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Abstract: Hybrid beamforming (HBF) is a promising approach to obtain a better balance between
hardware complexity and system performance in massive MIMO communication systems. However,
the HBF optimization problem is a challenging task due to its nonconvex property in terms of design
complexity and spectral efficiency (SE) performance. In this work, a low-complexity convolutional
neural network (CNN)-based HBF algorithm is proposed to solve the SE maximization problem
under the constant modulus constraint and transmit power constraint in a multiple-input single-
output (MISO) system. The proposed CNN framework uses multiple convolutional blocks to extract
more channel features. Considering that the solutions for the HBF are hard to obtain, we derive an
unsupervised learning mechanism to avoid any labeled data when training the constructed CNN.
We discuss the performance of the proposed algorithm in terms of both the generalization ability for
multiple CSIs and the specific solving ability for an individual CSI, respectively. Simulations show its
advantages in both SE and complexity over other related algorithms.

Keywords: convolutional neural network; deep learning; hybrid beamforming; massive
multiple-input multiple-output (MIMO); spectral efficiency

1. Introduction

With the rapid development of wireless communication, the mobile data traffic and
the number of users are growing exponentially. There is an increasing demand for wireless
communication. Over the past few decades, a great deal of research has been conducted on
developing efficient and reliable communication networks. Most wireless communication
systems use multiple-antenna techniques to increase receiver stability, data throughput, and
signal-to-noise ratio (SNR). Massive multiple-input multiple-output (MIMO) has become
a key technology for future cellular systems [1]. Massive MIMO has been proposed as a
promising solution to meet the requirements of high data rate and low latency by new
applications and services in fifth-generation (5G) and sixth-generation (6G) communication
systems [2,3]. By utilizing a large number of antennas at transceivers, massive MIMO is
capable of compensating for the severe path loss and atmospheric attenuation of millimeter
wave (mmWave) and terahertz (THz) signals. In traditional MIMO, fully digital beamform-
ing [4–6] is commonly employed due to its small number of antennas. However, as the
number of antennas increases, the traditional baseband fully digital beamforming technique
with a dedicated radio-frequency (RF) chain for each antenna has a high overhead, which
poses new challenges for massive MIMO [7].

To address this hardware limitation challenge, the hybrid beamforming (HBF) ar-
chitecture that combines a baseband digital beamformer with an analog beamformer in
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the RF domain was proposed [8,9], where the analog beamformer is implemented by
phase shifters. The HBF architecture connects much fewer RF chains to the antenna by
analog phase shifters, thus dramatically decreasing the number of RF chains and reducing
the hardware costs. It provides a good balance between hardware complexity and sys-
tem performance, gaining the benefits of conventional beamforming while offering high
beamforming gain. Implementing HBF is challenging, since the phase shifters impose a
nonconvex constant modulus constraint on the signal passing through the analog beam-
former. Many studies have been devoted to solving HBF optimization. The work in [10]
proposed a spatially sparse algorithm based on orthogonal matching pursuit (SOMP) to
obtain the HBF matrix depending on the sparse feature of mmWave channel, and equates
the design problem of the HBF matrix to the reconstruction of sparse signal. Paper [11]
designed an orthogonal codebook vector model to avoid matrix inverse operations dur-
ing optimization, thereby lowering the computational complexity. In [12], the authors
proposed an manifold-optimization-based alternating minimization (MO-AltMin) HBF
algorithm. An element-based heuristic iterative algorithm was proposed in [13] to further
improve performance. Furthermore, the HBF design proposed in [14] used an exhaustive
search method for beam selection based on the maximum SNR. Most of these works are
iterative algorithms, which require a lot of time for iterative operations and have high
computational complexity.

Deep learning (DL) is a powerful tool to deal with complex nonconvex optimization
problems due to its excellent learning ability and feature extraction capability. In recent
years, there has been a boom in the application of DL to HBF design [15–22]. The au-
thors in [15] considered a coordinated beamforming system that employs a DL model to
learn how to predict the beamforming vector directly by using the signal received at the
distributed BS. The work in [16] deployed deep neural networks to construct mapping rela-
tions for designing near-optimal hybrid precoders. An auto-precoder neural network for
joint channel sensing and HBF design was proposed in [17], which uses supervised learning
to directly predict beamformers from the received sensing vectors. Further, [18] solved
three beamforming optimization problems using DL to enhance HBF performance. All the
papers mentioned above employ deep supervised learning to train the network. Supervised
learning based on local optimal solutions fails to achieve good performance, since global
optimal solutions are difficult to obtain for nonconvex optimization problems. Moreover,
the performance of supervised learning relies heavily on a large amount of label data, but
label data is not easily available in wireless communication. Therefore, this, in effect, adds
numerous difficulties to our design in practical applications. In addition, References [19,20]
used multiple fully connected layers to construct network models, which may increase
computational complexity. Paper [19] developed a beamforming neural network (BFNN)
to maximize spectral efficiency with imperfect channel state information (CSI). In [20], the
authors exploited DL to dramatically enhance the system performance by designing analog
sensing and downlink precoding matrices directly from the received pilots.

