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Abstract: Inductive power transfer (IPT) has been widely adopted as an efficient and convenient
charging manner for both static and in-motion EVs. In this paper, a new hybrid topology is presented
to improve the coupling tolerance under pad misalignment. The double inductor–capacitor–capacitor
(LCC-LCC) network and series hybrid network combining the LCC-LCC topology and series-series
(SS) topology are connected in parallel to provide better tolerance against self- and mutual inductance
changes, particularly with a large Z-axis transmission distance. A double-DD quadrature pad (DD2Q)
consists of a Q pad, and double orthogonal DD pads are analyzed in detail, which are employed
to decouple the cross-mutual inductance. Moreover, a parametric design method based on the
misalignment characteristics of the DD2Q pads is also proposed to maintain relatively constant
power output. A 650-W hybrid topology with a fixed operating frequency of 85 kHz was built to
verify the system’s feasibility. The size of the DD2Q pads was 280 mm × 280 mm, and the air gap
was 100 mm. The results clearly show that the proposed hybrid topology can achieve a fluctuation
within 5% in the output current with load varying from 100% full load to 25% light load conditions
when the Z-axis transmission distance varies from 80 mm to 150 mm, and the maximum efficiency
can reach 91% when the Z-axis transmission distance is 80 mm.

Keywords: inductive power transfer; DD2Q pads; hybrid topology; misalignment tolerance

1. Introduction

An IPT system can deliver power over relatively large air gaps via magnetic cou-
plings, including a high-frequency inverter, compensation topology, coupling coils, and
charging circuits. An IPT system has the excellent advantages of safety with galvanic
isolation [1], high reliability [2], and being environmentally friendly [3] compared with
traditional conductive charging technology. Nowadays, the IPT system has been widely em-
ployed in powering electronic applications, such as low-power portable electronic devices,
implantable medical instruments [4], electric vehicle (EV) charging [5], and autonomous
underwater power supplies [6]. Much research has been conducted by numerous orga-
nizations, such as the Massachusetts Institute of Technology (MIT), Auckland University,
Korea Advanced Institute of Science and Technology (KAIST), and Oak Ridge National
Laboratory (ORNL).

The misalignments between the primary and secondary magnetic couplers can cause
the variation of self-inductances and mutual inductances, which may in practice lead to a
reduction in power transfer, instability of the system, and increased power losses. Aside
from that, the equivalent load varies during the battery charging process [7]. Therefore,
the goal of this paper is to design an IPT system with high misalignment tolerance and
load-independent current output.

In order to improve the misalignment tolerance of the IPT system, some control
schemes, such as increasing DC-DC conversion [8,9], phase shift control, and variable
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frequency control [10–15], have been proposed to modulate the output current or voltage.
The additional DC-DC converter combines with MOSFET, the filter inductor and capacitor,
and the driver circuit, which results in extra volume and cost and decreasing the system
efficiency. The phase shift control and variable frequency control usually need a wireless
communication device to collect the voltage and current signals of the secondary side
to realize closed-loop control. However, wireless communications can be interrupted in
highly magnetic conditions, which may result in instability of the IPT system. Moreover,
phase shift control may not achieve ZVS under a wide range of loads, which increases
the switching loss, and variable frequency control may result in bifurcation phenomena
and decreasing the output power. Hence, in order to solve the above-mentioned defects,
considerable efforts focus on proper magnetic coupler design [16–21], such as bipolar and
double-D pads, tripolar pads, quadruple-D pads, and unsymmetrical pads, which can
offer a relatively uniform magnetic distribution. For example, the quadruple-D pads are
proposed in [16] to be tolerant to lateral misalignment, which consists double quadrature
coils at the primary and secondary sides. Tripolar pads are proposed in [18] to improve
the omnidirectional misalignment tolerance. However, these tripolar pads need to consist
of three inverters at the primary side. That aside, unsymmetrical pads are presented
in [19] to minimize the cost of copper and the size of the coil structure, adopting the
method of concentrated magnetic flux to achieve misalignment tolerance. As an alternative
method, hybrid topologies combining two different topologies with opposite output trends
are implemented to maintain a stable output under misalignment conditions. A hybrid
topology combines with LCC-LCC and SS topologies [20,21] to realize relatively constant
power output within 50% Y-axis misalignment. In [22], LCC-S and S-LCC topologies are
employed to tolerate 50% X-axis pad misalignment, where the primary sides are connected
in parallel and the secondary sides are connected in series. Although the previous hybrid
topologies are able to tolerate a pad’s special misalignment, as shown in Figure 1, the
working range of misalignment tolerance is still narrow. Therefore, better misalignment
tolerance, particularly with Z-axis tolerance for different EV class heights with a wider
coupling variation range, is desired, which is identified as the research gap for this research.
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Figure 1. Comparison of the different topologies.

