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Abstract: A Mach–Zehnder modulator (MZM) is necessary for implementing a decoy-state protocol
in a practical quantum key distribution (QKD) system. However, an MZM bias control method
optimized for QKD systems has been missing to date. In this study, we propose an MZM bias control
method using N (≥2) diagnostic pulses. The proposed method can be efficiently applied to a QKD
system without any additional hardware such as light sources or detectors. Furthermore, it does not
reduce the key rate significantly because it uses time slots allocated to existing decoy pulses. We
conducted an experimental demonstration of the proposed method in a field-deployed 1 × 3 QKD
network and a laboratory test. It is shown that our method can maintain the MZM extinction ratio
stably over 20 dB (bit error rate ≤1%), even in an actual network environment for a significant period.
Consequently, we achieved successful QKD performances.

Keywords: quantum key distribution; Mach–Zehnder modulator; bias control; decoy-state protocol

1. Introduction

The rapid development of quantum computing technology [1–6] has radically stim-
ulated interest in quantum cryptography. Particularly, quantum key distribution (QKD)
systems, which allow two distant parties to share secure keys [7–13], have attracted consid-
erable attention as a core element of quantum cryptography.

Practical QKD systems using weak coherent pulses are sensitive to environmental
noise. Accordingly, many efforts [14–25] have been made to design a noise-tolerant optical
architecture and to stabilize optical devices, such as lasers, detectors and modulators.
However, to date, a Mach–Zehnder modulator (MZM) bias control method for QKD
systems is missing, despite the MZM being essential for implementing a decoy-state
protocol [26,27], which is the only way to prevent photon number splitting attacks [28,29],
except for ideal single-photon sources. In other fields, there are primarily two types of
MZM bias control methods: one that utilizes optical power monitoring [30–34] and the
other that utilizes a dither signal [35–43]. In the former case, the input and output power
or their ratio are used as the feedback signal. In the latter case, a dithering signal is used
to generate the first- and second-order harmonics, and, subsequently, the bias voltage is
controlled according to their power ratio. However, they are not suitable methods for a
QKD system because even a small amount of optical crosstalk noise from the strong light
used in their bias control may increase errors in the QKD system. For the same reason,
commercial products for bias control requiring additional optical devices are not efficient
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for QKD systems. In addition, they are incompatible with system miniaturization owing to
additional optical devices.

In this study, we propose an MZM bias control method that can be efficiently applied
to QKD systems. The proposed method does not require additional devices, such as lasers,
beam splitters (BSs) or detectors. This is because it is implemented using a software modi-
fication that only adds N (≥2) diagnostic pulses [34] for bias drift estimation. Therefore,
it does not conflict with system miniaturization. Moreover, it does not degrade the key
rate significantly because the number of signal pulses can be maintained regardless of the
number of diagnostic pulses. This is performed by consuming the time slots allocated to
existing decoy pulses. Such advantages are significant when implementing a QKD network
system [44–49] comprising many users that require individual bias controllers. In addition,
it can be efficiently implemented on a parallel processor such as a field-programmable gate
array (FPGA) device. This is because its calculations can be parallelized. As the proposed
method immediately compensates for the phase drift estimated by the diagnostic pulses, it
has a higher convergence rate than conventional proportional–integral–derivative (PID)
control, in which the current point converges to the desired setpoint by gradually reducing
errors. Finally, we experimentally demonstrated the proposed method in a laboratory and
in the field to show its feasibility. In the field test, we applied the control method to a testbed
consisting of a 1× 3 QKD network system installed in the security facility of a smart factory
in South Korea. We verified that the method could keep the MZM bias point at the desired
setpoint (null point) by compensating for the bias drift owing to environmental changes.

The remainder of this study is organized as follows. In Section 2, the proposed control
method is described. In Section 3, we present the results of the laboratory and field tests.
Finally, our main conclusions and findings are summarized in Section 4. See Table 1 for the
abbreviations and symbols used in this work.

Table 1. Nomenclature of the symbols and abbreviations used in this article.

