoding in the form of

a normalised cumulative histogram.
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As a result, low-contrast areas are highlighted and high contrast areas are “flattened”. This
approach works well mainly for images with relatively homogeneous illumination. In more
challenging cases, the results are usually not satisfactory.

An extension of this method is the Adaptive Histogram Equalization (AHE) algo-
rithm [2]. In this approach, the image is divided into windows, in which the histogram
equalisation process is performed. Therefore, this method is a local approach. The algo-
rithm preserves details in heterogeneous images, but has a disadvantage of emphasising
(amplifying) noise in homogeneous areas.

The Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm does not
have such a disadvantage [3]. In this solution, the values of individual histogram bins are
limited, and the resulting excess is redistributed among the remaining bins. The results of
the three mentioned methods are illustrated in Figure 1. Section 2 describes in detail the
subsequent steps of the CLAHE algorithm.

Figure 1. Comparison of Global Histogram Equalization (GHE), Adaptive Histogram Equalization
(AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The figures show succes-
sively (from the left) the original image, the image after applying GHE, AHE, and CLAHE algorithms.
The GHE algorithm does not perform well when there is a significant difference between the highest
and the lowest intensity in the image. The main drawback of the AHE is visible in the homogeneous
regions (like sky in the mountains image). The CLAHE algorithm performs well in both situations.

For some of the mentioned applications (e.g., from the automotive and robotics indus-
try), it is desirable that histogram equalisation algorithms operate in real-time for images
of the highest possible quality. This is a demanding task, especially for more complex
algorithms. It is even more demanding in the case of processing a video stream, understood
as many consecutive images (30–60 frames per second as standard). In a general case, this is
difficult to achieve by using a CPU. It is therefore necessary to use hardware platforms that
enable parallel and pipeline data processing. These include graphics processing unit (GPU),
embedded GPU, field programmable gate array (FPGA), or other dedicated hardware plat-
forms (e.g., application-specific integrated circuit (ASIC)). The unquestionable advantages
of FPGAs are energy efficiency, the possibility of operation without an additional host (as
in the case of GPUs), and high flexibility, contrary to ASICs.

FPGAs have found applications in many real-time vision systems. They are used for
optical flow determination, e.g., with the Lucas–Kanade and Horn–Schunck methods [4],
or stereo correspondence with the Semi-Global Matching algorithm [5]. They also enable
the implementation of advanced object tracking methods [6]. FPGAs can be applied in
advanced driver assistance systems, for example for high-speed gaze detection [7], and
unmanned aerial vehicles, for example the simultaneous localization and mapping [8]. In
the last few years, a very large number of scientific and industrial works also addresses the
topic of deep neural networks acceleration (especially convolutional neural networks) on
FPGAs [9].
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The main contributions of this paper are as follows.

• We propose a hardware implementation of the CLAHE algorithm on an FPGA plat-
form, enabling real-time processing of a 4K (Ultra HD) video stream, which to our
best knowledge has not been done before; and

• We use a vector stream format (4 ppc) to implement the CLAHE algorithm, which
should be considered as an architectural novelty due to required redesign of its
components.

The remainder of this paper is organised as follows. In Section 2 we present the
CLAHE algorithm with its typical components and highlight the most typical applications.
We discuss the previously published work in Section 3. In Section 4 we describe our
hardware implementation of the CLAHE algorithm on an FPGA platform. The results
we obtained are presented in Section 5, where we also compare them with state-of-the-art
solutions. In Section 6 we discuss possible modifications to the CLAHE algorithm and their
hardware implementations. Section 7 summarises our work and indicates directions for
further development.

2. CLAHE Algorithm

In general, the CLAHE algorithm can be implemented in several variants, depending
on the adopted implementation assumptions. Differences may include the use of a mecha-
nism for dividing the image into windows or allowing a slight exceedance of the set limit
of the histogram value. The version of the CLAHE algorithm used by us can be divided
into four stages:

• the division of the image into rectangular, non-overlapping windows;
• the computation of the histogram for each window and its redistribution;
• the calculation of the LUT mapping function; and
• the interpolation of the resulting pixel values.

An overview of the CLAHE algorithm is presented in Figure 2.
Adaptive histogram equalisation is most often performed on greyscale images or for

the luminance (brightness) component of a colour image (V from HSV, Y from YCbCr, L
from CIELab etc.). It is also possible to apply a given algorithm (e.g., CLAHE) to all or
selected channels of a colour image, performing operations on each channel separately.
However, this operation may have a significant impact on the colouring of the image. In
this project, we focus on the greyscale images, although the described algorithm can be
easily applied to other mentioned cases (as discussed in Section 6).
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Figure 2. Overview of the CLAHE algorithm. First, the input image is divided into rectangular, non-
overlapping windows (blocks, tiles). Second, for each of the tiles, a clipped histogram is computed.
The excess is then redistributed and the cumulative distribution function (CDF) is computed. Finally,
by using the CFD as the mapping function and interpolating the pixel values, the new image is
obtained. Note that for each tile, the histograms are more uniform.

2.1. Tiles Generation

Two main solutions to the window partitioning problem are commonly used in the
literature. In the first one, for each pixel, the window is independent (similar to context
filtering). Then, there is no problem of visible borders between blocks—transitions be-
tween individual pixel values are smooth. However, the main disadvantages are higher
computational complexity and the problem of determining the values of boundary pixels.
This problem is quite important, because the size of the window in which the histogram
is calculated is relatively large, e.g., 64 × 64 pixels. In the second approach, the image
is divided into non-overlapping (i.e., disjoint) windows (rectangular or square). Then,
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the aforementioned problem of visibility of boundaries between blocks occurs , but it is
eliminated by interpolation. On the other hand, the boundary pixel problem does not exist.
In general, hybrid variants are also possible, i.e., partially overlapping windows.

