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Abstract: Speaker recognition is a task that identifies the speaker from multiple audios. Recently,
advances in deep learning have considerably boosted the development of speech signal processing
techniques. Speaker or speech recognition has been widely adopted in such applications as smart
locks, smart vehicle-mounted systems, and financial services. However, deep neural network-based
speaker recognition systems (SRSs) are susceptible to adversarial attacks, which fool the system
to make wrong decisions by small perturbations, and this has drawn the attention of researchers
to the security of SRSs. Unfortunately, there is no systematic review work in this domain. In this
work, we conduct a comprehensive survey to fill this gap, which includes the development of
SRSs, adversarial attacks and defenses against SRSs. Specifically, we first introduce the mainstream
frameworks of SRSs and some commonly used datasets. Then, from the perspectives of adversarial
example generation and evaluation, we introduce different attack tasks, the prior knowledge of
attacks, perturbation objects, perturbation constraints, and attack effect evaluation indicators. Next,
we focus on some effective defense strategies, including adversarial training, attack detection, and
input refactoring against existing attacks, and analyze their strengths and weaknesses in terms of
fidelity and robustness. Finally, we discuss the challenges posed by audio adversarial examples in
SRSs and some valuable research topics in the future.

Keywords: speaker recognition; adversarial examples; adversarial attacks; defense methods

1. Introduction

The rapid development of deep learning techniques has considerably advanced re-
search progress on healthcare [1–3], IoT devices [4–6] and biometric authentication tech-
niques [7]. Recently, face recognition as a mainstream authentication technology has
reached an accuracy up to 99% and achieved commercial success. Meanwhile, end-to-end
SRSs have witnessed improved performance. Recent studies [8–10] show that the equal
error rate (EER) of speaker recognition models has been reduced to 0.77%, which means an
unprecedentedly high recognition accuracy. Unlike other authentication methods based
on biometric features, such as human faces or fingerprints, SRSs can identify the speaker
by speech features unique to him/her, even in the absence of the speaker. Consequently,
SRSs have seen wide adoption in such fields as remote access control, bank service, and
criminal investigations.

Along with the prevalence and increasing influence of the speaker recognition technol-
ogy, its security has drawn broad attention. Though SRSs have reached a high recognition
accuracy, their security remains a big concern since a minor perturbation on the audio input
may result in reduced recognition accuracy. Existing attacks on SRSs can be classified into
three types: traditional attack, backdoor attack, and adversarial attack. There are mainly
four sub-types of traditional attacks: mimicry attacks [11] in which the attacker mimics the
target speaker, voice conversion (VC) attacks [12,13], text-to-speech (TTS) attacks [14–16],

Electronics 2022, 11, 2183. https://doi.org/10.3390/electronics11142183 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11142183
https://doi.org/10.3390/electronics11142183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11142183
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11142183?type=check_update&version=2


Electronics 2022, 11, 2183 2 of 38

and another simple but strong attack—replay attack (RA) [17–21], which fully copies and
replays the speech signals of the target speaker. There have been many defense solutions to
these traditional attacks that maximally perceive, mimic and copy the target speaker’s voice
features. Notably, the community-led initiative ASVspoof Challenge series [22,23] provided
an ideal platform for the development of defense solutions to audio adversarial attacks.
Backdoor attacks first emerged in image processing tasks [24–26], in which a specific trigger
is introduced to the dataset to train a recognition model with high-security threats, such as
a face recognition model. In the latest work, Zhai et al. [27] introduced a backdoor attack
strategy against SRSs. By introducing triggers to different types of datasets clustered by
K-means, they found that the speaker recognition models trained by these contaminated
datasets would produce wrong recognition results once the trigger was input to the testing
process. There are no effective defense solutions against these backdoor attacks at present.

Adversarial attacks aim to lead the SR models to wrong decisions by introducing
imperceptible perturbations to clean audio samples. In these years, deep learning based
methods have been proved to be vulnerable to adversarial attacks. Szegedy et al. [28]
first found in image classification tasks that introducing unnoticeable perturbations to the
training samples would make the model produce a wrong output with high confidence.
Many subsequent works have focused on adversarial attacks against computer vision
systems [29–32]. Later, studies on these attacks were extended to such fields as natural
language processing [33,34], audio processing [35] and video classification [36]. In audio
processing, most works [37–41] are on speech recognition (SR), whereas few probe into SRS
or adversarial examples of SR models.