This paper presents a new hybrid topology using DD2Q pads to achieve stable output
power at a large vertical misalignment, and the main contributions of this article are
summarized as follows:

(1) This article proposes a new hybrid IPT system with high misalignment tolerance. The
hybrid system consists of a series hybrid topology and LCC-LCC topology. The series
hybrid topology and LCC-LCC topology are connected in parallel at the primary side
and secondary side. The proposed approach can improve the output power compared
with the single compensation topology and reduce the switch voltage stress. Moreover,
the proposed hybrid IPT system can achieve a near load-independent current output.
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(2) DD2Q pads are used in the hybrid IPT system, which consist of a single-Q coil and
double-DD coils. The size of the DD2Q pads is 280 mm × 280 mm, and the air gap is
100 mm. The double-DD coils are orthogonally placed, and the Q coil is placed in a
centrally symmetric position, which can realize decoupling of the DD and Q coils on
the same side of the primary and secondary sides. Therefore, the independent current
output of the series hybrid topology and LCC-LCC topology can be achieved.

(3) A parameter optimization method based on DD2Q mutual inductances is proposed
to realize a relatively constant output current with high misalignment tolerance,
which is able to simplify the control complexity. By using the monotonic decreasing
characteristic of the series hybrid topology and monotonic increasing characteristic of
the LCC-LCC topology to realize the complementary output of the two topologies,
the output current is ensured to be relatively stable.

Specifically, the mathematical model of the proposed hybrid topology is systematically
analyzed in Section 2. In Section 3, the mutual inductance characteristics of the DD2Q pads
and the parameter optimization are presented. The experimental results are provided in
Section 4 to verify the theoretical analysis. Finally, the conclusion is drawn in Section 5.

2. Theoretical Analysis

The circuit of the proposed hybrid IPT system is shown in Figure 2, which consists of
a series hybrid topology and LCC-LCC topology. The high-frequency inverter combines
with four MOSFETs (Q1–Q4). Inductor L0 and capacitors C0, C1, and C3 (L7, C2, C4, and
C7) constitute the series hybrid topology, while inductor L8 and capacitors C5 and C8 (L9,
C6, and C9) constitute the LCC-LCC compensation topology. The primary and secondary
sides of the series hybrid topology and LCC-LCC topology are both connected in parallel,
together forming the proposed hybrid topology. The main magnetic coupling between the
coils is M12, M34, and M56. The full-bridge rectifier comprises four diodes (D1–D4). Because
the inductor L0(L7) and capacitor C3(C4) are connected in series in the proposed hybrid
topology, and therefore they can be treated as a passive component, such as inductor Le or
capacitor Ce, which can be expressed as [16]{

jωLe = jωL0 + 1/jωC3, if ωL0 − 1/ωC3 > 0
1/jωCe = jωL0 + 1/jωC3 if ωL0 − 1/ωC3 < 0

(1)
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The full-bridge rectifier is adopted in the secondary side, and thus the input volt-
age UAB, the input current IAB, and the equivalent resistance RAB of the rectifier can be
expressed as [8]. 

UAB = 2
√

2
π UL

IAB = π
√

2
4 IL

RAB = 8
π2 RL

(2)

2.1. Analysis of the Series Hybrid Topology

The circuit of the series hybrid topology is shown in Figure 3, where Uout is a high-
frequency inverter output voltage. In order to minimize the VA rating of the power inverter,
the compensation networks are tuned to the same resonant angular frequency ω. Thus, the
resonant parameters should satisfy the following equations:

ω2L0C0 = ω2L1
C0C1

C0+C1
= 1

ω2L7C7 = ω2L2
C2C7

C2+C7
= 1

ω2L3C3 = ω2L4C4 = 1
. (3)
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where Z20 = jωM23Z00 = jωL0 + (jωC0)
−1 + jωL3 + (jωC3)