The second of the variants described is more common. In its case, three types of
windows can be distinguished, as in Figure 3: CR (corner regions), BR (border regions), and
IR (inner regions). The distinction between these blocks affects the interpolation performed
when determining the output pixel values.

CR CR

CR CR

BR

BR

BR

BR

BR

BR BR BR

BR BR BR

IR IR IR

IR IR IR

IR IR IR

BR

BR

BR

BR BR BR

BR

Figure 3. Example of division of an input image into blocks, corner regions (CR), border regions
(BR), and inner regions (IR).

2.2. Histogram Calculation and Redistribution

In the first step of the actual algorithm, a typical histogram with 256 bins is determined
for each block (sometimes variants with fewer bins are also used). It can be described by
Equations (1) and (2),

h(n) =
XX−1

∑
i=0

YY−1

∑
j=0

g(n, i, j) for n = 0, 1, . . . , N − 1 (1)

g(n, i, j) =
{

1 if I(i, j) = n
0 otherwise

(2)

where

• n is the grey level, histogram bin;
• h(n) is the histogram value for the n-th bin;
• N is the number of histogram bins (256 in this case);
• XX, YY are the dimensions of the image block;
• i, j are the coordinates of a pixel;
• g(n, i, j) is the function that determines whether the value of a pixel with coordinates

(i, j) is equal to n; and
• I(i, j) is the value of the pixel with coordinates (i, j).

In the second step, overabundant pixels are counted (this step and the subsequent
ones do not occur in the AHE method, i.e., without contrast reduction). For this purpose,
a threshold β—the maximum value that a single histogram bin can have—is defined. It
should be added that usually this parameter is calculated from Equation (3).
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β = b · XX ·YY (3)

where: b is the parameter in the range 0–1 (the value 1 indicates the AHE method; it usually
takes small values: 0.01, 0.02, 0.1), and XX, YY is the block size into which the image is
divided. Pixels exceeding this threshold are counted (this value is referred to as excess) and
the histogram itself is clipped. We show this process graphically in Figure 4,

excess

threshold ( )

Figure 4. First step of the redistribution procedure: calculation of excess.

In the third step, an initial redistribution of the overabundant pixels to the remaining
bins of the histogram is performed. For this purpose, an auxiliary variable m is determined
according to Equation (4),

m =
excess

N
. (4)

This value is added to each bin for which this operation would not result in an
exceedance of β. Bins for which adding m would result in an exceedance of β are only
completed up to that value. We show this schematically in Figure 5.

excess

m

threshold ( )

Figure 5. The second stage of the redistribution procedure: the first iteration of redistribution may
result in some remaining excess.

In the last step, the remaining excess is evenly distributed among all allowable bins.
This is usually implemented in a “while” loop, which poses a problem with hardware
implementations (no pre-determined number of iterations). The final result of the procedure
is shown in Figure 6.
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m

threshold ( )

Figure 6. Results of the redistribution procedure: the whole excess is redistributed.

The entire redistribution process can be written in the form of pseudocode, which we
present in Listing 1.

Listing 1. The redistribution algorithm in its basic version, described in [10].

excess = 0 ;
for ( i = 0 ; i < N; ++ i ) {

i f ( h [ i ] > β ) {
excess += h [ i ] − β ;

}
}

m = excess / N;
for ( i = 0 ; i < N; ++ i ) {

i f ( h [ i ] < β − m) {
h [ i ] += m;
excess −= m;

}
e lse i f ( h [ i ] < β ) {

excess += h [ i ] − β ;
h [ i ] = β ;

}
}

while ( excess > 0) {
for ( i = 0 ; i < N; ++ i ) {

i f ( excess > 0) {
i f ( h [ i ] < β ) {

h [ i ] += 1 ;
excess −= 1 ;

}
}

}
}

2.3. Mapping Function

The mapping function is determined as in the standard HE method. First, the cumula-
tive histogram (cumulative distribution function (CDF)) is calculated. It is then normalised
(to [0, 1]) and finally multiplied by the maximum pixel value, i.e., 255. This process is
expressed by Equation (5),
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fi,j(n) =
N − 1

M

n

∑
k=0

hi,j(k) (5)

where:

• i, j are the coordinates of the image window;
• M is the number of pixels in the window;
• N is the number of grey levels (histogram bins); and
• hi,j is the histogram of the image window with coordinates (i, j).

2.4. Bilinear Interpolation

The resulting values of the distribution are ultimately used to determine the new
output pixel values. However, with the described window partitioning, the boundaries
between blocks in the output image would be clearly visible. Thus, in the general case,
interpolation is necessary to avoid the occurrence of this effect. For this, the position of
the currently considered pixel with respect to the four neighbouring window centres is
determined (when possible) and bilinear interpolation is performed. An example of this
situation is shown in Figure 7. The considered pixel has 4 neighbours in it: upper left
(UL), upper right (UR), bottom left (BL) and bottom right (BR). By s, t, w, z the distances
of this point from its neighbours are specified. The new (output) pixel value is defined by
Equation (6),

Inew =
s

s + w

(
t

z + t
fUL(n) +

z
z + t

fBL(n)
)
+

w
s + w

(
t

z + t
fUR(n) +

z
z + t

fBR(n)
)

, (6)

where f denotes the normalised cumulative distribution function.

UL UR

BL BR

w

t

s

z

Figure 7. Bilinear interpolation scheme.

When a pixel is located on the edge or in the corner of an image (see Section 2.1 and
Figure 3), it is impossible to determine 4 neighbours for a pixel. In the first case, only
2 neighbours can be selected. The mapping is then limited to linear interpolation. This
situation is shown in Figure 8. The output pixel takes the value calculated according to
Equation (7),

Inew =
s

s + w
fi,j−1(n) +

w
s + w

fi,j(n) (7)
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where i, j denote the coordinates of the bottom pixel.
In the second case, i.e., when the pixel is located in the corner of the image, the only

neighbour is the centre of the window with the analysed pixel. Then, the mapping is
performed directly based on the mapping function, according to Equation (8),

Inew = fi,j(n) (8)

C

w

s

B

B

Figure 8. Linear interpolation scheme (for pixels on the image edge). C stands for corner region and
B for border region.

