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Abstract: In this brief, we propose a 60 GS/s high-linearity two-stage 8 × 8 time-interleaved track-
and-hold circuit where it is possible to tune the static non-linearities of the second-stage buffer
by applying a proper bias voltage. This allows us to maximize the static linearity of the buffer or
introduce effects that counterbalance the non-linearities of other blocks of the analog front-end. To
validate the proposed circuit, a prototype in TSMC 5 nm technology is designed and a linearity
calibration loop is proposed for a Pulse Amplitude Modulation SerDes receiver. For the analog buffer,
circuit-level simulations are performed in Cadence Virtuoso, while the calibration loop is simulated
in MATLAB. The optimal bias voltage value can be found by modeling the track-and-hold linearity
using a Taylor series and implementing the linearity calibration loop in MATLAB. By applying this
result to the circuit-level simulation, we obtain a total harmonic distortion of over 50 dB, which
matches with the maximum value achievable across the complete bias voltage control range. Lastly,
the linearity of the system is also verified using a PAM-8 pseudorandom stream signal.

Keywords: PAM-8; SerDes receivers; track-and-hold; time-interleaved; linearity

1. Introduction

Over the last few years, there has been a strong increment in internet traffic. This led to
a rising interest in high-speed wireline communication systems with ever-increasing data
rates, especially in data center applications. As of now, the most employed modulation in
SerDes transceivers is Pulse Amplitude Modulation with four levels (PAM-4) [1–3], which
allows doubling the data rate using the same symbol rate compared to Non-Return-to-Zero
(NRZ) modulation. To achieve even higher data rates, the symbol rate of the system can
be increased, but this approach is limited by the bandwidth of the channel. To overcome
this problem, a higher-order modulation can be used. Examples of these modulations are
PAM-8 [4–6], and other eight-symbol modulations such as [7] that increment the data rate
by 50% compared to PAM-4, while using the same symbol rate.

On the other hand, PAM-8 introduces other challenges. Indeed, due to the high
number of voltage levels required, it is much more sensitive to non-idealities such as
noise, non-linearities, and Inter-Symbol Interference (ISI) that reduce the eye aperture.
This directly affects the Bit Error Rate (BER) of the receiver, reducing the performance of
the overall link. While the noise can be theoretically reduced by increasing the power
consumption of the analog front-end and the ISI can be compensated by more complex
equalization techniques, the non-linearities are difficult to address. Due to the low supply
voltages of scaled CMOS technology nodes, it is challenging to achieve a high voltage
swing for a good Signal-to-Noise Ratio (SNR) while maintaining a suitable total harmonic
distortion (THD). Figure 1a shows the simulated root mean square (RMS) error at the slicer
input, including the contribution of noise, residual ISI, and distortion, as a function of SNR
(due to additive noise at receiver input) for different levels of receiver (RX) static THD
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derived using a MATLAB simulation of a PAM-8 receiver. For THD values of approximately
32 dB and 36 dB [3], as used in typical PAM-4 receivers, the system shows a higher value of
MSE compared to the 50 dB case which resembles the error in the case of an RX with ideal
linearity. The same behaviors are visible in Figure 1b where the SER was obtained for a
lower range of input SNR. This range was used to give evidence of the system behavior
while not having to perform time-consuming simulations which can give a statistically
relevant number of points to calculate the SER for high SNR values.

Because of the difficulties in achieving a high THD, the need arises for calibration
to maximize the linearity, especially for the track-and-hold (TH) sampling stages of time-
interleaved (TI) ADCs commonly used for wireline receivers. Indeed, as these blocks
typically work with a large signal swing to maximize ADC loading, they are a significant
contributor to overall THD. While many techniques can be found in the literature to reduce
the non-linearities introduced by the TI ADC interleaving mismatches [8,9], there are
relatively few examples of systems that address the non-linearities of the analog front-end.
In [10,11], such systems make use of complex algorithms in the digital domain.
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Figure 1. (a) RMS error (in volts from the ideal reconstruction of the digital values with a swing
of 2 Vpp) and (b) SER as a function of SNR for different levels of AFE static THD, derived using a
MATLAB simulation of a PAM-8 receiver.

This paper proposes a TH circuit with tunable non-linearities and a simple calibration
loop that allows maximizing the static linearity of the analog front-end by controlling a
bias voltage in the analog domain. This could either improve the BER of the receiver or
relax the constraint on the SNR for the same value of BER required.