−1 , Z01 = −(jωC0)
−1 +
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by solving Equation (4), the currents are expressed by
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Uout
ω2
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2

.
I3 =

.
Uout

jω
M12

L0L7+M12 M34

(5)



Electronics 2022, 11, 2228 5 of 18

According to Equation (5), the input equivalent impedance Zin-series of the series
hybrid system can be deduced to be

Zin-series =
ω2(L0L7 + M12M34)

2

M12
2RAB

(6)

According to Equations (5) and (6), the series hybrid topology can achieve zero phase
angle (ZPA). Aside from that, the output current I3 is related to the inverter output voltage
Uout, resonant angular frequency ω, inductors L0 and L7, and mutual inductances M12 and
M34. In order to achieve symmetry between the primary and secondary circuits, inductors
L0 and L7 are usually assumed to be the same. The main mutual inductances M12 and M34
are assumed to have the linear trend with the air gap, which will be discussed in Section 3.
Therefore, the output current of the series hybrid topology is shown in Figure 4, where all
the related parameter values will be listed in Table 1. It is obvious that the output current
I3 shows a downward concave parabolic trend with the decrease in the mutual inductance.
Although the series hybrid topology has a certain misalignment tolerance, the operating
range is still narrow.
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Table 1. Parameter values of the experimental platform.

Parameter Value Parameter Value

f 85 kHz C0 232.2 nF
L1 15.1 uH C1 25.8 nF
L2 150.1 uH C2 25.7 nF
L3 149.8 uH C5 27.8 nF
L4 156.1 uH C6 27.7 nF
L5 156.0 uH C7 232.2 nF
L6 160.1 uH C8 110.2 nF
L8 32.2 uH C9 110.3 nF
L9 32.1 uH E 70 V
Ce 25.1 nF

2.2. Analysis of the LCC-LCC Topology

Figure 5 shows the LCC-LCC equivalent circuit, where Uout is also a high-frequency
inverter output voltage. The compensation topology is tuned to the same resonant angular
frequency ω. Therefore, the resonant tanks should satisfy the following equations:{

ω2L8C8 = ω2L5
C5C8

C5+C8
= 1

ω2L9C9 = ω2L6
C6C9

C6+C9
= 1

(7)
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.
I4.
I5.
I6.
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.
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0
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where Z00 = jωL8 + (jωC8)
−1, Z01 = Z10 = −(jωC8)

−1, Z11 = (jωC8)
−1 + (jωC5)

−1 +

jωL5, Z12 = Z21 = −jωM56, Z22 = jωL6 +(jωC6)
−1 +(jωC9)

−1, Z23 = Z32 = −(jωC9)
−1,

Z33 = jωL9 + (jωC9)
−1 + RAB.

By solving Equation (8), the currents are yielded as
.
I4= M2

56

.
UoutRAB

ω2L2
8L2

9.
I7= M56

.
Uout

jωL8L9

(9)

According to Equation (9), the output voltage of the inverter is also in the same phase
with the current, which aids in maintaining ZVS across the entire operating region and
improving the output efficiency of the system. The output current I7 is related to the
inverter output voltage Uout, resonant angular frequency ω, inductors L8 and L9, and
mutual inductance M56. In this paper, inductors L8 and L9 are also assumed to be the
same. Therefore, the output current I7 is shown in Figure 6, where all the related parameter
values will be listed in Table 1. It is clear that the output current I7 shows a monotonous
downward trend with the decrease in the mutual inductance.
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Figure 6. Output current of the LCC-LCC topology.

Therefore, the series hybrid compensation network and the LCC-LCC compensation
network can be connected in parallel at the transmitter and the receiver, which is conductive
to achieving a relatively constant power output with large misalignment.
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2.3. Analysis of the Proposed Hybrid Topology

According to Equations (5) and (9), the total output current of the inverter is ex-
pressed by

.
Iout =

.
I0 +

.
I4 =

.
UoutRAB

ω2 (
M2

12

(L0L7 + M12M34)
2 +

M2
56

(L8L9)
2 ) (10)

Then, the total input equivalent impedance of the proposed hybrid topology can be
given by

Zin =

.
Uout
.
Iout

=
ω2

RAB

1
M2

12
(L0L7+M12 M34)

2 +
M2

56
(L8L9)

2

(11)

From Equations (10) and (11), the total input impedance of the proposed hybrid
topology is purely resistant, which aids to improving the overall transmission efficiency.