2.5. Applications of CLAHE

As mentioned in Section 1, the CLAHE algorithm is frequently used for image con-
trast enhancement. In this subsection, we present selected applications published in the
scientific literature.

The first group is medical image processing in a broad sense. In the paper [11], a two-
step system named N-CLAHE for improving the quality of X-ray images was proposed. It
used a global and a local approach (CLAHE). In the paper [12], a system for the detection
of Covid-19 from lung radiograph images was presented. It used a deep convolutional
neural network (VGG16) and the CLAHE method in pre-processing. Other medical appli-
cations of the CLAHE algorithm include image quality improvement systems for: fundus
images [13,14], ultrasound images [15], and mammographic images [16].

The second large group of the CLAHE applications is the improvement of underwater
images, which are characterised by low contrast and degraded shading quality. This
approach was used in the works of [17–19]. Other applications of the CLAHE algorithm
include the enhancement of thermal images [20], face recognition systems [21], systems to
improve images captured in adverse weather conditions (fog, drizzle) [22], and improving
image quality for digital side mirror cameras in vehicles [23].

Summarising this brief overview of the CLAHE applications, two aspects are worth
noting. First, the method is used as a part of fully automatic systems as well as for the
purpose of improving the quality of images analysed by a human—for example, a radiol-
ogist. Second, in at least some of the solutions, real-time operation with reduced energy
consumption is desirable. Examples include systems for self-driving cars or underwater
robots, but also medical equipment. Therefore, the work on the hardware implementation
of the CLAHE algorithm in reprogrammable devices seems to be fully justified, and the
results obtained can be applied to real-life solutions.
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3. Related Work

The issue of accelerating computations for the CLAHE algorithm by using FPGAs
is the content of many research papers. We present a selection of these below to provide
context for our research. In Section 5, we also compare our results with those obtained in
the described papers.

In the paper [10], the authors presented an implementation of the basic version of
the CLAHE algorithm in an FPGA device. They treated the image as a whole, without
dividing it into smaller blocks. In this way, they avoided interpolation, whose hardware im-
plementation consumes additional resources. In this approach, a histogram was generated
for each pixel based on its local neighbourhood. This was then used to construct a map-
ping function. However, the biggest drawback of this solution is the difficult data reuse
scheme—the histogram must be updated for the “sliding window”. The authors imple-
mented this system in the Xilinx XC4VLX160 chip. It processed images with a resolution of
640 × 480 pixels in real-time. According to the authors, the proposed architecture is also
capable of real-time processing of images with higher resolutions (even 1920 × 1080 pixels).

The problem of image partitioning into blocks and the associated interpolation is
addressed in the work of [24]. The authors proposed some modifications to the redistribu-
tion process. In their framework, they moved a part of the computation to the histogram
construction stage. They also introduced a look-ahead mechanism for redistribution, which
makes it possible to reduce the number of iterations needed. Furthermore, they reformu-
lated the interpolation step to reduce the use of hardware resources. They implemented the
algorithm in an FPGA device for a 640 × 480 pixels video stream and achieved a processing
speed of more than 354 fps. According to the authors, the proposed architecture can also
process HD (1280 × 720 pixels) and Full HD (1920 × 1080 pixels) images at 90 fps and
33 fps, respectively.

A similar solution was presented by the authors of the paper [25]. Their system also
tightly integrates the process of histogram generation and pixel redistribution. However, it
is characterised by dividing the image into blocks that are not squares (size 64 × 16 pixels).
This is performed to save memory resources on the chip. The authors did not provide
a detailed description of the system architecture. In particular, there is no information how
they combined redistribution with histogram generation and what interpolation precision
they used. They implemented the proposed architecture in Xilinx’s FPGA XC7Z045 FFG900-
2 chip. For a video stream of 512× 512 pixels, they achieved a system frequency of 129 MHz.

An implementation of the CLAHE algorithm for a high-resolution video stream was
prepared by the authors of the paper [26]. In fact, they considered a modified version of
this algorithm, referred to as adaptive histogram equalization with dynamic clip threshold
(AHEwDC). The main difference is how the clip threshold was determined. Instead of
a fixed value for all brightness levels, the authors varied them based on the features of
the input image. Furthermore, they proposed a mean spatial filtering for the resulting
mapping function (CDF). The changes made were intended to prevent the amplification
of unwanted noise, especially in homogeneous image areas (e.g., sky). The authors did
not provide details of the proposed system architecture in the part responsible for the
implementation of the AHE. For evaluation purposes, they implemented it on an Intel
Cyclone V FPGA device (5CSEMA5F31C6). The system achieved a maximum operating
frequency of 75.48 MHz and was able to process a Full HD (1920 × 1080 pixels) video
stream at 30 fps.

A slightly different way of implementing the CLAHE algorithm on an FPGA chip was
proposed by the authors of the paper [23]. They used a High-Level Synthesis (HLS) tool
to implement the hardware architecture. They based it on a software implementation of
the CLAHE algorithm available in the Open Computer Vision (OpenCV) library. It was
necessary to introduce some modifications to it, e.g., by using appropriate HLS pragma
instructions. The hardware architecture obtained was implemented on a PYNQ Z1 de-
vice. They considered two test cases for video streams with resolutions of 512 × 512 and
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1920 × 1080 pixels. In both cases, they obtained systems with performance competitive
with implementation [24], which was done directly in Verilog HDL.

The works presented above demonstrate an interest in using FPGAs for the accelera-
tion of the CLAHE algorithm. The authors proposed several different modifications to the
algorithm to enable efficient hardware implementation. It is worth noting that the best archi-
tectures developed so far allow real-time processing of only Full HD (1920 × 1080 pixels)
video streams @ 30 fps. We are not aware of any work that has attempted a real-time
implementation of the CLAHE algorithm for a 4K UHD (3840 × 2160 pixels) video stream
@ 60 fps.