2. TH Sampler

Figure 2 shows the top block diagram of the TH sampler. The circuit samples the
input signal on 64 TI capacitances with a sampling speed of 60 GS/s. This is achieved
through two cascaded time-interleaved stages. The signal is first sampled on eight different
capacitances by the first stage, and then this process is repeated by the second stage for
each of the eight sampled values. The sampling speeds of the two stages are 7.5 GS/s and
937.5 MS/s, respectively.

2.1. Circuit Description

The first stage is implemented through the sampling buffer described in [12]. In
the second stage, eight interleaved buffers are used. Each one is followed by eight time-
interleaved sampling switches to reach the desired interleaving factor, equal to 64. These
eight buffers must support an input common-mode around half of the supply voltage to
accommodate the output common-mode of the previous stage. Suitable solutions are the
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ones used in [13,14], which are gm-gm inverter-based topologies. These topologies are very
simple to design while having good speed and linearity.
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Figure 2. An 8× 8 time-interleaved two-stage track-and-hold circuit and DAC for non-linearity calibration.

The linearity performance of this circuit stems from the opposite behavior of the
inverter and diode. While the inverter compresses the signal, the diode load provides
decompression. These two effects tend to cancel each other, resulting in overall good
linearity. Nonetheless, this solution shows some limits due to the imperfect matching
of the non-linearities. This is especially true across process corners and temperatures in
which the behaviors of the inverter and the diode are significantly different, thus reducing
the linearity.

For this reason, the solution shown in Figure 3 is proposed. It consists of a simple
inverter for the first gm stage, followed by a differential current-controlled inverter closed
in a diode configuration as load. The gate voltage vcorr of the tail transistor Mnt can be
tuned to change the non-linearities of the diode and cancel the transconductor ones.
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2.2. Second-Stage Buffer Linearity Behavior

The relative non-linearity error (εr) of the buffer static input–output characteristic is
defined as follows and it is shown in Figure 4 for different values of vcorr:

εr =
Voutd − GACVind

GACVind
, (1)



Electronics 2022, 11, 2199 4 of 10

where Voutd and Vind are the output and input differential signal, respectively, while GAC is
the linear gain of the buffer.

The transfer function of the second stage can be made linear, compressive, or decom-
pressive depending on the value of the bias voltage vcorr.

The value of vcorr which maximizes the linearity of the buffer across temperature and
process corners is shown in Figure 5. The optimum has the same trend with temperature,
but the temperature coefficient may be quite different for different process corners. A bias
circuit that allows the buffer to work in the optimum condition across PVT is thus not
straightforward, and hence a calibration is required.
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Another observation is that through the correct choice of the second buffer bias point,
the non-linearities of the previous or successive stages can be compensated for. To perform
this operation, a calibration is required to identify the non-linearity of the analog chain and
find the correct value of vcorr. This allows maximizing the THD performance of the overall
analog front-end.
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3. Linearity Calibration Loop

The actual implementation of the linearity calibration loop strongly depends on the
system in which the TH circuit is implemented. In this paper, the circuit is employed in a
PAM-8 receiver, and a calibration feedback loop suitable for such receivers is presented.

A PAM-8 receiver can be represented using the block diagram in Figure 6. The channel
symbol models the transmitter filter, the transmission channel, and the analog front-end
of the receiver using their combined impulse response (hch). The non-linearities of the
AFE are modelized in the subsequent block. The transmitted symbols filtered by hch
are then fed to the TH, which is composed of two stages. The non-linear input–output
characteristic of the circuits will be described by the coefficients of a Taylor approximation
in the developed model as discussed in the next section. Moreover, for the second-stage
buffer, the coefficients are dependent on the value of vcorr.
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After the second-stage buffer, the equivalent noise of the receiver is added to the
samples and the signal is quantized by the ADC. A Feed-Forward Equalizer (FFE) is then
used to remove the ISI introduced by the channel. Finally, the slicer makes the hard
decisions given the soft decisions as its input. By the proper digital processing of soft and
hard decisions, information about the optimum value of vcorr can be extracted in order to
minimize the receiver non-linearity errors.

The ADC and the DAC used in this model are ideal. Typically, the ADC introduces
non-linearities that are neglectable compared to the ones of the track-and-hold circuit,
meaning they do not have great impact on the overall system. On the other hand, the DAC
does not need to be linear as long as its input–output characteristic is monotone because
the feedback loop will drive the DAC to the optimal value of vcorr.