To address such challenges, we propose a convolutional neural network (CNN)
framework-based low-complexity HBF optimization algorithm, which is trained with
an unsupervised learning mechanism. Specifically, we investigate an HBF optimization
problem for a MISO system that aims to maximize spectral efficiency under the constant
modulus constraint of the analog phase shifters and the power constraint at the transmitter.
To solve such a nonconvex problem, we construct a novel CNN structure consisting of
multiple convolutional blocks, which takes the analog beamformer as the optimization
target. In addition, a self-defined network layer is designed to make the output satisfy the
constant modulus constraint. Compared with fully connected neural network (FCNN)-
based algorithms [19], our proposed CNN architecture significantly reduces the number of
parameters and floating-point operations (FLOPs) due to the feature sharing of convolu-
tional operations, which will result in lower computational complexity. Considering that
it is nontrivial to obtain high-quality labeled data, we attempt to train the CNN network
through an unsupervised mechanism. The classical optimization methods with high com-
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putational complexity are not required. To this end, we construct a loss function that is the
negative of the objective function of the formulated noncovex problem. Given the CSI, the
CNN is then trained by minimizing such a loss function, which equivalently maximizes the
achievable rate, without needing any labelled data (i.e., optimal beamformers). Particularly,
we evaluate the performance of the proposed algorithm in terms of the generalization
ability for multiple CSIs and the specific solving capability for a single CSI, respectively,
then compare it with other relevant algorithms in simulations. Simulations shown that
the proposed CNN-based unsupervised learning HBF scheme is capable of optimizing
the analog beamformers effectively and performs better than the referenced FCNN-based
scheme, with much lower complexity.

1.1. Contributions of the Work

We focus on the HBF design for the SE maximization problem in a downlink mas-
sive MISO system, and combine DL with HBF due to the advantages of DL in complex
nonconvex problems. In this scenario, a BS with a single RF chain communicates with a
single antenna user in an ideal channel environment, using a single dominant path channel
model. The main contributions of this work are summarized as follows.

• We develop a DL-based approach for the joint optimization of digital and analog
beamformers under the SE maximization problem. To solve the nonconvex problem,
we propose a novel CNN-based HBF network framework with multiple convolutional
blocks to efficiently extract more channel features. The proposed CNN structure can
predict analog beamforming solution quickly and achieve excellent performance with
low complexity, due to the parameter sharing feature of its convolutional operations.
We also select the ELU activation function to speed up the convergence and employ
dropout to avoid the risk of overfitting.

• We take an unsupervised deep-learning strategy to train the proposed CNN structure
for the hybrid beamforming optimization problem. Unlike supervised CNNs, the
devised unsupervised CNN updates the weights just based on the loss function
without any optimal beamformer as labeled data, which is normally calculated by
traditional algorithms. In addition, actually, there is no useful algorithm to find the
global optimum due to the nonconvex nature of the problem. We only need to take CSI
as input data for training to obtain feasible beamforming solutions adaptively. Thus, a
huge amount of time and computational resources can be saved and the problem of
data acquisition can be solved efficiently.

• To perform HBF optimization, we first train the neural network offline with a self-
defined loss function and continuously learn to optimize the parameters, and then feed
the saved model weight parameters into the trained network for online testing. This
approach shifts the computational complexity from online testing to offline training,
which can significantly lower the computational complexity of the online testing stage.

• Distinct from previous works, the performance of the proposed HBF algorithm with
other algorithms in terms of the generalization ability for multiple CSIs is not only
investigated, but we also innovatively discuss the performance of the mentioned algo-
rithms with respect to the specific solving capability for a single CSI. We innovatively
apply DL to the HBF optimization problem from this new perspective, which has not
been mentioned in prior work. Simulation experiments are conducted in two classical
channel environments, namely, a Rayleigh fading channel and geometric mmWave
channel, respectively.