According to the characteristics of the parallel circuit, the total output current of the
proposed hybrid topology can be expressed as

.
IAB =

.
I3 +

.
I7 =

.
Uout

jω
(

M12

L0L7 + M12M34
+

M56

L8L9
) (12)

From Equation (12), the system can realize a load-independent current output. When
misalignment occurs, the main mutual inductance M12, M34, and M56 will drop at the same
time. By designing appropriate compensating inductors L0, L7, L8, and L9, the constant
current output can be realized in a certain range of misalignment.

3. Parametric Design of the Proposed Hybrid Topology
3.1. Misalignment Analysis of DD2Q Pads

As analyzed in Section 2, the expected coupling pad should have the following
characteristics:

(1) The expected coupling pad should consist of three transmitters and three receivers.
(2) The cross mutual inductances are designed to be zero or small enough when misalignment

occurs, and thus the proposed hybrid topology can realize a load-independent output.

Recently, the DDQ and DD coils have had anti-misalignment characteristics, which
can realize decoupling in the X- and Z-axis to eliminate the influence of cross-coupling.
However, these two coupling coil structures can only be applied to four-coil structures.
Based on the DD coil and DDQ coil, the DD2Q coil structure is proposed in this paper,
as shown in Figure 7. The DD2Q coils consist of a single-Q coil and double-DD coils,
and there are three coils at both the transmitter and receiver sides. The size of the Q
coil is 280 mm × 280 mm, the size of the DD coil is 280 mm × 280 mm, and the Z-axis
transmission distance is 100 mm.
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The misalignment between the primary and pick-up pads is unavoidable in the
charging system, including the X-axis, Y-axis, Z-axis, and XY-axis. Therefore, Figure 8
shows the measured mutual inductances of the DD2Q pads with misalignment along the
X-, Y-, Z-, and XY-axes separately.
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Figure 8. Measured mutual inductances of DD2Q coils.

Obviously, the main mutual inductances M12, M34, and M56 and the cross-coupling
mutual inductances vary significantly when X-axis, Y-axis, and XY-axis diagonal misalign-
ments occur in Figure 8a,b,d. The reason for this is that non-orthogonal magnetic flux
is coupled in the X-axis, Y-axis and XY-axis diagonal misalignments. The main mutual
inductances M12, M34, and M56 show a linear decreasing trend with the Z-axis transmission
distance, and the cross-couplings are too small to be ignored, as shown in Figure 8c. More-
over, the main mutual inductances (M34 and M56) of the double orthogonal DD pads have
the same change trend at the Z-axis transmission distance. Therefore, the proposed hybrid
topology cannot provide a constant current output in the X-axis and Y-axis misalignments,
as analyzed in Section 2. In many applications, such as cars, SUVs, and trucks, the X-axis
and Y-axis misalignments can be adjusted by auxiliary devices for cars, such as a reversing
camera and reversing radar, but the vertical air gap is hard to adjust. Hence, the DD2Q
coils are fit for the proposed hybrid topology with a relatively constant current output,
where the vertical direction changes dramatically.



Electronics 2022, 11, 2228 9 of 18

3.2. Parametric Design Method

The design of compensation parameters is of great importance to realize a relatively
constant output within the maximal misalignment. A parametric design method based on
inductances L0, L7, L8, and L9 is presented to maintain the output current in a certain range
of misalignment.

From Figure 8c, the relationship between M12, M34, and M56 can be expressed by{
M56 = M34
M34 = aM12 + b

(13)

where a and b are coefficients and the calculated parameters a and b are 0.86 and−6.75 × 10−6,
respectively, when the secondary pads move between 80 mm and 150 mm along the Z-axis
transmission distance.

