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Abstract: Three-dimensional (3D) point cloud semantic segmentation is fundamental in complex
scene perception. Currently, although various efficient 3D semantic segmentation networks have been
proposed, the overall effect has a certain gap to 2D image segmentation. Recently, some transformer-
based methods have opened a new stage in computer vision, which also has accelerated the effective
development of methods in 3D point cloud segmentation. In this paper, we propose a novel semantic
segmentation network named LLGF-Net that can aggregate features from both local and global levels
of point clouds, effectively improving the ability to extract feature information from point clouds.
Specifically, we adopt the multi-head attention mechanism in the original Transformer model to
obtain the local features of point clouds and then use the position-distance information of point
clouds in 3D space to obtain the global features. Finally, the local features and global features are
fused and embedded into the encoder–decoder network to generate our method. Our extensive
experimental results on the 3D point cloud dataset demonstrate the effectiveness and superiority of
our method.

Keywords: local and global; 3D point cloud; semantic segmentation; multi-head attention

1. Introduction

Point clouds are a common form of data representation in 3D vision. 3D point cloud
processing is an important technology in the development of 3D vision and plays a signifi-
cant role in the development of autonomous driving, intelligent robots, and other fields.
Because point clouds have high-dimensional information in 3D space compared to 2D
images, 3D point cloud processing can obtain richer spatial structure information and
complex geometric shape information, which has incomparable advantages for accurate
navigation and perception of environment information [1]. In this paper, we focus on 3D
point cloud semantic segmentation, which is one of the subtasks of 3D point cloud process-
ing. Similar to the task of 2D image semantic segmentation, the purpose of 3D point cloud
semantic segmentation is to classify point clouds with the same semantic information in
space into the same category, which lays an important foundation for scene understanding
and information perception in complex environments.

Due to the irregularity and disorder of point clouds in 3D space, the methods in the
field of 2D images cannot be directly applied to point clouds. There is still a certain gap
in the performance of semantic segmentation between point clouds and 2D images. 3D
point cloud semantic segmentation methods include projection-based methods [2–5] and
voxel-based methods [6–10]. Since the proposal of the PointNet [11] network, 3D point
cloud processing has evolved into point-based methods. In recent years, more methods
for 3D point cloud semantic segmentation have been proposed, and the performance of
3D point cloud semantic segmentation is improving year by year [12–15]. Due to the
rapid development of methods based on Transformer [16] in 2D image vision in recent
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years [17,18], the point-based method in particular has also opened a new stage in the
development of 3D point cloud semantic segmentation. Recently, various transformer-
based methods have showed strong performance in 3D point cloud segmentation, including
PT [19], PCT [20], Voxel Transformer [21], etc. These methods not only show the feasibility
of transformer-based methods in 3D point cloud semantic segmentation, but also show
that 3D point cloud semantic segmentation methods based on Transformer still have rich
potential research value.

In this work, our semantic segmentation network is based on Transformer. Since most
networks are currently insufficient and incomplete in the feature extraction process, or only
focus on the design of local feature extraction, we consider extracting and merging features
from both local and global levels to improve the receptive field and feature aggregation
capability of point clouds. Specifically, in the local feature layer, we adopt the multi-head
attention mechanism in Transformer to aggregate the surrounding neighbor point features
from different feature spaces. At the global feature level, we use the ratio of the distance
between the local surrounding points and the boundary points in the global scope as the
global features. Finally, we fuse the local and global features and embed them on the
conventional convolution-based segmentation network to enhance the effect of semantic
segmentation.

In summary, our main contributions include the following.

• We adopt the multi-head self-attention mechanism to extract local features of point
clouds and use the position-distance information of point clouds in 3D space to extract
global features.

• We propose a novel semantic segmentation network named LLGF-Net that can fuse
effective features from the local and global feature levels of point clouds, which has
superior semantic segmentation performance to most existing methods.