4. Hardware Implementation

For the hardware implementation in this work, we use the ZCU 104 platform with
AMD Xilinx Zynq UltraScale+ MPSoC device. To generate the video pass-through, we
use Xilinx’s example design (https://docs.xilinx.com/r/3.1-English/pg235-v-hdmi-tx-
ss/Example-Design (accessed on 29 June 2022)).We transmit the input video stream from
the computer via High-Definition Multimedia Interface (HDMI) 2.0 and decode it on the
board. We perform all calculations only in the progammable logic part (PL, FPGA part
of the heterogeneous device). The resulting image is also transmitted via HDMI 2.0 and
displayed on the LCD screen. In Figure 9, we show a simplified schematic of our system
that we use in this project. We develop and test all elements of the CLAHE algorithm by
using Verilog HDL in Vivado Design Suite IDE 2020.2.

Source
Monitor

HDMI HDMI

ZCU 104

Zynq UltraScale+

FPGA

CLAHE

ARM processor

Figure 9. Simplified scheme of the system architecture. We use an HDMI source (camera/PC) and
sink (UHD LCD monitor). All computations are performed in the PL/FPGA part of the used Zynq
UltraScale+ MPSoC device.

Processing images in a well-known 1 pixel per clock format for a 4K video stream at
60 fps requires a clock frequency of about 600 MHz, which is close to the limit of modern
FPGAs and can lead to routing problems or violating timing constraints. The solution to
this problem is the use of a vector format—processing several pixels simultaneously. This
format can be denoted as X ppc (X pixels per clock), which means processing X pixels in
parallel in one clock cycle.

In our design we use 4 ppc format, which allows us to lower the clock frequency to
about 150 MHz, at which point the problems described above do not occur. This frequency
corresponds to a Full HD stream (1920 × 1080 pixels) @ 60 fps in 1 ppc format. It should be
noted, however, that our hardware modules can be easily adapted to other X ppc formats as
well, as long as log2(X) = c ∈ Z. With the data format used, 4 pixels appear simultaneously
on the input, so 4 pixels must also be fed to the output in each clock cycle. This can cause
various additional problems, depending on the type of operation implemented. In the case
of context-free operations like colour space conversion, gamma correction etc., it is usually
sufficient to duplicate the calculations performed. This leads to higher hardware resource
consumption, but does not require additional logic.

https://docs.xilinx.com/r/3.1-English/pg235-v-hdmi-tx-ss/Example-Design
https://docs.xilinx.com/r/3.1-English/pg235-v-hdmi-tx-ss/Example-Design
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The situation is slightly different in the case of context operations. Most often, they
require not only the duplication of calculations, but also special mechanisms of data
synchronisation, which increases the consumption of hardware resources even more [27].
Interesting and challenging cases are also to be found in algorithms with interdependences
in the X ppc vector like Semi-Global Matching stereo computation or Connected Component
Labelling [28]. In the described version of the CLAHE algorithm, there are no “typical”
contextual operations; however, the calculation of histograms for several pixels at once
requires some additional operations, which we describe in the following subsections. The
block diagram of our implemented version of the CLAHE algorithm is shown in Figure 10.

RGB2grey

RGB2grey

RGB2grey

RGB2grey

4ppc

Partial
histogram 0

Partial
histogram 1 

Partial
histogram 2 

Partial
histogram 3

Histogram Redistribution

Interpolation

Interpolation

Interpolation

Interpolation

Mapping
function

4ppc
Source

Monitor

Double buffering

Figure 10. Block diagram of the implemented CLAHE algorithm in the 4 ppc mode. For a stream in
the 4 ppc format, a conversion to greyscale (RGB2grey) is performed 4 times simultaneously and 4
partial histograms with 4 partial excesses (omitted from the diagram for clarity) are calculated. The
histograms are then integrated, a redistribution is performed, and a mapping function is determined—
these steps do not require working with a vector format. The final step—interpolation—is again
performed on the 4 ppc stream.

As we mentioned earlier, in this project we focus on equalising the histogram for
a single-component image. The input video stream uses the RGB format, so a conversion
to greyscale is necessary. In each clock cycle, 4 RGB pixels are converted into 4 greyscale
pixels, which are then fed into the histogram calculation module.

4.1. Generation of Tiles

As we described in Section 2.1, there are two main ways to generate blocks from
the image. In our implementation, we use the approach that divides the image into non-
overlapping rectangular windows, as it is in our opinion simpler in terms of hardware
design and provides comparable results. For the behavioural simulation stage in Vivado,
we use a test image of 256 × 256 pixels, which we divide into a grid of 4 × 4 blocks
of 64 × 64 pixels. For the final hardware system, due to the larger input image size of
3840 × 2160 pixels, we decided to use a grid of 8 × 8 blocks of 480 × 270 pixels. We use
simple pixel position counters in the image to determine the pixel’s membership to a given
block. Additional registers are used to store the coordinates of the block to which the
analysed pixel belongs.

It should be mentioned that as input data arrives, the position counter (horizontal)
is incremented by 4—due to the 4 ppc format used. In the general case, it may happen
that pixels arriving in the same clock cycle belong to neighbouring blocks. However, in
our solution, we choose such block dimensions (width divisible by 4) that the described
situation does not occur. Additionally, in the resolution under consideration, a possible
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offset by 4 pixels does not matter much. The 4 input pixels are then sent to the histogram
generation module, together with the determined indexes of the block to which they belong.