Adversarial attacks against SRSs introduce imperceptible noises into the genuine audio
data such that the system misrecognizes the speaker (untargeted attacks) or recognize the
subject as a designated speaker (targeted attacks). Rohan et al. [42] summarized the
existing works on non-active attacks and adversarial attacks against SRSs as well as their
respective defense measures, but the classification standards could not be used to clearly
classify all existing attacks and defenses. Hadi et al. [43] classified the adversarial attack
and defense methods of speech recognition models and SRSs based on the attack target,
attack type, adversarial knowledge, and adversarial capabilities; however, their research
focused on speech recognition systems, not SRSs. Chen et al. [44] reviewed the existing
works on adversarial attack and defense of voice processing systems (VPSes), and classified
existing adversarial attacks against SRSs from four perspectives, i.e., adversarial knowledge,
adversarial target, adversarial perturbation range, and physical attack; however, they
provided no further analysis on each type of attack, and analysis of existing works on
adversarial defenses needed to be extended.

In this work, an overview of all previous works on adversarial attacks and defenses of
SRSs is presented, and the generation methods of adversarial examples against SRSs and
corresponding defense strategies are discussed and summarized. Compared with existing
works in this field, more innovative and detailed classification methods for adversarial
attack and defense strategies of SRSs are proposed here, and the latest works on adversarial
examples against SR methods are introduced. The major contributions of the this work are
as follows:

• An overview of the existing works on SRS is presented to introduce the latest advances
in adversarial examples against SRSs, and from the perspectives of example generation
and example evaluation, we classify the adversarial examples by such indicators as
the attack task, the perturbation target, the perturbation constraint strategies, and
attack effect evaluation.

• We review and classify the existing attack and defense methods from three aspects:
adversarial training, attack detection, and input refactoring, and measure the effec-
tiveness of these methods by fidelity and robustness.

The rest of the work is organized as follows: Section 2 introduces advanced SRSs and
regular SR datasets; Section 3 presents the methods for classification of adversarial attacks;
Section 4 introduces the defense strategies against existing SRS adversarial examples and
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our classification methods; in Section 5, we discuss the shortcomings and challenges in the
field of SRS adversarial attack and defense strategies; and Section 6 concludes our work
and pinpoints the valuable research directions.

2. Background

In this section, we review the development of SRSs, and introduce the working
principles, functional modules, and recognition tasks of SRSs.

2.1. Overview of SRS

Speaker verification systems consist of two modules: front-end embedding and back-
end scoring. For any given audio, the embedding module represents the acoustic features
of the audio by fixed-length high-dimensional feature vectors, and these vectors are then
input to the back-end scoring module for similarity calculation to obtain the corresponding
speaker labels for this segment of audio.

The earliest SR models, such as the dynamic time warping (DTW) model [45], recog-
nize the speakers based on the speech signals by template matching. Later, some Gaussian
mixture models (GMMs) [46,47], like the Gaussian mixture model-universal background
model (GMM-UBM) and the Gaussian mixture model-support vector machine (GMM-SVM)
model were developed, which represent the original audio signals by the trained model to
recognize the speaker. Then, identify vector models (i-vector) [48] that recognize speaker
voice features became the mainstream methods because they rely on data of smaller lengths.
As deep learning technology advances, deep speaker vectors come to play a dominating
role: deep neural networks are trained to extract speech features and represent the speech
features as d-vectors [49] or x-vectors [8]. Bai et al. [50] made a detailed summary of works
on DNN-based SRSs.

Figure 1 presents the general framework of traditional SR and deep learning based
SRSs, which comprises three stages: training, enrolling, and verification.

• Training: over ten thousand audio clips from large amounts of speakers are used to
train the speaker embedding module and obtain human voice feature distributions,
regardless of single speakers;

• Enrolling: the enrolled speaker utterance is mapped onto a unique labeled speaker em-
bedding through the speaker embedding module, and this high-dimensional feature
vector is this speaker’s unique identity;

• Verification: the model scores the utterance of an unknown speaker by extracting high-
dimensional feature vectors from the embedding module. The scoring module assesses
the similarity between the recorded embedding and the speaker embedding, and the
score and decision module is based on to judge whether the speaker is legitimate.

Figure 1. General framework of the speaker recognition systems.

At the training stage, the feature extraction module converts the original speech signals
into acoustic waveforms with primary signal features. Regular feature extraction algo-
rithms include Mel frequency analysis, filter-bank, Mel-scale frequency cepstral coefficients
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(MFCC) [51], and perceptual linear predictive (PLP) [52]. The speaker embedding network
can be modeled by models such as LSTM, ResNet, time-delay neural network (TDNN), etc.
There are two types of back-end scoring models: probabilistic linear discriminant analysis
(PLDA) [53] and cosine similarity [54]: the former works well in most cases, but requires
training based on utterances [55]; the latter provides an alternative to PLDA but dispenses
with the need for training.