1.2. Paper Organization

The rest of the paper is organized as follows. Section 2 presents the system model and
HBF optimization problem formulation in the downlink MISO system. Section 3 proposes
the CNN-based architecture to optimize HBF, and introduces the training strategy of the
network as well as analyzes the complexity of the mentioned algorithm. Simulation results
are introduced in Section 4 and the conclusion is drawn in Section 5.
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2. System Model and Problem Formulation
2.1. System Model

We consider a downlink MISO communication system, shown in Figure 1, which
transmits data to the user by a HBF transmitter. In this scenario, a BS equipped with a
single RF chain and Nt antennas transmits a data stream to a single antenna user in an ideal
channel environment. We assume that the BS at the transmitter is equipped with a uniform
linear array (ULA) consisting of Nt antenna units. Generally, the antenna spacing r is half
of the transmission wavelength λ, i.e., r = 0.5λ. The input signal s at BS obeys a complex
Gaussian distribution with mean 0 and variance 1, i.e., it satisfies s ∼ CN(0, 1).

s
Digital

Beamformer
User

.

.

.

Nt
.
.
.

.

.

.

Analog

Beamformer

RF 

Chain

Figure 1. SU-MISO system architecture with hybrid (analog and baseband) beamforming.

In the HBF system, the input signal s first passes through the digital beamformer vD,
which is actually a scalar since there is only one RF chain at the transmitter side. The signal
s is then converted to analog phase shifters through one RF chain, and then the transmit
signal x = vAvDs ∈ CNt×1 is constructed by passing through the analog beamforming
vector vA ∈ CNt×1. The whole downlink HBF vector can be expressed as v = vAvD, where
v is an Nt × 1-dimensional complex vector. The transmit signal x then passes through a
channel h to obtain the received signal y at the receiver side. The received signal at the user
side is given as

y = hHvAvDs + n, (1)

where h ∈ CNt×1 denotes the downlink channel gain complex vector. n stands for the
additive Gaussian white noise obeying a complex Gaussian distribution with zero mean
and variance σ2, i.e., n satisfies n ∼ CN(0, σ2). In addition, σ2 represents the noise power.
The achievable rate of the HBF system is then calculated as

R = log2
(
1 +
|hHvAvD|2

σ2

)
. (2)

2.2. Problem Formulation

We assume that the analog beamformer is implemented by simple phase shifters with
adjustable phase and nonadjustable amplitude. Under this assumption, the elements of the analog
beamforming vector vA are constrained by constant modulus, i.e., |[vA]i|2 = 1, ∀i = 1, 2, . . . , Nt.
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The goal is to maximize the SE of the MISO system subject to the constant modulus constraint
and transmit power constraint, which is formulated as

max
v

log2
(
1 +
|hHvAvD|2

σ2

)
(3a)

s.t. |vAvD|2 ≤ Pmax, (3b)

|[vA]i|2 = 1, ∀i = 1, 2, . . . , Nt. (3c)

Since ‖vA‖2
F = Nt, the constraint term (3b) is equivalent to |vD|2 ≤ Pmax/Nt. More-

over, the rate function is monotone increasing on |vD|2, which means the equality of (3b)
must be satisfied; otherwise, the rate can be further improved by increasing the transmit

power. The optimal digital precoding parameter is then given by v∗D =
√

Pmax
Nt

. As a result,
the HBF optimization problem (3) is degenerated to find the optimal analog beamforming
vector, which is written as

max
vA

log2
(
1 +

Pmax|hHvA|2
Ntσ2

)
(4a)

s.t. |[vA]i|2 = 1, ∀i = 1, 2, . . . , Nt. (4b)

Problem (4) is still nonconvex due to the constant modulus constraint, and, thus, hard
to solve. Recently, an FCNN-based deep-learning method is proposed to solve this, in [19].
Although the FCNN-based method is verified to be effective in finding a solution, it is not
known whether a better solution can be achieved by other deep-learning methods. This
motivates our work in this paper to develop a different neural network architecture on top
of CNN to solve the analog beamforming optimization problem (4).