When implementing the algorithm in 4K resolution, there is an additional issue to
consider—the number of blocks into which the image is divided. A single block (for
a single window) must contain memory for the mapping function (used during interpo-
lation for the next frame). Assuming, as in the behavioural simulation, a window size of
64 × 64 pixels, we get 60 × 34 = 2040 blocks (and, therefore, 2040 blocks of memory). In
our case, one such memory consumes 64 LUTs and 41 FFs, which for 2040 blocks equals
130,560 LUTs and 83,640 FFs. It is worth noting that these resources are consumed only
by the memory for the mapping function—without histogram calculation, redistribution,
interpolation, and video pass-through. With so many tiles, our CLAHE algorithm imple-
mentation would consume most of the available resources of the FPGA platform, making
it unsuitable for being a component of a bigger vision system. Therefore, to reduce their
consumption, we divided the image into 8 × 8 blocks, so each block had dimensions of
480 × 270 pixels.

4.2. Histogram Calculation

Due to the data format used (4 ppc), we generate 4 sub-histograms in each window,
calculated separately for the input pixels, which are summed later in the value reading
phase. Assuming a minimum division of the 4K resolution image into 8 × 8 blocks, the
size of a single block is 480 × 270 pixels, or 129600 values. Because a partial histogram
is generated, this number should be divided by the number of pixels per clock cycle (4).
Then, the maximum value of a single bin is 32,400—its hardware representation can be
stored on 15 bits (an unsigned integer). Moreover, the clip limit used in the CLAHE method
further constrains the maximum value. The choice of the value of the parameter b (see
Equation (3)) is not obvious, so it is assumed that in the extreme case the method can be
implemented like AHE (i.e., b = 1). Thus, 4 memories of 256 values × 15 bits are needed for
each block.

Simultaneously with the histogram generation, we compute the excess. This is an
improvement over the basic version of the algorithm (see Section 2), proposed in the
paper [24]. Theoretically, all pixels can belong to the excess (which is obviously not a correct
situation), but 15 bits are also allocated for the excess registers—there must be four, one for
each pixel.

We use a dual-port Block RAM (BRAM) to implement the histogram calculation. This
allows the calculation to have the lowest possible latency (one port is used for writing, the
other for reading). The smallest memory unit in the FPGA device is 18 bits × 1024 words
(18 Kb module). Due to the need to write four values simultaneously, 4 such memory units
of 256× 15 bits are needed for a single block. However, purely theoretically (without taking
into account hardware limitations), a single 18 Kb module is sufficient for this purpose.
Therefore, by using the BRAM in this way would be far from optimal.

The solution to this problem is to share BRAM memory for adjacent blocks containing
pixels lying in the same image lines—for greater readability, we refer to these as a single
window line. Then, depending on the number of windows, BRAM resources can be saved.
Therefore, in the implementation, we use a common BRAM for the entire window line. In
addition, we use the ping-pong buffering technique (double buffering)—one module is
used to compute histograms from the current line of blocks, and the other module sends
data from the previous line to subsequent modules at that time. Once the processing of the
line of blocks is complete, the two modules swap roles. A diagram of the described double
buffering is presented in Figure 11.



Electronics 2022, 11, 2248 14 of 24

Partial histogram 0

Block counter Buffer selection

Generation of histograms

x, y

1st line of blocks

2nd line of blocks

histogram

Partial histogram 1
Partial histogram 2
Partial histogram 3

Buffer 0

Partial histogram 0
Partial histogram 1
Partial histogram 2
Partial histogram 3

Buffer 1 

3rd line of blocks

Image frame

4 ppc

control signals

Histogram
selection

+

+
+

+

+
+

Partial excess 0

Generation of excesses

Partial excess 1
Partial excess 2
Partial excess 3

Buffer 0

Partial excess 0
Partial excess 1
Partial excess 2
Partial excess 3

Buffer 1 

Excess
selection

+

+
+

+

+
+

x, y

4 ppc

Figure 11. Block diagram of the implemented histograms’ calculation. We use 4 partial histograms
and excesses (one for each pixel from the 4 ppc), which are then aggregated by using summation trees.
They are grouped into two buffers – one for the odd lines of the image and the other for the even
lines. Thanks to that, we can simultaneously read the prepared data from one buffer and perform
further calculations using the other.

The calculation of the histograms is solved in a “typical” way, including the handling
of the occurrence of series of the same values. As already mentioned, due to the 4 ppc
format, in the first phase, we calculate 4 partial histograms and at the same time 4 excess
values. When reading from memory, we add them and create a final histogram, which
is immediately processed in subsequent modules. It should be noted that the reading
is combined with the resetting of the partial histograms (setting the values to 0), which
prepares them to handle the next input data.

4.3. Redistribution

The input to the module is the histogram with the corresponding excess value. In the
first step (first iteration over the histogram), we count the number of bins whose value
is β. This parameter is used for the first iteration of the redistribution. This is another
improvement of the basic version of the algorithm (see Section 2), proposed in the paper [24].
The value of the parameter m is then not excess/N, but excess/(N− NFB), where: N is the
number of all bins of the histogram, and NFB is the number of bins that are filled (at the
limit). This increases the excess value, which is redistributed during the first iteration.

When computing the parameter m, we use another improvement proposed in the
paper [24]. We store the remainder from dividing excess/(N − NFB) as the value e. It
represents the part of the excess that would remain to be redistributed after adding m to
each “free” bin, according to the basic version of the algorithm (see Section 2 and Listing 1).
However, we reduce it already in the first iteration. Then, to each “free” bin we add the
value m + 1 (1 from the remainder e, which is somehow a combination of two redistribution
steps). If the result exceeds e, then we only add m or a value smaller than m, until the set
limit is filled. In the last mentioned situation, we also modify the parameter e, adding the
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part of m that did not fit into the histogram bin. The histogram obtained after this step is
written to a temporary buffer in Distributed RAM (DRAM).

To implement this iteration, we use a state machine that handles the described steps.
After receiving the information that the histogram generation has finished (the signal sent
from the previous module), we compute NFB and simultaneously buffer the histogram
values. In the second step, we compute the values of m and e—this requires division, which
we implement by using the IP Core from AMD Xilinx. In the third step, we perform the
first iteration of the redistribution by using the calculated values.