Abbreviation Description Symbol Description

BS Beam splitter θdri f t Practical phase drift
CIR Circulator θT

dri f t Theoretical phase drift,
[
0
◦
, 360

◦
)

CW Continuous-wave pi Practical detection probability
DC Direct-current pTi

(
θT

dri f t

)
Theoretical detection probability

DFB Distributed feedback Err
(

θT
dri f t

)
Error between pi and pTi

(
θT

dri f t

)
DL Delay line θmod Phase modulation
DWDM Dense wavelength division multiplexer θi

mod Phase modulation of the i-th diagnostic pulse
ER Extinction ratio Iout Output intensity
FM Faraday rotator mirror Lin Insertion loss
FPGA Field-programmable gate array Iin Input intensity
MCU Microcontroller unit Ci Count for the i-th diagnostic pulse
MZM Mach–Zehnder modulator
PBS Polarization beam splitter
PD Photodiode
PID Proportional–integral–derivative
PINPD P-i-n photodiode
PM Phase modulator
QBER Quantum bit error rate
QKD Quantum key distribution
SL Storage line
SPD Single-photon detector
TLD Tunable laser driver
VOA Variable optical attenuator

2. Method

As shown in Figure 1a, the output intensity of the MZM is distorted by the phase
(bias) drift θdri f t, which is mainly caused by temperature changes and the photorefractive
effect [30,50]. This negatively affects the performance of a QKD system that requires
precisely defined pulse intensities. In this study, we propose a bias control method that
compensates for it in the post-processing step after real-time bias drift estimation using
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diagnostic pulses. Figure 1b shows the block diagram of the method applied to a decoy-state
BB84 QKD system [7,27]. The detailed procedure is as follows. Here, the transmitter and
receiver are indicated as Alice and Bob, respectively, similar to conventional QKD systems.
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to the theoretical phase drift θT
dri f t. The error is minimized when the θT

dri f t maximally matches the

practical value θdri f t. Thus, Alice can estimate θdri f t = 70
◦

from the minimum error at θT
dri f t = 70

◦
.

1. During the QKD protocol, Alice prepares N (≥2) types of diagnostic pulses whose
MZM phases are modulated by θi

mod = 2π
N (i− 1) with uniformly distributed prob-

abilities for i = {1, . . . , N}. Thereafter, Alice sometimes transmits them to Bob as
substitutes for the decoy pulses. Similar to the signal and decoy pulses, the diagnostic
pulses are attenuated to single-photon levels. This method does not weaken the secu-
rity of the QKD significantly because nobody except Alice can distinguish between
the decoy and diagnostic pulses. Conventionally, the MZM output intensity can be
described as [34,35,39,51,52]:

Iout = Lin Iin cos2
(

θmod + θdri f t

2

)
(1)

where θmod and θdri f t are the phase modulation and phase drift, respectively, Lin is the
insertion loss and Iin is the input intensity.

2. Bob receives and measures the incoming pulses using single-photon detectors (SPDs).
After measuring, he publicly announces the time indexes where the signals are de-
tected. Thereafter, Alice and Bob perform the remaining protocols, such as key sifting,
error correction and privacy amplification.

3. Simultaneously, Alice accumulates the detection results of the diagnostic pulses unless
there are no significant phase drifts. The optimal accumulation time strongly depends
on the ambient environment, channel loss, detection efficiencies and pulse intensities.

4. After accumulation, Alice calculates the normalized detection probabilities pi as [53,54]

pi =

(
N
2

)
× Ci/ΣCi, (2)
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where Ci is the count for the i-th diagnostic pulse. Ci can be easily obtained from
Bob’s announcement. Subsequently, Alice builds the following error model based on
the least-squares method [53,54]:

Err
(

θT
dri f t

)
= Σ

[
pi − pTi

(
θT

dri f t

)]2
, (3)

where pTi

(
θT

dri f t

)
= cos2

(
θi

mod+θT
dri f t

2

)
is the theoretical detection probability for the

i-th diagnostic pulse with corresponding phase value θi
mod and theoretical phase drift

θT
dri f t =

[
0
◦
, 360

◦)
. Alice may calculate the theoretical values each time the probability

is examined or may use a look-up table that has been created in advance.
5. Alice finds θT

dri f t minimizing Err
(

θT
dri f t

)
by adjusting θT

dri f t from 0–360
◦
. Subse-

quently, the found value is estimated as θdri f t because the error is minimized when
θT

dri f t maximally matches the practical value θdri f t. For example, Alice can assume

θdri f t = 70
◦

with the smallest Err
(

θT
dri f t

)
at θT

dri f t = 70
◦
, as shown in Figure 1c. The

estimation accuracy depends on the adjustment interval of θT
dri f t. As the interval be-

comes smaller, the prediction accuracy becomes better. However, more computational
power and time are required.