• We conduct quantitative experiments and various ablation studies on the challenging
Stanford Large-Scale 3D Indoor Spaces (S3DIS) dataset [22] with the method proposed
in this paper. The experimental results demonstrate the rationality and effectiveness
of our method.

2. Related Works

In this section, we introduce the methods for 3D point cloud semantic segmentation
that have been used in recent years. Different from 2D image segmentation methods, 3D
point cloud semantic segmentation methods can be roughly divided into the following
three types: projection-based, voxel-based and point-based.

Projection-based methods. 3D point cloud semantic segmentation can be regarded as
a task extension of 2D image semantic segmentation. Therefore, the main idea in projection-
based methods is to project point clouds to 2D images through methods such as multi-view,
and then apply existing 2D image methods for semantic segmentation. For example,
Lawin et al. [3] use multiple virtual views to project point clouds to 2D images; they then
reproject and fuse the views from different locations to obtain the semantic labels of point
clouds. However, the disadvantage of this method is that it is easily affected by factors
such as viewing-angle selection and projection occlusion during the projection conversion
process, and some geometric information may be lost during the projection process, which
can affect the segmentation accuracy of point clouds.

Voxel-based methods. The main idea in voxel-based methods is to discretize point
clouds in 3D space. Specifically, point clouds are converted into 3D grids that can be
arranged regularly, as in the pixels of 2D images, and then segmented using a 3D con-
volutional network [23,24]. For example, Tchapmi et al. [9] preprocess point clouds by
voxelization; they then use a 3D, fully convolutional neural network for prediction, intro-
duce trilinear interpolation to map the results back to the original point cloud and use a
fully connected conditional random field (CRF) to predict the semantic labels. Although
existing sparse convolution methods can solve the problem of space occupation and re-
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source consumption in high-resolution voxels [6,25], there is still the possibility of losing
local details in voxel construction.

Point-based methods. The early representative work of point-based methods is
PointNet [11], which directly uses original point clouds as inputs without complex pre-
processing and postprocessing and uses shared multi-layer perceptions (MLPs) and max
pooling to extract features. The success of PointNet and its improved version, Point-
Net++ [26], shows that feature extraction based on the original point clouds can achieve
better results than previous methods based on projection and voxels. This also led to
point-based methods gradually becoming the mainstream algorithm direction of 3D point
cloud semantic segmentation. Based on this research method, various efficient point-based
aggregation networks have emerged to extract features from point clouds, including the
use of CNN [27–31], RNN [32–34], Graph [35–37], and various custom-feature extraction
modules. In recent years, the network using the Transformer mechanism has outperformed
CNN in 2D image processing and achieved excellent performance. The core component of
Transformer is self-attention, which can obtain attention scores by calculating the similarity
between the query and the key generated by the input data and use the scores to weight
the value generated by the input data to generate new features [16]. It is with the help of
self-attention that Transformer can extract feature associations in the input sequence, which
seems to be very effective for the feature learning of point clouds with location attributes.
Recently, various Transformer-based networks have been proposed. These methods con-
tinuously improve the state-of-the-art performance of 3D point cloud segmentation. For
example, Point Transformer [19] achieves excellent performance by using Transformer to
construct local feature extraction modules to obtain the contextual information of point
clouds, and its success also demonstrates the effectiveness of Transformer in 3D point cloud
segmentation. Guo et al. [20] propose the PCT network, which is based on Transformer,
to construct offset attention with offset invariance. Lai et al. [14] propose Stratified Trans-
former, which overcomes the problem of the limited effectiveness of the receptive field.
It makes full use of Transformer to obtain the contextual features of remote points, and
improves the state-of-the-art performance.

3. Our Methods

In this section, we introduce the self-attention mechanism and the multi-head attention
module in local feature extraction. Furthermore, we introduce the use of distance informa-
tion from point clouds in 3D space to extract global features. Next, we introduce how to fuse
local features and global features. Finally, we introduce the overall network architecture of
learning local and global feature fusion for 3D point cloud semantic segmentation.