3.1. Taylor Approximation Validation

The non-linear input–output characteristic of the second-stage buffer can be analyti-
cally described using the Taylor expansion. Neglecting the even terms due to the differential
nature of the circuit, the following expression can be written:

Voutd(t) = ∑∞
i=0a2i+1V2i+1

ind (t), (2)

where a1 is the linear gain of the buffer and a2i+1 represents the odd-order distortion
coefficients. To verify the validity of the analytical model, the relative non-linear error εr
of the second-stage buffer, obtained through a DC sweep of the input signal, is compared
with a polynomial fitting of the characteristic with i ≤ 3. As shown in Figure 7, the Taylor
expansion up to coefficient a7 gives a good approximation of the non-linear error, as long as
the input signal is included in the range between −220 mV and 220 mV. This corresponds
to the maximum voltage amplitude allowed by the second stage.
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The polynomial approximation is also verified for different input signal frequencies
Fin, performing Periodic Steady State (PSS) simulations of the second-stage buffer for
Fin = 10 kHz and Fin = 100 MHz. From the non-linear output of the PSS simulation, the
polynomial distortion coefficients a2i+1 are calculated (with i≤ 3). The relative error arising
from the coefficients is then compared to the DC sweep simulation (Figure 7). For an
input signal frequency up to 100 MHz, the Taylor expansion described above gives a good
approximation of the non-linearities of the second-stage buffer. Higher frequencies were
not considered because, as we will see in further sections, a DC characterization of the
non-linearity still allows the system to converge to an optimal value of vcorr.

3.2. Calibration Loop Operation

Indicating with u(k) the PAM-8 symbols sent by the transmitter, the signal x(k) at the
first-stage buffer input is x(k) = u(k)⊗ hch(k). The signal z(k) at the TH output is then:

z(k) = x(k) + a3x3(k) + a5x5(k) + a7x7(k) (3)

where a3, a5 and a7 are the coefficients which describe the non-linearities introduced by the
cascade of the two buffers and of every component of the AFE chain depicted in Figure 6.

Assuming an optimal FFE, and thus a negligible residual ISI, the signal d(k) at the
slicer input can be written as:

d(k) = u(k) + a3u3(k) + a5u5(k) + a7u7(k) + n(k) (4)

where n(k) is the equivalent thermal and quantization noise of the analog circuit, which
has zero mean value.

Assuming the slicer hard decision is equal to the transmitted symbol u(k), the following
expression can be obtained by multiplying the slicer error d(k) − u(k) by u(k):

w(k) = u(k)
{

a3u3(k) + a5u5(k) + a7u7(k) + n(k)
}

(5)

The resulting signal w(k) is multiplied by a gain G, low-pass filtered, and fed into
a 7b DAC obtaining the correction voltage vcorr(k). As the terms with zero mean value
are suppressed by the low-pass filtering, the voltage vcorr(k) can be expressed in the first
approximation as:

vcorr(k) ≈ G
[a3 + a5 + a7]

2
(6)
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Therefore, the system can detect the non-linearity coefficients of the TH. The feedback loop
will then set the value of vcorr to minimize the error induced by such coefficients. The third
harmonic of the input signal, whose amplitude H3 is proportional to:

H3 ∝ 0.8a3 + a5 + 1.02a7 (7)

is therefore minimized. This approximation can be obtained by sending a sinusoidal input
signal with unitary amplitude sin(2π fin). Its Fourier transform can then be calculated after
it is distorted by the sampling stages, obtaining:

S( f ) = − 1
128

((64 + 48a3 + 40a5 + 35a7)δ( f − fin) + (16a3 + 20a5 + 21a7)δ( f − 3 fin) + . . .) (8)

By normalizing the coefficient of the third harmonic H3, we obtain Equation (7).
In real applications, residual ISI is present even after the FFE. This means that the main

cursor is not equal to the transmitted symbol value and therefore it cannot be canceled
from the soft decision d(k) by subtracting the slicer output from it. To show this, we can
first assume that a5, a7 = 0 for simplicity, and define he = hch ⊗ hFFE, with ∑i he(i) = 1. If
he(1) is the impulse response element corresponding to the main cursor, the value of vcorr
is also dependent on the residual ISI component (he(1)− 1) that hides the non-linearities:

vcorr(k) ≈
G[he(1)− 1]

2
+

Ga3Ch
2

(9)

where Ch is a coefficient dependent on the channel and FFE. A possible solution to this
problem is processing the signal with the method in Figure 8. The errors of Npost successive
and Npre previous samples are subtracted from e(k), removing the residual main cursor:

vcorr(k) ≈
G[he(0) + he(1) + he(2)− 1]