6. Finally, Alice compensates for the estimated phase drift by applying θmod = θmod − θdri f t;
therefore, the MZM bias point is maintained at the desired point. Accordingly, as the
θdri f t term of the MZM output intensity is erased, Equation (1) becomes

Iout = Lin Iin cos2
(

θmod−θdri f t+θdri f t
2

)
,

= Lin Iin cos2
(

θmod
2

)
.

(4)

Alice repeats the above calibration steps at specific intervals or when a phase drift
higher than a predefined threshold is detected.

3. Experimental Results

We performed experiments in a laboratory and in the field. The experimental setup for
the laboratory test is shown in Figure 2. A 1550 nm distributed feedback (DFB) laser was
used for generating continuous-wave (CW) light. The MZM used in the experiment was an
AZ-0S5-10-PFU-PFU (EOSpace Inc., USA) model, which utilizes a Z-cut LiNbO3 crystal
optimized for a wavelength of 1550 nm and has a bandwidth of up to 10 GHz. A refrigerant
spray was used to abruptly reduce the temperature of the MZM. The control method was
implemented on a STM32 Nucleo-144 board with a STM32F413ZH microcontroller unit
(MCU). We set N = 4, considering the accumulation time and random bit consumption for
the diagnostic signals. The desired bias point was set to the null point, and an adjustment
interval of 1◦ was used to calculate pTi

(
θT

dri f t

)
in Equation (3). A 16-bit digital-to-analog

converter and a 12-bit analog-to-digital converter built on the STM32 board were used to
generate the diagnostic signals and to measure the output of the photodiode (PD).

We measured the output intensities of the MZM, which was spray-cooled using
a refrigerant (SF-1013), with and without the proposed control method. As shown in
Figure 2b, the output stability depended on whether the proposed method was employed
or not. The output intensity with the bias control (red solid line) remained at the desired null
point, whereas the intensity without the bias control (black solid line) fluctuated. Figure 2c
shows the direct-current (DC) bias voltage (blue solid line) used to compensate for the
phase drifts, which were estimated using the MZM output intensities of the four diagnostic
signals, as shown in Figure 2d. The phase drift (Step 4 in Section 2) was estimated from the
output voltage of the PD instead of the photon counts of the SPD because CW light was
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used in the laboratory test. The fluctuation near 3.5 min in Figure 2c was attributed to an
MZM V2π of approximately 7 V.
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Figure 2. Experimental setup and results of the laboratory tests: (a) Experimental setup of the
laboratory test; (b) MZM output intensity of signal modulation. The black and red solid lines
represent the output intensities with and without the proposed control method, respectively;
(c) Direct-current (DC) bias voltage to compensate for the bias drift; (d) MZM output intensities of the
diagnostic modulations. The abbreviations are defined as follows: distributed feedback laser (DFB
laser); photodiode (PD); and microcontroller unit (MCU).

In the field test, we applied the control method to a real testbed, namely, a 1 × 3 QKD
network system installed in a secure communication system of a smart factory in South
Korea. The field deployment of the QKD network system and its corresponding experi-
mental setup are shown in Figure 3. The control system was implemented using a personal
computer and an FPGA board equipped with multiple 16-bit digital-to-analog converters,
instead of the STM32 board used in the laboratory test. Although different hardware
platforms were used, parameters such as N, the step interval and the desired setpoint had
similar values in both tests. Each transmitter (Alice) had an individual control system
and performed the steps described in Section 2 at the respective time slots allocated via
time-division multiplexing. We set the count accumulation time of the diagnostic pulses to
approximately 5 min because there were no significant phase drifts during a 5 min window
(in the facility’s communication room); this means that the bias drift was compensated
every 5 min. As mentioned, the optimal accumulation time depends on the QKD system
parameters, such as temperature, channel loss, detection efficiency and pulse intensity.