3. Proposed CNN-Based Hybrid Beamforming Optimization

In this section, we propose a CNN-based framework to solve the HBF optimization
problem. CNN was chosen since it not only has better feature-extraction capability, but can
also reduce the number of learning parameters by sharing weights and biases through con-
volution kernels, which has the potential to improve performance with low computational
complexity. We also derive an unsupervised scheme to train the CNN.

3.1. Data Preparation

It is essential to perform data preprocessing on the input of the neural network,
which aims to reduce the number of computations for subsequent training of the network.
Following the CSI model of an HBF communication system, we perform data acquisition for
channel h. It will be extremely hard to train the network if a set of complex numbers as input
is fed to the neural network directly to form a complex neural network. However, both
the channel and beamforming vectors are essentially complex. Therefore, it is necessary
to convert each input channel sample to real form. To simplify complex operations, we
convert the complex CSI vector h into its corresponding real part and imaginary part,
which is fed to the neural network. In this work, we split the real and imaginary part of
each complex channel vector and rearrange them into a three-dimensional (3-D) real matrix
with size 1 × Nt × 2 in an element-wise manner. The samples are fed into the network in
batches during the train stage.

3.2. CNN Structure

Our designed CNN structure is shown in Figure 2, which consists of an input layer,
multiple convolutional (Conv) blocks, a fully connected layer, two self-defined layers, and
an output layer. Each Conv block includes a Conv layer, a batch normalization (BN) layer,
an activation layer and a dropout layer inside. The hyperparameter settings of each layer
are shown in Table 1. A brief description of these network layers is given below.
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Conv Layer

BN Layer

ELU

Dropout

Conv Block

Input

Conv Block 1

Conv Block 2

Conv Block 3

Flatten

Dense

Lambda-1

Lambda-2

Output

Re(h)

θ

VA

Loss

Im(h)

Figure 2. The proposed neural network architecture for hybrid beamforming design.

Table 1. Parameters of the Proposed DL-based HBF Model.

Layer No × Co Activation Function Number of Parameters
(When Nt = 64)

Input Nt × 2 - 0
Conv Block 1 (Nt − 2)× 16 ELU 176
Conv Block 2 (Nt − 4)× 8 ELU 424
Conv Block 3 (Nt − 6)× 4 ELU 116

Flatten 4(Nt − 6) - 0
Dense Nt × 1 Sigmoid 14,912

Lambda-1 Nt × 1 - 0

3.2.1. Input Layer

The first layer is the input layer for receiving the input samples. It is a three-dimensional
(3-D) matrix with real numbers of size 1× Nt × 2 with two channels, as the input of the first
Conv layer. Specifically, we split the real and imaginary part of each complex channel vector
and rearrange them into a 3-D real matrix with size 1× Nt × 2 in an element-wise manner.

3.2.2. Conv Blocks

We adopted three Conv blocks for feature extraction. Each Conv block is composed
of a Conv layer, a BN layer, an activation layer and a dropout layer. The Conv layer takes
the input signal and convolves it by convolution kernels to produce the output signal.
Specifically, the Conv layer employs Co kernels of size 1× 3 with stride 1 to perform feature
extraction for the real and imaginary parts of the input channel matrix, respectively. The BN
layer normalizes the output of the Conv layer. BN is a regularization technique that prevents
overfitting and achieves faster learning, thus accelerating convergence. The exponential
linear units (ELU) activation function performs activation on the output of the BN layer.
Considering that the beamformers may contain negative elements, we innovatively chose
ELU as the nonlinear activation function of the proposed network model. This can alleviate
the gradient disappearance problem by positive value identification, while having better
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robustness to negative value input. Further, it attempts to take the output average value of
the activation function close to zero, thus speeding up the convergence rate. After that, we
innovatively add the dropout layer, which is a technique that forces the output of some
neurons to zero with random probability, and thus reduces the impact caused by the initial
weight selection. This makes the network not overly dependent on some local features and
thus improves the generalizability of the network. The random probability is set to 0.05 to
avoid the over-regularization problem.

3.2.3. Flatten Layer

After extracting the features from the CNN blocks, the flatten layer converts these
multi-dimensional features into a one-dimensional vector.