Subsequent iterations of the redistribution are simpler. In them we increment the “free”
bins of the histogram only by 1. This is accompanied by an analogous decrease of the e
value transferred from the previous iteration. Technically, this is done by reading from
one histogram buffer, correcting the value (if possible) and writing to the next buffer. In
this way we realise additional three iterations of the redistribution. This is sufficient to
distribute the excess in most typical cases.

We implement each of these as a simple state machine, similar to the first iteration. In this
case, it has two states. In the first one, we wait for the previous iteration to finish (the high state of
the relevant signal). In the second one, we perform the actual redistribution process as described.

We present all the described operations in Figure 12. It is worth noting that we
implement the redistribution process in a universal way. Without much effort, it can
be easily modified to perform slightly differently, as required. For example, additional
iterations can be applied, as well as an adaptive clip limit.

Parameters
calculation

Pixel excess

threshold ( ) DRAM

Filled bins
counter

excess

NFB

Store histogram bins
in DRAM buffer

m, e

threshold ( )

First iteration of redistribution

threshold ( )

2nd, 3rd, 4th iterations of redistribution

   

 + 1

DRAM

DRAM

 

threshold ( )

Final redistribution of histogram in CLAHE 

Initial histogram

Rest of excess

Figure 12. Scheme of the implementation of the redistribution process. We read the input histogram
sequentially (bin after bin), count the bins filled to the limit β, and combine this value together with
the input excess to calculate m (average excess) and e (residual). The input histogram is then stored
in the DRAM buffer. After calculating the mentioned parameters, we read the histogram from the
DRAM buffer and perform the first iteration of the redistribution, in which we try to add m + 1 to
each bin. If it is not possible, we fill the bin to the limit β and accordingly modify the value of e. The
resulting histogram is stored in another DRAM buffer. After that, we perform the next 3 iterations,
this time adding only 1 pixel to each bin (thus decreasing the value of e), where it is possible. Between
each iteration there are also DRAM buffers (not present in the diagram for clarity). In this way, we
finally obtain a redistributed histogram.
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4.4. LUT-Based Mapping Function

After the last redistribution iteration, we determine the mapping function for a given
window. First, we calculate the cumulative histogram. Then, we normalise each value by
dividing it by the number of pixels in the window, and multiplying by 255 (the upper range
of pixel values represented on 8 bits). The results are stored in four buffers implemented in
DRAM. Their number results from the use of the 4 ppc format, which requires a simultane-
ous access to 4 pixels in the following interpolation. We use the coordinates of the block to
which the histogram belongs as its address and duplicate them to 4 buffers. In this way, the
values for the 4 considered pixels are easily available for interpolation.

4.5. Interpolation Method

The final element of the implemented algorithm is a bilinear interpolation. This mod-
ule operates on the next frame from the video sequence—the histograms are calculated
on frame N, while the interpolation and calculation of output pixel values are executed
for frame N + 1. This approach is justified by the real-time operation of the algorithm
(60 frames per second), so that the differences between adjacent frames are small. Per-
forming computations for the current frame is also possible, but it requires additional
buffering of the frame, partial or total (depending on the concept adopted), which compli-
cates the system and increases power consumption with practically no improvement in
image quality.

To perform bilinear interpolation, it is first necessary to determine to which block the
input pixels belong to. It is realised by simple position counters in the image. They are also
used to determine the neighbours of the pixels under consideration (4, 2, or 1). We read
the values corresponding to each of the 4 pixels (for the 4 ppc format) from the LUTs of
the selected blocks and pass them to the input of the interpolation module—each pixel to
a separate one. For pixels in the corner or on the edge of the image, only 1 or 2 values are
passed to the interpolation module, depending on the position in the image, as described
in Section 2.4.

Next, we calculate the values s, t, w, z, and then, according to Equation (6), the pixel
value using a set of adders and multipliers operating in parallel. Next, we divide it by the
dimensions of the window (XX ·YY, which for pixels with 4 neighbours corresponds to
(s + w) · (z + t)) to map it to the brightness interval 0–255. It is worth mentioning that for
pixels on the edge or in the corner of the image, the output value is also divided by the
window dimensions. Finally, we pass the calculated value of each of the 4 pixels to the
output of the interpolation module, after which we combine them into an output vector
and display on the monitor as the result of the CLAHE algorithm.

5. Results

In the algorithm testing stage, the effect of different parameters on the performance of
the CLAHE algorithm was checked on selected test images. One of them is presented in
Figure 13 with the results of the algorithm for different divisions of the input image into
windows—starting from 4 × 4, through 8 × 8, ending with 16 × 16.

As already mentioned in Section 4, the CLAHE algorithm was implemented on the
ZCU 104 development board with AMD Xilinx Zynq UltraScale+ XCZU7EV-2FFVC1156
MPSoC device. A comparison of the most important features of our solution with other
works that also implemented the CLAHE algorithm on FPGA platforms is provided in
Table 1. It also compares the hardware resource usage of the CLAHE module (without ad-
ditional components) with other works. Our solution features by far the highest resolution
of the processed video stream.
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Figure 13. Example results for test images. The figures show successively (from the left) the original
image, the result of the CLAHE algorithm for 4 × 4 blocks, the result of the CLAHE algorithm for
8 × 8 blocks, and the result of the CLAHE algorithm for 16 × 16 blocks.

Typically, for an FPGA implementation of the algorithm, some hardware resources are
allocated for the video pass-through needed to correctly receive and send the video stream.
The resource consumption for the CLAHE module only and the complete algorithm (with
the video pass-through), processing a real-time 4K video stream, is provided in Table 2.

FPGA platforms enable efficient real-time processing of large amounts of data with low
power consumption. According to estimation in the Vivado Design Suite IDE, the CLAHE
algorithm implemented on the ZCU 104 platform for 4K resolution needs only 4.83 W of
power. The entire system is capable of operating at a maximum clock frequency of 151 MHz
(value is estimated with Vivado IDE); therefore, our system works at nearly maximum
possible frequency (150 MHz). The photo of the proposed system that allows real-time
adaptive image histogram equalisation by using the CLAHE method in 4K resolution is
shown in Figure 14.