3.1. Local Feature Extraction

The self-attention mechanism is the core component of the Transformer network
structure. The calculation form is shown in Equation (1). It effectively implements the
learning of associated features between input sequences. In this paper, we apply this
mechanism to point clouds for feature extraction of neighbor points on the local scale.

Attention(Q, K, V) = Softmax(Q•KT√
dk

)V

Q = WqX, K = WkX, V = WvX
(1)

where X is the feature vectors of input points. Q (query), K (key) and V (value) are learned
through the learnable weight W. dk is expressed as the feature dimension of key.

The self-attention mechanism can be regarded as the aggregation of information
similar to its own characteristics in each part of the input sequence, in order to effectively
obtain the long-distance contextual information of the input sequence. In this paper, the
self-attention module used in the feature extraction process of point clouds is shown in
Figure 1. It is worth noting that in Figure 1, we take a feature vector as the input in order
to clearly illustrate the whole process of feature extraction using the self-attention (SA)
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module. First, each input point feature vector obtains query, key, and value through a fully-
connected layer (FC). Next, each key and value can obtain the key and value corresponding
to the nearest neighbor points in their local space range through K-Nearest Neighbor
(KNN). Next, we make a slight change to Equation (1) with reference to PT [19], using
subtraction of query and key to replace the dot product. We use the spatial distance
between the surrounding neighbor points and the input point as the positional encoding.
Finally, the weighted summation of attention scores and values is obtained to generate a
new point-feature vector.

Figure 1. Self-attention (SA) module.

Based on the SA module, we adopt the self-attention mechanism to learn the features
of point clouds at different levels, and then splice and combine these features to obtain
the more effective information of point clouds. Therefore, we use the multi-head attention
mechanism in Transformer, in which each self-attention module is called a head. Its
calculation form is shown in Equation (2).

x1 ⊕ x2 · · · ⊕ xn = XInput

hi = F(W(q)
i xi, W(k)

i xi, W(v)
i xi)

Xoutput = Wo(h1 ⊕ h2 · · · ⊕ hn)

(2)

where F represents the function of self-attention, X represents the input and output feature
vectors, h represents the output feature of each self-attention module, n represents the
number of multi-heads, ⊕ represents the feature concatenation operation, and xi represents
each sub-feature vector entering the self-attention mechanism. All uses of W are learnable
parameters for generating queries, keys, values, and output features.

According to the Equation (2), we construct the module structure of the multi-head
attention mechanism in our network, as shown in Figure 2. In general, a feature vector
of the input point is split into sub-vector features. Next, they are sent to the self-attention
mechanism module for feature extraction. Finally, the new sub-features obtained from each
part are concatenated to obtain more abundant local aggregated features.
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Figure 2. Local feature extraction module based on multi-head attention.

3.2. Global Feature Extraction

The same type of object in different scenes has different styles, but its geometric feature
structure is often invariant [13]. Therefore, in order to better aggregate the effective feature
information of point clouds, we use the global feature extraction module in the entire
spatial range of point clouds to obtain the global feature information. Its calculation is
defined as Equation (3):

Fglobal = Φ( fxyz ⊕ R(DL_max, DG_max)) (3)

where Fglobal represents the information of global features, fxyx is the XYZ coordinate
features of the input point, DL_max is the position distance of the farthest point in the local
surrounding, DG_max is the position distance of the farthest input point in the global space,
Φ is a one-hidden-layer MLP with two linear layers, one batch-normalization layer, and
one Relu activation layer, R represents the defined ratio function, and ⊕ represents the
concatenation operation.