3.2.4. Dense Layer

The dense layer consists of Nt neurons, which are connected to the outputs of the
flatten layer. In order to improve convergence, we added a BN layer before the dense layer,
which is omitted in Figure 2 for simplicity. The output of the dense layer corresponds to
the phase vector θ of the analog beamformer, which can be used to construct the analog
beamformer through the relationship of vA = ej2πθ. The sigmoid activation function is
used to map the output of the neurons of the dense layer to the range of (0, 1). The activated
output vector of this layer is denoted as

co = Sig(x)(Woci + bo), (5)

where Sig(x) , 1
1+e−x denotes the sigmoid activation function, co ∈ RNt×1, Wo ∈ RNt×4(Nt−6),

ci ∈ R4(Nt−6)×1 and bo ∈ RNt×1 represent output vector, weight matrix, input vector and bias
vector of this layer, respectively.

3.2.5. Lambda Layers

Since we expect to obtain the analog beamformer through the relationship vA = ej2πθ,
we devised a lambda layer for such a transform, which is named as Lambda-1 in Figure 2
and the output of which is vA. Through the Lambda-1 layer, we map the real value of θ
into complex values of vA. Moreover, we further devised the Lambda-2 layer to convert
the analog beamformer vA into a real value through a function FLoss

(
v∗D, vA

)
, −R, which

denotes the loss function and is defined as the negative of the rate function. We note
that the output layer is used also as the loss function; this is one key point to design an
unsupervised training scheme, which will be described in the following.

3.3. Training Strategy

The goal of the training is to find a feasible analog beamformer by maximizing the
SE. The channel samples are fed into the proposed CNN-based model in batches for
offline training. Note that the training weights are saved during the training process. The
proposed CNN-based model is trained by 1000 epochs with 16 batches per epoch. The
Adam optimizer is used to update the network parameters, such as weights and biases,
with the initial learning rate of 0.01. A learning rate dynamic decay strategy is also used.
Specifically, if no improvement in model performance was seen during 20 epochs, the
learning rate was reduced by the factor of 0.2. Unlike other supervised CNNs, the proposed
CNN model is trained using the unsupervised learning mechanism, which is achieved
through the Lambda-2 layer. Recall that the Lambda-2 is designed to be the loss function,
the output of which is the negative of the rate. By defining such a Lambda function, we
can train CNN without using the labeled data, i.e., the optimal analog beamformers for the
given CSI samples, and, thus, achieve unsupervised learning for the constructed network.
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The parameters of the CNN network are then optimized though batch optimization. For a
given training batch, the parameters are updated by minimizing the loss

FLoss = −
1
N

N

∑
n=1

log2
(
1 +

γn|hH
n v(n)

A |2

Nt

)
(6)

where N denotes the total number of training samples in a batch. γn = Pmax
σ2 , hn and v(n)

A
represent the SNR value, channel vector, and analog beamforming vector of the n-th sample
in the training batch.

3.4. Complexity Analysis

Considering only the online stage, we compared the complexity of the proposed CNN-
based HBF scheme, the FCNN-based scheme [19] and the traditional HBF schemes [12,13]
in terms of the number of parameters and FLOPs. Assume that the number of input neurons
in each layer is Ni, the number of output neurons is No, the number of input channels
is Ci, and the number of output channels is Co. Each Conv layer consists of Co kernels
of size 1× z, where we set z = 3, and we also learn that No = Ni − z + 1 for each Conv
layer. When calculating FLOPs, the bias is considered, so the number of FLOPs in the Conv
layer is 2× z× Ci × Co × No, and the number of FLOPs in the dense layer is 2× Ni × No.
According to the parameters shown in Table 1, it can be calculated that the total number of
FLOPs for the proposed CNN-based algorithm is about 0.09 million, the number of FLOPs
for the FCNN-based algorithm [19] is around 0.15 million while Nt = 64. However, the
traditional HBF schemes, such as [12,13], have higher complexity due to a large number
of complex iterative operations, and the number of FLOPs is approximately 0.26 million.
The detailed complexity comparison when Nt = 64 is shown in Table 2. The analysis of the
number of parameters and FLOPs shows the great superiority of the proposed CNN-based
scheme over other schemes in terms of complexity. Moreover, the significant reduction
in complexity leads to an increase in execution speed. We also compared the average
execution time of the proposed CNN-based HBF scheme, the FCNN-based scheme, as well
as the two traditional schemes, as shown in Table 3, where we set Nt = 64. It can be noticed
that the traditional scheme [12] has the highest execution time, followed by scheme [13].
The execution times of the two traditional HBF schemes are much higher than the two
schemes using DL. In particular, the proposed CNN-based algorithm has a shorter average
execution time compared to FCNN. Overall, it is observed that the proposed algorithm has
a superior advantage over other algorithms both in terms of complexity and execution time.