Table 1. Comparison of the most important parameters of hardware implementations of the CLAHE
algorithm on FPGA platforms and resource utilisation for the CLAHE module. Only our solution sup-
ports the 4K resolution, but despite processing 4 pixels at once, the resource utilisation is comparable
to Full HD solutions, e.g., [23]. Low memory utilisation of our solution is also worth noting, which
was possible to achieve by using the ping-pong buffering technique during histogram calculation.
The utilisation of DSP resources in not presented, as it was rarely reported in other works.

Implementation Platform Resolution FPS Frequency
[MHz]

# of
LUTs

# of
Flip-Flops

# of
Block RAMs

Kokufuta [10] AMD Xilinx
XC4VLX160

640 × 480 538 209 43,915 - 192

ine Unal [24] AMD Xilinx
Zynq-7000

640 × 480 354 109 4766 440 16

ine Unal [24] AMD Xilinx
Zynq-7000

1920 × 1080 33 69 - - -

ine Kim [25] AMD Xilinx
XC7Z045

512 × 512 492 129 98,945 85,600 8

ine Xu [26] Altera
Cyclone V

1920 × 1080 30 76 14,807 * 4794 9

ine Honda [23] AMD Xilinx
PYNQ Z1

1920 × 1080 47 111 29,800 38,500 33

ine This work AMD Xilinx
ZCU 104

3840 × 2160 60 150 30,972 21,178 16

* This value cannot be directly compared to the rest because the Logic element in Intel’s chips is different from
Xilinx’s one.
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Table 2. The use of hardware resources for the CLAHE algorithm on the ZCU 104 board. Note
a relatively low resource utilisation of our module. It consumes even less LUTs and Flip-Flops than
basic video pass-through, which is needed to provide the input and output images. Therefore, our
implementation can be used in combination with other hardware modules of the entire embedded
vision system as it consumes only a small part of the available resources. The utilisation of DSP
resources is not reported as our implementation of the CLAHE module uses none of them.

Resource Type Available Pass-Through CLAHE Module Full Algorithm

LUT 230,400 38,097 (17%) 30,972 (13%) 68,932 (30%)
ine Flip-Flop 460,800 44,673 (10%) 21,178 (5%) 63,703 (14%)
ine Block RAM 312 7 (2%) 16 (5%) 23 (7%)

Figure 14. Photo of the proposed system in operation. The input video signal is transmitted from the
source (a computer) to the ZCU 104 board, equipped with the AMD Xilinx Zynq UltraScale+ MPSoC
chip. The output image—after applying the CLAHE algorithm—is transmitted and displayed on
a 4K monitor.

6. Discussion

In our implementation, we use a slightly modified version of the “classical” CLAHE
algorithm (see Section 2). The changes we have made (in terms of the algorithm, not the
hardware architecture) mainly involve the redistribution process. Following the suggestions
from the paper [24], we shortened the redistribution process by determining the parameter
m based only on incomplete histogram bins and introduced the addition of the value m + 1
during the first iteration (“future lookup”). It is worth noting, however, that other proposals
for modifications of the CLAHE algorithm can also be found in the literature.

The first of these also applies to the redistribution process and comes from the OpenCV
library [29]. In this implementation of the CLAHE algorithm, the preset β limit is only
respected during the histogram generation phase. During the redistribution, the values of
particular bins are incremented independently of their current state. The result of such an
operation is shown in Figure 15.
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Figure 15. Comparison of output images obtained with the “classic” (left) and OpenCV (right)
redistribution. In this case, the redistribution from OpenCV results in a brighter image.

The implementation of this solution in an FPGA for a 4 ppc stream is not a major
problem, especially using the proposed redistribution module. Moreover, the OpenCV
variant can be considered more hardware-friendly than the “classical” approach. First,
in this case, only two redistribution phases are sufficient. In addition, the lack of a β
limit simplifies the control logic, which enables further reduction in hardware resource
consumption. Despite the advantages mentioned above, we chose not to implement
this solution because it clearly deviates from the assumptions of the “classic” CLAHE
algorithm. In case of hardware implementation, this approach may cause additional
problems as in FPGAs the values are usually represented by a fixed number of bits. The
permission to exceed the limit may lead to incorrect values (when the limit is exceeded)
or the need to increase number of bits used for data representation, thus using additional
hardware resources.

The second possible modification of the algorithm concerns the output image prepa-
ration step. It requires combining the data generated in tiles. The simplest solution is to
treat them as separate image fragments. However, this leads to visible artefacts on the
borders of particular tiles. For this reason, bilinear interpolation is commonly used (in our
work as well). However, it is quite computationally complex. Some alternative may be to
average the values of the cumulative distribution function in the context of 3× 3 blocks, as
proposed in the paper [26].

A comparison of the results obtained with all three methods is presented in Figure 16.
Bilinear interpolation gives the best qualitative results. In this case, the boundaries between
blocks are virtually invisible. As expected, they are most visible in the absence of the
interpolation. The use of the average of the cumulative distribution function can be
considered as an intermediate solution. Depending on the tile size used, these artefacts are
more or less visible.

In the case of a hardware implementation, the simplest approach is not to perform the
interpolation. Then, no additional control logic is needed and the output image generation
is reduced to the use of basic lookup table elements. However, the results obtained with
this approach are not very satisfactory. For this reason, in this paper we have used bilinear
interpolation, which compensates best for the differences between the blocks. It is worth
noting that our implementation is relatively easy to convert into a CDF averaging module.
As with bilinear interpolation, it requires access to several elements of the lookup tables
simultaneously. The main difference, however, is the way of data processing after reading
from the memory—it is simpler and less computationally intensive than in the module we
implemented.