The structure of the global feature extraction module is shown in Figure 3. As can
be seen from the figure, the XYZ coordinate information of point clouds is used as the
input of the module, and the nearest neighbors of each point in the local neighborhood
are obtained through KNN. We can obtain the ratio of the distance between the farthest
point in local neighborhood and the farthest point in global space. Next, we concatenate
the input XYZ features and the distance-feature ratios of point clouds and send them to the
one-hidden-layer MLP to obtain the final global features.
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Figure 3. Global feature extraction module based on the position-distance information.

3.3. Local and Global Feature Fusion

After obtaining local features and global features, we construct the local and global
feature fusion (LGF) module to aggregate the two features to obtain more effective point
cloud features. The architecture of the LGF module is shown in Figure 4. The inputs of
the module are the coordinates and features of point clouds. The input coordinates of
point clouds enter the global feature extraction module in Section 3.1, and the point cloud
features enter the local feature extraction module in Section 3.2 via a one-layer MLP with
one linear layer, one batch normalization layer, and one Relu activation layer. We send
the local and global features output by two modules to the one-layer MLP through an
activation function (Leaky Relu) for feature fusion. Next, we add the original input points
and aggregated point features by using the residual connection. Finally, we obtain the final
new features through an activation function (Relu), which effectively combine local and
global feature information of point clouds.

Figure 4. Local and global feature fusion (LGF) module.
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3.4. Overview of Network Architecture

We embed the LGF module into the encoder–decoder network for 3D point cloud
segmentation, and we can obtain the overall structure of our LLGF-Net, as shown in
Figure 5. As can be seen from Figure 5, the encoder stage of the network corresponds to
the process of downsampling and feature extraction, and the decoder stage corresponds
to the process of upsampling and feature recovery. The inputs to the network are original
point clouds, which contain XYZ and RGB; their feature size is N × 6. After all input
points pass through the one-layer MLP, they enter into downsampling and LGF module.
The downsampling consists of three steps, including farthest point sampling (FPS), max-
pooling, and the one-layer MLP. Next, the point features after downsampling at each layer
are extracted by the LGF module. During the entire stage of the encoder, the number
of point clouds is reduced from N to N/256 layer by layer, and the feature dimension
is increased from 6 to 512. The output in the downsampling stage passes through the
one-layer MLP and then enters the upsampling stage. The upsampling adopts the method
of trilinear interpolation to restore the number of point clouds. We aggregate the point
cloud features from the encoder stage with the sampled points by using the skip connection,
after which the features are fed into the LGF module. The number of point clouds in the
entire decoder stage is restored from N/256 to N, and the size of point cloud features
is reduced from 512 to 32. Finally, we can obtain the category label of each point cloud
through the prediction network constructed by the fully connected network.

Figure 5. Architecture of the LLGF-Net.

4. Experiments

In this section, we first introduce the 3D point cloud dataset (S3DIS) used for experi-
ments and performance evaluation metrics for semantic segmentation. Next, we evaluate
our LLGF-Net based on quantitative experiments and 6-fold cross-validation experiments
on the dataset S3DIS and compare the experimental results with some mainstream methods.
Finally, we report our ablation experiments to demonstrate the rationality and effectiveness
of each component of our network.
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4.1. Dataset and Evaluation Metrics

Dataset. In the semantic segmentation experiments, we use the S3DIS dataset for
network training and testing. S3DIS is a large scene indoor 3D point cloud dataset. It
contains five indoor areas in Stanford University, including a total of 271 rooms, and is
divided into six areas for training and testing. The dataset includes 11 scenes, such as
offices and conference rooms, and 13 categories, such as ceilings, floors, and walls. The
features of each point in the dataset include XYZ, RGB color, and normalized coordinate
values in the Cartesian coordinate system.

Evaluation metrics. We use common semantic segmentation evaluation metrics,
namely mean intersection-over-union (mIoU), mean class accuracy (mAcc), and overall
accuracy (OA), to evaluate the experimental results. The OA is the proportion of correctly
predicted point clouds in the total number of point clouds, and Equation (4) is its calculation
form. The mAcc is calculated as Equation (5), which is used to calculate the proportion of
correctly predicted point clouds in each category and then calculate the average of all the
categories. The mIoU is the most important metric, which represents the average of the
intersection-over-union ratio for each category in the dataset. Its calculation form is shown
in Equation (6).