Table 2. Complexity comparison.

HBF Scheme Number of Parameters Number of FLOPs

Proposed CNN-based 16,556 0.09 million
FCNN-based [19] 75,720 0.15 million

Traditional - 0.26 million

Table 3. Execution time comparison.

HBF Scheme Execution Time

Proposed CNN-based 0.3223 s
FCNN-based [19] 0.3338 s
Traditional [12] 11.9553 s
Traditional [13] 9.5333 s

4. Simulation Results

We consider a downlink MISO system model where a BS equipped with Nt transmit
antennas and one RF chain serves a single-antenna user for HBF design. In the simulation
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section, we discuss the performance of the proposed algorithm in terms of both the gen-
eralization ability for multiple CSIs and the specific solving ability for an individual CSI,
respectively. This section verifies the performance of the proposed unsupervised CNN-
based HBF algorithm using simulation experiments. To compare the performance, several
solving schemes based on traditional optimization techniques and FCNN are employed in
the experiments, including:

• Full digital beamforming algorithm: This algorithm (labeled with ’Full Digital BF’)
is a digital beamforming technique based on singular value decomposition (SVD).
Although the optimal performance can be achieved theoretically, it will face the issues
of high overhead, high implementation complexity and high power consumption in
large-scale antenna arrays.

• Traditional HBF algorithm [12]: This scheme (labeled with ’MO-AltMin HBF’) approx-
imates the HBF optimization problem as a matrix factorization problem with alternate
optimization of analog and digital beamforming. However, it imposes a performance
loss and fails to obtain optimal results.

• Traditional HBF algorithm [13]: This method (labeled with ’Heuristic HBF’) is an
element-based heuristic HBF iterative algorithm that optimizes the beamforming
matrix while taking the performance metric as the optimization objective directly. Yet,
it requires numerous iterative operations with high computational complexity and
long execution time.

• FCNN-based HBF algorithm [19]: This scheme employs DL network architecture to
optimize HBF, but its use of multiple fully connected layers suffers from the issue of
excessive weight parameters, which may raise the computational complexity.

The simulation experiment environment is deployed on a computer with Windows 10
OS as well as NVIDIA GeForce GTX 1650 GPU and Intel(R) Core(TM) i7-10750 CPU, and
the model training is based on Python 3.7 and Tensorflow 2.0.0.

4.1. Channel Model

The proposed optimization algorithm can efficiently achieve feasible beamforming
solutions once the channel parameters are given. It is especially noted that the algorithm
can be applied for any channel environments. Specifically, we use two typical channel
models (i.e., Rayleigh fading channel and geometric mmWave channel) as the channel h
between BS and user for correlation simulations. We summarized the model generating
methods and properties for the Rayleigh fading channel and geometric mmWave channel
in Table 4.

Among them, the Rayleigh fading channel assumes that the signal amplitude is
random after it passes through the wireless channel. Suppose hi denotes the i-th element of
the vector h. Each element of this channel is an independent and identically distributed
(i.i.d.) zero-mean circularly symmetric complex Gaussian random variable, i.e., hi ∼
CN(0, 1).

Beyond the ideal Rayleigh fading channel, our proposed HBF optimization algorithm
can be employed for mmWave communication with very limited clusters, which suffers
from severe free-space path loss during propagation. Consequently, a geometric mmWave
channel model with the same parameters as presented in [23] is considered, which can be
expressed as

hH =

√
Nt

L

L

∑
l=1

αla
H
t (θl), (7)

where L = 3 denotes the number of clusters between the BS and the user and each
scattering cluster contributes a single propagation path, where one line-of-sight (LoS) path
is adopted. Meanwhile, αl ∼ CN(0, 1) stands for the complex gain of the l-th cluster.
at(θl) =

1√
Nt
[1, ej 2πr

λ sin(θl), . . . , ej 2πr
λ (Nt−1)sin(θl)]T indicates the transmitting antenna array

response vector at the BS, and, furthermore, θl is the azimuth angles of departure (AoD) of
the l-th cluster drawn independently from uniform distributions over [0, 2π].
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Table 4. Channel Models for Algorithm Evaluation.

- Rayleigh Fading Channel Geometric mmWave Channel

Model generation hi ∼ CN(0, 1) hH =
√

Nt
L ∑L

l=1 αlaH
t (θl)

Properties

X Non LoS path;

X Rich scattering environment

surrounding the receiver.