The field test results are shown in Figure 4. We measured the extinction ratios (ERs) of
the MZMs and QKD performance parameters, such as sifted key rates and quantum bit
error rates (QBERs), over 4–5 days. Figure 4a,b show the sifted key rates and QBERs of the
1 × 3 QKD network, respectively. Figure 4c shows the ERs of the MZMs. During the test
period, all the ERs were maintained over 20 dB, and satisfactory QKD performances were
achieved. There was no significant difference in the stabilities despite the different counts
owing to the different channel losses. These results indicate that the proposed method
could maintain MZM stability in an actual network environment.
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Figure 3. Field deployment and experimental setup of the 1 × 3 quantum key distribution (QKD)
network system: (a) Field deployment in a smart factory in South Korea. Map data: Google, © 2022
Maxar Technologies, TerraMetrics. The insets show the equipment for the transmitter (Alice) and
receiver (Bob); (b) Experimental setup. Time- and wavelength-division multiplexing were used to
establish the 1 × 3 network. The lengths (in km) and losses (in dB) of the quantum channels were
indicated. The abbreviations are defined as follows: tunable laser driver (TLD); circulator (CIR); beam
splitter (BS); single-photon detector (SPD); phase modulator (PM); delay line (DL); polarization beam
splitter (PBS); dense wavelength division multiplexer (DWDM); p-i-n photodiode (PINPD); variable
optical attenuator (VOA); storage line (SL); and Faraday rotator mirror (FM).
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Figure 4. Experimental results of the field test: (a) Sifted key rates; (b) Quantum bit error rates
(QBERs); (c) Extinction ratios (ERs) of the MZMs. The red, black and blue solid lines are the results of
Alice 1–3, respectively.

4. Conclusions

We proposed and experimentally demonstrated an efficient MZM bias control method
for QKD systems. The proposed method is cost-effective and simplifies the transmitter.
This is because it can be implemented using a software modification for bias drift estimation
without any additional hardware. This is a crucial advantage of the proposed method,
particularly in a QKD network system comprising many users. Unlike the PID control
method that converges to the desired setpoint by gradually minimizing errors, the proposed
method immediately compensates for the phase drift estimated through the diagnostic
pulses. Thus, based on our own experience, it can attain the setpoint faster than the
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conventional PID control method. In addition, the proposed method can be implemented on
a parallel processor, such as an FPGA. Finally, there is no significant decrease in the key rate,
as only the time slots allocated to the existing decoy pulses are used for diagnostic pulses.

We demonstrated the implementation feasibility of the proposed method in a labo-
ratory test and in a field test in a 1 × 3 QKD network testbed, which was installed in the
security facility of a smart factory in South Korea. In the experimental results, we showed
that the proposed method could handle temperature changes and maintained the ERs
over 20 dB (bit error rate ≤1%) for several days, even in an actual network environment.
Although the measured ERs did not meet the maximum performance that was provided
by the manufacturer (i.e., 30 dB), they were sufficient for application in the QKD system
(considering that a maximum error of only 1% was attributed to the 20 dB ER). Further-
more, they can be further improved by optimizing the compensation period, diagnostic
pulse proportion and N. As mentioned, the optimal control period strongly depends on
the implementation environment. Additionally, it has a trade-off relation with the key
generation rate. Thus, to optimize the QKD performance, future researchers should take
this into account. As we perceived that the real-time stabilities of the ERs, sifted key rates
and QBERs sufficiently showed the feasibility of the proposed method, we did not calculate
the secret key rate indicating the overall QKD performance in this study. However, we
assume that it is not significantly different from that of the conventional decoy-state BB84
QKDs. This is because our method can be implemented by consuming only the time slots
of existing decoy pulses.

Based on our experimental results, we believe the proposed method can provide an
efficient way to implement an MZM bias control in QKD systems. In the future, we will
improve control performance via parameter optimization. In addition, although the current
method in this study corresponds to only single MZM bias control, we will develop an
advanced one for multiple MZMs for a wide range of applications, such as coherent optical
communications. A rigorous security analysis will also be conducted.
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