The third possible modification of the algorithm is to adaptively select the β limit,
depending on the parameters of the tile. One method of this type has been proposed in the
paper [30]. There, the β limit is computed according to Equation (9),

β =
M
N

(
1 + P

lmax

R
+

α

100

(
σ

Avg + c

))
(9)

where: M is the number of pixels in the window, N is the number of histogram bins
(typically 256), lmax is the maximum value of the brightness level in the tile, R is the
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maximum possible value of the brightness level (typically 255), σ is the standard deviation
of the brightness in a tile, Avg is the average brightness in the tile, c is the very small
constant (as a safeguard against dividing by 0), and P and α are the coefficients controlling
the weights of the components of the sum.

Figure 16. Comparison of different methods of generating the output image: bilinear interpolation
(top left), no interpolation with 4× 4 grid of blocks (top right), mean CDF with 4× 4 grid of blocks
(bottom left) and mean CDF with 16 × 16 grid of blocks (bottom right). Bilinear interpolation
provides the best results with almost no visible artefacts.

The result of using the described adaptive limit β is shown in Figure 17. The differences
between this method and the “classical” solution are practically imperceptible for this
image. At the same time, the hardware implementation of the adaptive β limit, especially
for a 4 ppc stream, is definitely more complicated. The biggest problem in this case is
the calculation of the standard deviation. The reason for this is the requirement for the
prior determination of the mean, which is only possible after reading all the pixels from
a particular tile. Nevertheless, by using a technique similar to the generation of histograms,
it would be possible to calculate partial averages and, from these, the final average. Then,
by using this value and the created histogram, the standard deviation can be determined.
In doing so, a single line of blocks needs to be cached (delayed) accordingly, which requires
the use of a certain amount of BRAM memory (the size of the tiles is relatively large).
Finally, determining the β limit is quite straightforward, although it requires division
and multiplication.

Figure 17. Comparison of output images obtained with constant (left) and adaptive (right) limit β.
The difference between them is hardly noticeable for the considered image.
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The next modification is not directly related to the CLAHE algorithm. It involves
improving the quality of the input image by sharpening it with a Laplace filter, as mentioned
by the authors of the paper [31]. An example result of this approach is shown in Figure 18.
The output image has a slightly lower average brightness, which can be subjectively
considered as a certain advantage.

Figure 18. Comparison of output images obtained without (left) and with (right) a Laplace filter on
the input image.

However, it may turn out that for some specific classes of images, the Laplace filter
significantly improves the results of the CLAHE algorithm. In that case, the hardware
implementation of such a solution reduces to preparing a separate module responsible
for performing the filtering of the input image. The Laplace filter is a simple contextual
operation. In view of this, its hardware implementation should not pose a problem [27].

The last thing we want to discuss concerns the use of the CLAHE algorithm for colour
images. In this case, a couple of different approaches can be found in the scientific literature.
These assume the equalisation of both selected components of the colour spaces and all of
them at the same time. Examples of this type of approach include the use of the CLAHE
algorithm on the V component of the Hue, Saturation, Value (HSV) model and on all
components of the RGB model (either one selected or all at the same time). The results
obtained in this way are presented in Figure 19. As can be seen, in some cases (e.g., all RGB
components simultaneously), the CLAHE algorithm significantly contributes to improving
the quality of the input image.

The hardware implementation of such a solution is not a problem, especially when
using the prepared modules. Depending on the chosen approach, it requires additional
conversions between colour spaces (rather easy to implement) and a possible multiplication
of the CLAHE algorithm to process individual channels of the video stream.

In the discussion above, we have considered our hardware implementation in relation
to possible modifications of the CLAHE algorithm that have been proposed in the scientific
literature. As can be seen, the variant proposed in this work performs relatively well. At
the same time, it provides a convenient basis to implement other variants of the CLAHE
algorithm. Any modifications can be easily added by slightly changing the developed
hardware modules or adding new ones (e.g., the Laplace filter or colour space conversions).
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Figure 19. Results of the CLAHE algorithm for an exemplary colour image (top left). We use CLAHE
on different image channels: V from HSV model (top centre), R, B and G from RGB model together
(top right), and separately R (bottom left), G (bottom centre), B (bottom right).

7. Conclusions

In this work, we propose a hardware implementation of the CLAHE algorithm for
a 4K UHD video stream (3840 × 2160 pixels @ 60 fps, 150 MHz clock). By parallelising the
calculations on the SoC FPGA hardware platform used, we are able to achieve real-time
processing (60 fps). To limit very high clock frequency of the FPGA device, we use the 4 ppc
vector data format, with 4 pixels processed simultaneously. This generated the need to
implement additional logic to calculate and sum the partial histograms for a given window.
In the redistribution process, the maximum number of iterations is limited to 4 to allow this
step to operate deterministically on the FPGA platform. We also use bilinear interpolation
in the algorithm to eliminate visible boundaries between the blocks into which the input
image was divided during histogram computation and redistribution.

In future work, additional improvements and modifications to the hardware version
of the algorithm are possible, e.g., by integrating the histogram calculation and excess
redistribution steps. It is also possible—in a very easy way—to extend the algorithm to
colour images, by using the realised module of the CLAHE algorithm to all or selected
components of the image (discussed in Section 6). One of the potential options is to prepare
a “dynamic” version, in which the dimensions of the windows into which the image is
divided, as well as the value of the β parameter, can be changed during operation. The latter
can also be modified in such a way that its value is set automatically during the algorithm
operation. Moreover, our module can be integrated as a part of a bigger computer vision
system, e.g., for traffic sign or pedestrian detection.

Potential applications of the realised algorithm include broadly the pre-processing
of low-contrast images. Such methods are useful in autonomous vehicles and drones,
especially in more difficult weather conditions. Popular applications also include thermal
imaging or underwater photos. Medical images, such as X-rays or CT scans, are also an
important application category, where contrast enhancement makes it easier for doctors to
analyse the data and make an accurate diagnosis.
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