X One LoS path;

X Directional transmission due to short wavelength

or no scattering objectives near the receiver.

4.2. Generalization for Multiple CSIs

To ensure the generality of the network, we gave different realizations of h to construct
two datasets, each consisting of 100 channel samples. A total of 90% of the first dataset
was selected as the set for training the network model, and the remaining 10% was used
as the validation set. The validation set was used to adjust the hyperparameters of the
neural network model during the training process to maximize the generalization ability of
the model to achieve the accurate prediction of new data, where the generalization ability
refers to the ability of the model to adapt to new samples. The second dataset was used
as the test set to evaluate the final performance of the model. All simulation results were
obtained by taking the average of all channel realizations.

Figure 3 shows the SE performance when the number of Conv blocks is 1, 2, 3, and 4
respectively. To facilitate the comparison, the networks in the four cases are set such that the
number of parameters to be trained are the same, which makes sure that the computational
complexity of the four cases are the same. We explore the effect of various numbers of
Conv blocks on the SE and complexity of the proposed network model. It can be seen that
the network with three Conv blocks has the best performance, while one Conv block has
the worst one. For the cases of one Conv block and two Conv blocks, the generalization
ability is limited. Although it is possible to use more filters to achieve a similar performance
as that of three Conv blocks, it will cause very high complexity since the width of the
neural networks should be drastically increased. The four Conv blocks exhibit lower SE
compared to the three Conv blocks with the same complexity and fail to attain the desired
performance. The reason for this is that the deepening of the network causes the gradient
to be unstable and the performance will be degraded instead. We use three Conv blocks
for subsequent experiments, since networks with three Conv blocks can achieve better SE
performance with low complexity.

The learning rate setting is crucial when training the model, because it controls the
magnitude of parameters updated per time. Figure 4 shows the convergence of the pro-
posed scheme under various learning rates with Nt = 64, SNR = 20 dB. It is observed
that the learning rate of 0.1 converges to stability in about 70 epochs with the fastest con-
vergence rate, but it has the lowest SE value. The learning rate of 0.01 tends to stabilize
in about 170 epochs and has the highest SE value. In addition, the learning rate of 0.001
becomes stable in about 330 iterations. Figure 5 compares the SE performance versus
SNR of the proposed scheme under various learning rates in large geometric mmWave
channel with Nt = 64. Obviously, the learning rate setting of 0.01 has the highest SE value,
while setting it to 0.5 or 0.0001 will not give excellent SE performance. This is because
too high a learning rate will cause larger update amplitude and the parameters to be
optimized fluctuate around the minimum value and do not converge, while too low will
cause slow convergance.
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Figure 3. Spectral efficiency comparisons of the proposed scheme under various numbers of Conv
blocks in geometric mmWave channel with Nt = 64.
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Figure 4. Spectral efficiency performance versus epochs of the proposed scheme under various
learning rates in geometric mmWave channel with Nt = 64, SNR = 20 dB.
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Figure 5. Spectral efficiency performance versus SNR of the proposed scheme under various learning
rates in geometric mmWave channel with Nt = 64.

Figure 6 illustrates the convergence performance of the proposed CNN structure with
1000 epochs and a learning rate of 0.01 in large geometric mmWave channel with Nt = 64.
At the beginning of the training stage, the training weight parameters are not optimal.
Thus, the loss values for the first few epochs are quite large. As the training proceeds, the
parameters tend to be optimal and the loss decreases abruptly. After that, the system loss
function tends to be stable with very small fluctuations and low loss values.

Figure 7 gives the comparison of SE performance under different beamforming
schemes in large Rayleigh fading channel with Nt = 64. The full digital beamforming
method provides higher SE compared to HBF schemes. It can be seen that, under the same
channel samples, the proposed CNN-based HBF scheme achieved better performance than
traditional HBF iterative algorithms, and obtained higher SE than the FCNN-based scheme.
Moreover, we performed the simulation experiments under different antenna configura-
tions to reflect the generality of the model. Specifically, Figure 8 shows the SE achieved
by different beamforming schemes in large Rayleigh fading channel with Nt = 128. All
schemes show a significant improvement in SE values due to the increased number of
antennas. It can also be clearly seen that the proposed CNN has much higher SE than other
HBF algorithms.