Thus, the total output current of the proposed hybrid topology is rewritten as

IAB =
UoutM12

ω(L0L7 + M12(0.86M12 − 6.75× 10−6))
+

Uout(0.86M12 − 6.75× 10−6)

ωL8L9
(14)

According to Equation (14), we can obtain the current IL of the load RAB:

IL =
4

π
√

2
Uout M12

ω(L0L7 + M12(0.86M12 − 6.75× 10−6))
+

4
π
√

2
Uout(0.86M12 − 6.75× 10−6)

ωL8L9
(15)

To simplify the complexity of multi-objective parameter design, inductances L0 and L7
are assumed to be equal, and inductance L8 is also assumed to be equal with inductance L9.
Figure 8 shows that the output current IL varies with different inductors L0 and L8. It can
be found that the output current of the series hybrid topology shows a downward concave
parabolic trend, while the output current of the LCC-LCC topology shows a monotonous
downward trend with the decrease in M12. Therefore, we used the monotonic decreasing
characteristic of the LCC-S topology and monotonic increasing characteristic of the LCC-
LCC topology to realize the complementary output of the two topologies and ensured the
output current was relatively stable. In this article, an acceptable output current fluctuation
ratio was limited within 5%, and the rated output current of the load RAB was set to be 6 A.
It is clear that the dashed line region in Figure 9 can satisfy the set requirement within an
80–150-mm Z-axis transmission distance. Thus, the values of L0 and L7 were both designed
to be 15 uH, while L8 and L9 were both designed to be 32 uH. Finally, the resonant parameter
value of the proposed hybrid topology could be obtained from Equations (1), (3), and (7).
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4. Experimental Verifications

In order to verify the analysis of the proposed method, a 650-W hybrid IPT system
was designed and implemented as illustrated Figure 10. The detailed parameters of the
system are listed in Table 1. The inverter of the system operated with a fixed frequency and
duty cycle control to demonstrate the performance of a constant current output with high
misalignment tolerance.
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The output current of the load is drawn in Figure 11, varying with a full load, half
load, and quarter load under different Z-axis transmission distances. Within a 80–150-mm
Z-axis transmission distance, the output current of the load was between 5.7 A and 6.3 A,
which indicates that the output current variation was within 5% when the system worked
in the full load and half load conditions. Aside from that, the output current of 4 Ω under
the condition of a transmission distance between 110 mm and 130 mm was larger than
6.3 A, which was slightly over the limitation of 5%. Moreover, the output current climbed
to the maximum at a 120-mm Z-axis transmission distance. This clearly demonstrates
that the proposed hybrid topology with the parameter optimization process had high
misalignment tolerance.
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Figure 11. Output current of the proposed hybrid system.

The experimental waveforms of Uout, Iout, UL, and IL with RL = 17 Ω, 8.5 Ω, and 4 Ω
are shown in Figures 12–14 when the Z-axis transmission distance was 80 mm, 120 mm,
and 150 mm, respectively. Uout and Iout are the inverter output voltage and current when
the input DC power is 70 V, respectively.
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Figure 12 illustrates the system operating at full load with RL = 17 Ω. It is clear that
ZVS could be achieved between an 80-mm and 150-mm Z-axis transmission distance, which
could reduce the switching loss and improve the efficiency. Moreover, the output current
was 5.84 A, 6.21 A, and 6.16 A, and the load output voltage was 99.30 V, 105.61 V, and
104.75 V, respectively. Hence, the fluctuation of the load current was within 5% when the
variation of the Z-axis transmission distance was within 70%.

Figure 13 shows the system works at half load with RL = 8.5 Ω. The load output
current was 5.92 A, 6.25 A, and 6.18 A, and the load output voltage was 50.30 V, 53.38 V, and
52.35 V, which illustrated the current fluctuation to be 1.33%, 4.17%, and 3.0%, respectively,
meeting the design requirements. That aside, the output voltage and current of the inverter
were almost in phase, which indicates that soft switching could be achieved and decrease
the switching losses.

Figure 14 shows the system operating in a light load conditions when the load was
25% against the fill load with RL = 4 Ω. The load output current was 5.96 A, 6.42 A, and
6.23 A, and the load output voltage was 23.84 V, 25.68 V, and 24.92 V, which illustrated
the current fluctuation to be 0.66%, 7%, and 3.8%, respectively. It is clear that the output
current may slightly exceed the limitation of 5% under light load conditions.

Figure 15 clearly illustrates that there is an opposite trend of the output current I3 of
series hybrid topology and the output current I7 of the LCC-LCC topology when the Z-axis
transmission distance varied, and the RMS values of the output currents I3 and I7 had a
slight deviation from the theoretical analysis in Section 2 due to the influence of parasitic
resistance and parameter drift on the resonant parameters. Aside from that, the total output
current IAB of the proposed hybrid topology could almost remain stable. Moreover, there
was a small phase angle between the output current of the series hybrid topology and
LCC-LCC topology because the resonant parameters in the series hybrid topology and
LCC-LCC topology operated in a weak inductive state.