2
+

Ga3C′h
2

=
Ga3C′h

2
(10)

The components of the error signal dependent on other samples are filtered due to
their lack of correlation with the desired symbol. This method allows a correct operation of
the feedback loop without previous knowledge of the channel.
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4. Simulation Results

To validate the proposed calibration loop, the TH circuit was designed in TSMC
5 nm FinFET technology. The circuit was simulated with parasitic R and C, whose values
were derived from actual back annotations. In particular, they are based on previous chip
measurements and post-layout simulations, allowing the prediction of the post-layout
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behavior with reasonable accuracy. These added R and C take into account both higher
and lower metal level contributions. The circuit can operate with a sampling frequency of
60 GS/s with a gain of 6 dB at Nyquist, resulting in an output signal of 505 mVppd. The
power consumption of all the track-and-hold buffers from the 0.93 V voltage supply is
17.2 mW while driving the 64 ADCs load capacitances of 45 fF.

For two different PVT combinations, the distortion coefficients of the TH first and
second stages were obtained from circuit-level simulations. These values were used in
a MATLAB time-based model PAM-8 RX implementing the loop to derive the expected
steady value of vcorr for these two scenarios. In the model, the second-stage dependency
on vcorr(t) is also included and an AFE with ideal linearity was used.

Then, transient simulations of the overall system were performed using an input
sinusoidal signal of 252 mVppd at 1 GHz, with a source resistance of 25 Ω. Figure 9 shows
the THD of the TH output as a function of vcorr for typical and fast process corner. The
maximum linearity of over 50 dB was obtained for a value vcorr which almost matches the
one obtained through the MATLAB simulation (given the small differences between the
circuit and the modeling), meaning that the calibration loop can maximize the linearity of
the overall TH circuit.
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Figure 9. THD of the track-and-hold circuit from transient simulation for typical and fast process
corner. The markers denote the vcorr voltage obtained by the MATLAB model.

To further validate the performance improvements stemming from the proposed
calibration loop, a PAM-8 Pseudo-Random Binary Stream (PRBS) input signal with a
−30 dB channel attenuation at Nyquist was used. The signal was sent with two amplitudes,
full scale and a tenth of the full scale, obtaining the outputs vo1 and vo10. Afterwards,
the following operation was performed on the output signals to verify the linearity of
the circuit:

errms = rms(vo10 − 10·vo1) (11)

The value of the RMS error gives us an assessment of the system linearity with a PRBS
input signal. In Figure 10, we can see that the MATLAB model gives us a value of vcorr
which can almost minimize the RMS error and therefore the non-linearity, even though the
model does not include the dynamic non-linearities present in the circuit simulation.

To further validate the proposed linearity calibration technique, the same MATLAB
PAM-8 RX model simulation was repeated with the same TH distortion coefficients and
adding an AFE with 32 dB and 36 dB THD performance. In these cases, the calibration loop
converges to a vcorr value that maximizes the overall linearity of the RX chain including
the AFE. The resulting MSE at the slicer input shown in Figure 11a shows a behavior of
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the calibrated systems akin to the ideal RX linearity case. The same results are visible in
Figure 11b, where the SER is very similar to the case in which the RX linearity is ideal.
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5. Conclusions

This paper proposes a 60 GS/s 8 × 8 time-interleaved TH circuit in 5 nm FinFET tech-
nology with a gain of 6 dB at Nyquist and tunable non-linearities. A calibration feedback
loop for a PAM-8 receiver is proposed and modeled in MATLAB, which allows maximizing
the linearity of the TH. From the simulation of the MATLAB model, the voltage calibration
bias of the second-stage buffer was extrapolated. Then, the bias voltage was used to per-
form transistor-level simulations of the analog track-and-hold buffer, obtaining a THD of
over 50 dB in typical process corner with a 1 GHz, 252 mVppd sinusoidal input. The linear-
ity of the system was also verified using a PAM-8 pseudorandom stream signal showing
that the RMS error is indeed minimized. Lastly, the MATLAB simulation of the PAM-8 RX
with a 36 dB THD AFE model shows the possibility of using this calibration technique to
compensate for AFE non-linearities as well. In future works, the performances of the pro-
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posed TH circuit and calibration loop will be further verified using post-layout simulations
and HDL implementation, respectively, and eventually with silicon implementation.
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