OA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(4)

mAcc =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij

(5)

mIoU =
1

(k + 1)

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(6)

where represents the prediction of category i as j, pii represents the correct prediction for
category i and k is the number of categories in the dataset.

4.2. Results on S3DIS

Implementation details. Our training and testing are performed on TITAN RTX GPU.
We implement the entire LLGF network in Pytorch. We set the initial learning rate to 0.5
and decay the learning rate by 10% at a fixed epoch. The network optimizer adopts SGD
and sets the momentum and weight decay to 0.9 and 0.001.

Quantitative results. In order to clearly compare with the results of mainstream
algorithm networks, we test on area 5 of the dataset S3DIS and train on the remaining
areas, in accordance the experimental strategy adopted by most methods on S3DIS. The
quantitative experimental results of our method and other comparative methods are shown
in Table 1. As can be seen from the table, our method achieves a mIoU metric of 68.0%
and a mAcc metric of 74.4%, which is superior to other methods. In general, the semantic
segmentation of indoor scenes is very difficult, especially in some categories that are difficult
to distinguish, such as boards. In the S3DIS dataset, since the backgrounds of whiteboards
are white walls, they are easily confused if the feature extraction is not sufficient. The
quantitative results in Table 1 show that our method achieves a mIoU metric of 79.8%
on boards, which is also the only method that can be used to achieve more than 70% of
the results compared with other methods. In addition, the best segmentation results are
obtained on categories such as ceilings, walls, columns, and tables.

6-fold cross-validation. Next, we conduct a 6-fold cross-validation experiment on the
S3DIS dataset to better evaluate the performance of our network, and the results are shown
in Table 2. As can be seen from the table, our network attains a mIoU of 71.4% and an
OA of 89.6%. Our method outperforms MLP-based methods, such as PointNet [11] and
PointNet++ [26], graph-based methods, such as DGCNN [35], CNN-based methods, such
as PointCNN [28], and other methods. In short, the results of the 6-fold cross-validation
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show that our method based on local and global feature fusion is superior to other methods
and is an effective method for 3D point cloud semantic segmentation.

Table 1. Quantitative results of S3DIS Area 5 dataset.

Methods mIoU
(%)

mAcc
(%) Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

PointNet [11] 41.1 49.0 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [9] 48.9 57.4 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6

PointCNN [28] 57.3 63.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
PCCN [29] 58.3 67.0 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2

PointWeb [38] 60.3 66.6 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
HPEIN [39] 61.9 68.3 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4

SegGCN [40] 63.6 70.4 93.7 98.6 80.6 0.0 28.5 42.6 74.5 80.9 88.7 69.0 71.3 44.4 54.3
KP-Conv [41] 67.1 72.8 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9

Ours 68.0 74.4 94.1 98.2 85.1 0.0 30.6 60.6 73.5 89.5 79.6 72.3 63.1 79.8 57.6

Table 2. Quantitative results of S3DIS with 6-fold cross-validation.

Methods OA (%) mAcc (%) mIoU (%)

PointNet [11] 78.6 66.2 47.6
PointNet++ [26] 81.0 67.1 54.5

DGCNN [35] 84.1 − 56.1
RsNet [32] − 66.5 56.5

PointCNN [28] 88.1 75.6 65.4
PointWeb [38] 87.3 76.2 66.7
ShellNet [42] 87.1 − 66.8

RandLA-Net [12] 88.0 82.0 70.0

Ours 89.6 80.6 71.4

Visualization. Finally, in order to more clearly show the semantic segmentation results
of the LLGF network on 3D point clouds, we visualize the typical conference room and
office scenes in area 5, as shown in Figure 6. Figure 6 shows the original point clouds,
ground truth, and baseline with PointNet++ [26], as well as our results. As can be seen from
the figure, we obtain excellent results of 3D point cloud semantic segmentation, which are
exceedingly close to the ground truth. In particular, the circled parts in the first and third
rows show that our method can correctly segment slender objects, such as columns and
doors, compared to the baseline. Furthermore, the circled parts in the second and fourth
rows show that our method can still obtain excellent results when segmenting the complex
and indistinguishable categories of boards and bookcases.