Figure 16 shows the output power and efficiency along the Z-axis transmission dis-
tance. Figure 16a illustrates that the output power was relatively gentle and consistent with
the variation curve of the load output current. The maximum output power was 650 W
when the Z-axis transmission distance was 120 mm at full load with RL = 17 Ω. Figure 16b
shows that the efficiency varied with the load and misalignment, and the maximum effi-
ciency could reach 91% with a full load at an 80-mm Z-axis transmission distance.

Some comparisons with traditional control schemes and existing hybrid topologies are
listed in Table 2, which are made in terms of control, number of inductors and capacitors,
coupling pads, misalignment tolerance, cost, output characteristic, etc. Compared with the
traditional control schemes in [9,11], the proposed IPT system can realize a constant current
output and misalignment tolerance without additional DC-DC converters and phase shift
control, which can simplify the complicated controls. The topologies in [18,21,22] are
named the “series hybrid topology”, while the topologies in [20] are named the “parallel
hybrid topology”. These mentioned hybrid topologies all use four coils to transfer power.
Aside from that, the number of inductors, capacitors and coupling pads and the cost of
the hybrid topologies are higher than the traditional topologies with closed-loop controls.
Moreover, the proposed hybrid topology has a wider misalignment tolerance compared
with the four-coil hybrid topologies in [18] and [20–22], even though this topology has
slightly more components than the other topologies. Thus, the proposed hybrid topology
is superior to the traditional control schemes and other hybrid topologies in terms of
misalignment tolerance.
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Table 2. Comparison of traditional control schemes and existing hybrid topologies.

[9] [11] [18] [20] [21] [22] This Work

Control Additional
DC-DC

Phase shift
control No No No No No

Number of
inductors 1 0 2 2 0 2 2

Number of
capacitors 4 2 6 6 6 6 10

Coupling coils DD + BP Q QDQP DD DD DDQ DD2Q

Number of coils 3 2 4 4 4 4 6

Cost High Low High High High High High

Size of coupling
pad X * Y * Z

(mm)
738 * 391 * 200 360 * 360 * 150 400 * 400 * 150 391 * 738 * 160 775 * 391 * 160 400 * 400 * 150 280 * 280 * 100

Misalignment
tolerance (mm) X:200 (27.5%) X:140 (38.8%)

Z:50 (33.3%)

X:150 (37.5%)
Y:150 (37.5%)
Z:55(36.6%)

X:160 (40.9%) Y:160 (40.9%) X:200
(50%)

Z:70
(70%)

Output
characteristic Constant voltage Constant voltage Constant voltage Constant current Constant current Constant voltage Constant current

Output
fluctuation \ \ 5% \ 5% 5% 5%

Peak efficiency \ 90% 93.6% 91% 94% 93% 91%

Wireless
communication No Yes No No No No No

5. Conclusions

A hybrid wireless charging system using DD2Q pads has been presented to improve
the misalignment tolerance. The new proposed system, combined with the series hybrid
topology and LCC-LCC topology, was studied based on the full mathematical model in
the context, where the DD2Q pads consisted of a single-Q coil and orthogonal DD coils.
The new pad geometry is able to decouple the cross-mutual inductances so as to realize
the independent output of the two topologies. Moreover, a parameter optimization design
method on the basis of the characteristics of the DD2Q pads is presented to maintain a
stable output current and provide high misalignment tolerance in the Z-axis direction. A
650-W hybrid IPT system has been designed and implemented to verify the analysis of the
proposed method. The experimental results validate that the proposed hybrid topology
can maintain a relatively constant output current at 6 A when the Z-axis misalignment
varies from −20 to +50 mm, and the output current fluctuation is within 5% when the load
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varies from 100% full load to 25% light load. In comparison with the conventional hybrid
topology, the new proposed system showed a significant improvement in Z-axis misalign-
ment tolerance, even though this topology has slightly more components. Moreover, the
maximum efficiency can reach 91% when the Z-axis transmission distance is 80 mm.

In future research, a thorough economic analysis of the proposed method will be
adopted to minimize the system cost, which consists of the number of inductors, capacitors,
and coupling coils. That aside, the coupling coil structure should be improved to have
better X-, Y-, and Z- misalignment tolerance.
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