Furthermore, except for Rayleigh fading channels, our proposed HBF design scheme
is also applicable to large mmWave channel with limited clusters. Figure 9 compares
the performance of the proposed algorithm with other beamforming algorithms in large
geometric mmWave channel when Nt = 64. The performance of our proposed algorithm is
improved upon only by the fully digital beamforming algorithm. In addition, our proposed
CNN-based scheme still has a higher SE performance compared to the traditional HBF
algorithms and FCNN. Similarly, we present the achieved SE of various beamforming
algorithms in large geometric mmWave channel under different antenna configurations, as
shown in Figure 10. It is equally noticed that the SE performance of the proposed CNN
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solution is close to that of the optimal fully digital beamforming solution, and significantly
outperforms the traditional heuristic HBF algorithm [13] and FCNN.
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Figure 6. Convergence performance of the proposed scheme in geometric mmWave channel with
Nt = 64.
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Figure 7. Comparison of spectral efficiency performance under different schemes in Rayleigh fading
channel with Nt = 64.
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Figure 8. Comparison of spectral efficiency performance under different schemes in Rayleigh fading
channel with Nt = 128.
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Figure 9. Comparison of spectral efficiency performance under different schemes in geometric
mmWave channel with Nt = 64.
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Figure 10. Comparison of spectral efficiency performance under different schemes in geometric
mmWave channel with Nt = 128.

4.3. Specific Solution for an Individual CSI

The comparison of the generalization ability of the proposed HBF method against
other algorithms for multiple CSIs is discussed above. Existing DL-based studies mostly
discuss the above aspect, specifically feeding numerous different channel implementations
into the framework and then computing the average SE performance of these multiple CSIs.
However, they lack the specific solution for any individual CSI. Different from previous
works, we also innovatively discuss the specific solving capability of the mentioned HBF
algorithm for an individual CSI in this work. For this part, as long as a CSI is given,
we can feed it into the proposed neural network framework for training to efficiently
calculate the feasible specific solution for this CSI, which is applicable to all channel
conditions. The following simulation experiments are conducted in terms of the specific
solution for an individual CSI under both Rayleigh fading channel and geometric mmWave
channel, respectively.

Figure 11 shows the SE performance of our proposed HBF algorithm compared to
other algorithms in large Rayleigh fading channel with Nt = 64. As shown in Figure 11, we
can clearly see that, similar to the part of the generalization of multiple CSIs, the proposed
algorithm still has better SE performance compared to the traditional HBF algorithms and
FCNN in terms of the specific solving for a single CSI. Furthermore, Figure 12 plots the SE
versus SNR for different HBF schemes in large geometric mmWave channel with Nt = 64.
With increasing SNR, the proposed CNN-based scheme outperforms the traditional HBF
algorithms and FCNN-based scheme. Our proposed algorithm has a performance similar
to that of the optimal solution for full digital beamforming.

As mentioned above, the proposed algorithm performs better than the traditional HBF
algorithms as well as the FCNN-based algorithm in both the generalization capability for
multiple CSIs and the specific solving capability for an individual CSI. Since FCNN has
the ability to adopt a global perceptive, FCNN has a serious issue, i.e., there are too many
parameters. While CNN can achieve local perception, the weights of different neurons
in the Conv layer are shared, which greatly reduces the parameters and improves the
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training performance of the whole network, and can extract features more effectively.
Meanwhile, CNN can handle the coupling between different elements more efficiently
than FCNN [21]. It is shown that the proposed CNN model obtained superior performance
compared to FCNN.
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Figure 11. Comparison of spectral efficiency performance among different schemes about specific
solution for an individual CSI in Rayleigh fading channel with Nt = 64.
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Figure 12. Comparison of spectral efficiency performance of different schemes about specific solution
for an individual CSI in geometric mmWave channel with Nt = 64.

5. Conclusions

In this work, we presented a low-complexity HBF optimization algorithm for a down-
link MISO system with a CNN-based network architecture and an unsupervised learning
mechanism for training. We compared the performance of the mentioned algorithms in
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terms of the ability of both generalization of multiple CSIs and specific solving of an in-
dividual CSI, respectively. Simulation results confirmed the feasibility of the proposed
scheme. A comparison of the proposed scheme with other existing works was presented
with respect to complexity and SE performance. Compared with traditional HBF algorithms
and FCNN, the CNN-based HBF algorithm we proposed obtains superior SE performance
with lower complexity. The work that we performed offers a novel approach to the HBF
design and delivers an innovative new idea for the optimization problem.
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