4.3. Ablation Studies

The experimental results on S3DIS demonstrate the effectiveness of our method. To
further evaluate the rationality of the design of each core component in our approach, we
conduct extensive ablation studies. In order to compare the results with other methods, we
still conduct the ablation studies on area 5 of the S3DIS dataset.

Ablation study on LLGF-Net. To explore the effectiveness of each module in the
overall network, we further conduct an ablation study on each module. The experimental
results are shown in Table 3. As can be seen from the table, we remove the global feature
extraction module; the final mIoU result is 65.3%. The performance is reduced by 2.7%
compared to the result of the original network, which shows that the global feature extrac-
tion module can provide effective feature information for 3D point cloud segmentation. We
then remove the local feature-extraction module. The final result of the mIoU is reduced
by 12.7%, which shows that the local feature extraction module plays a significant role
in the overall feature extraction and is the key to the understanding of the point cloud
scene features.
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Figure 6. Visualization of semantic segmentation results on the S3DIS dataset.

Table 3. Ablation study: effectiveness of each module.

mIoU (%) ↓mIoU (%)

Original network 68.0 0
Removing globa Feature-extraction module 65.3 2.7
Removing local Feature-extraction module 55.3 12.7

Ablation study on local feature-extraction module. In order to further explore the
details of the parameter setting of the local feature extraction module, we change the
parameter values of the module in turn, and the experimental results are shown in Table 4.
In the local feature extraction module of our original network, the number of heads is set to
16. As can be seen from the table, if the number of heads is reduced to 8, the final mIoU
decreases by 0.6%; if the number of heads is reduced to 4, the final mIoU decreases by
1.0%. Therefore, it can be seen that when the multi head parameter is set to 16, our network
achieves the best performance.

Table 4. Ablation study: Multi-head parameter setting.

Parameter mIoU (%) ↓mIoU (%)

Number of
multi-heads

16 68.0 0
8 67.4 0.6
4 67.0 1.0

Ablation study on feature fusion. After obtaining the local and global features of
point clouds, in order to obtain more representative features, we design a feature fusion
process, which is shown in Figure 4. We compare two fusion methods, including addition
and concatenation, in our ablation experiment. As can be seen from the results in Table 5, if
we fuse features by using concatenation, the final result of the mIoU is 67.5%, which is 0.5%
lower. Therefore, we fuse the local, global, and input features by using addition, which can
provide more effective feature information for 3D point cloud semantic segmentation.
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Table 5. Ablation study: feature fusion.

Method mIoU (%) ↓mIoU (%)

Feature fusion
Addition 68.0 0

Concatenation 67.5 0.5

5. Conclusions

In this paper, we propose a novel network named LLGF-Net for 3D point cloud
semantic segmentation based on the fusion of local features and global features, which
achieves superior performance to most current methods. In terms of local feature extraction,
we adopt multi-head attention to aggregate the contextual features of neighboring point
clouds in local space. In terms of global feature extraction, we use the local and global
position-distance information of point clouds in 3D space to extract the global spatial
features. Next, we fuse the two features to provide more representative point cloud features
for 3D point cloud semantic segmentation. Finally, we conduct quantitative experiments
and various ablation studies on the S3DIS dataset, which demonstrate the rationality of
each component in our network and the effectiveness of our network in 3D point cloud
semantic segmentation.
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