2.2. SR Task

SR tasks can be divided into text-dependent and text-independent tasks by whether
the audio clips are recorded by specific texts at the enrolling and verification stages. In
text-dependent tasks, speech examples of specific texts are produced in both the training
and testing stages, and though the model training consumes little time, the text is specific,
and hence the model is short of universality. Text-independent tasks do not depend on
the content of the audio, and the verification module recognizes the speaker by converting
the audio content into the speaker’s high-dimensional speaker feature vectors, which is
convenient but consumes considerable quantities of training resources. In the present work,
we consider only the adversarial attack and defense of text-independent SRSs (in fact, most
works in this regard focus on text-independent SRSs). In text-independent SRSs, SR tasks
can be divided by the task target into close-set speaker identification (CSI) tasks, open-set
speaker identification (OSI) tasks, and speaker verification (SV) tasks.

2.2.1. CSI Task

Close-set speaker identification (CSI) tasks [56,57] can be regarded as a
multi-classification problem, which identifies a specific speaker from the corpus of a set of
enrolled speakers, i.e., the system always identifies an input audio as a specific label in the
training dataset. Chen et al. [58] divided CSI tasks into two sub-tasks: CSI with enrollment
(CSI-E) and CSI with no enrollment (CSI-NE). CSI-E strictly follows the process described
above. In contrast, CSI-NE has no enrollment, and the speaker embedding module can
be used directly to recognize the speaker. Thus, ideally speaking, in CSI-NE tasks, the
identified speaker will take part in the training stage, whereas in CSI-E tasks, the identified
speaker has already been enrolled in the enrolling stage but does not necessarily take part
in the training stage. Equation (1) describes the general process of CSI tasks:

I = arg max
i
{ f (xe

1, xt; θ), f (xe
2, xt; θ), ..., f (xe

N , xt; θ)} (1)

where I denotes the speaker label, θ is the parameter of the embedding model, and N is
the number of registered speakers. f (·) denotes the similarity score calculated between the
registered vector xe and the test vector xt, and the model outputs the speaker ID with the
highest score.

2.2.2. OSI Task

Different from CSI tasks, in open-set speaker identification (OSI) tasks [8], the model
obtains a threshold by the PLDA or cosine similarity algorithm, and recognizes the test
utterance as an enrolled speaker by comparing the calculated similarity score and the preset
threshold. OSI tasks can also identify unknown speakers. That is, a speaker that is not
in the original training dataset can also be enrolled in the OSI system to generate specific
feature vectors, and in the verification process, the model converts the to-be-identified
speaker into high-dimensional vector embeddings, and uses the back-end scoring module
to produce a similarity score: if the maximum score is below the preset threshold, then the
speaker is identified as an unenrolled speaker and hence is denied access. Similarly, the
process of OSI tasks can be summarized by an equation, as shown in Equation (2):
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I = arg max
i
{ f (xe

1, xt; θ), f (xe
2, xt; θ), ..., f (xe

N , xt; θ)}

while f (xe
i , xt; θ) > τ (2)

where τ is a pre-received threshold in the model, the test audio will be accepted and
correctly recognized by the system when and only when the maximum score exceeds the
threshold τ in OSI, otherwise the model will directly filter out the audio.

2.2.3. SV Task

Both CSI and OSI tasks can be termed collectively as a 1:N identification task (i.e.,
discriminating input audio among a collection of N-registered speakers), and they require
a large number of different speakers’ speech for model training. In contrast, the SV system
aims to verify whether an input voice (virtual speaker) is pronounced according to his/her
pre-recorded words, which is a 1:1 identification task that models the vocal characteristics
of only one speaker, and then verifies whether the input voice is produced by a unique
registered speaker according to a predefined threshold, and if the score does not exceed the
threshold, the input voice is considered an impostor and is rejected.

f (xe, xt; θ) =

{
Accept, S > τ

Reject, S ≤ τ
(3)

where f (·) represents the calculation of the similarity score S between the registered vector
xe and the test vector xt, and θ is the parameter of the embedding model. The score is
accepted if it is greater than a threshold value and rejected otherwise.

2.3. Victim Models

Existing speaker attacks are mainly against SR models built on deep neural net-
works (DNNs), such as SincNet, d-vector, and x-vector, rather than the template matching-
based DTW models and the statistical distribution-based GMM, GMM-UBM, and GMM-
SVM models.

As Table 1 shows, the i-vector SR model proposed by Kanagasundaram [59] shifts the
high-dimensional speaker features into a lower-dimension full-factor subspace, models
global differences in data in low dimensions, and combines systems, such as GMM-MMI,
to enhance the recognition capability of the model in this low-dimensional subspace, and
improves the identification capacity of the model in this low-dimension space by GMM-
MMI and other systems, which reduces the computing complexity and training time.
However, as the i-vector model maps the data into the full-factor subspace, the system is
susceptible to noises. Therefore, Variani et al. [49] proposed to use DNN for the feature
extraction of speaker audio and took the output of the last hidden layer as the speaker’s
features and took the average of all the speaker’s features as the speaker’s vocal embedding
vector, a model called d-vector. The d-vector model has better performance compared to the
i-vector model both in clean and noisy environments. David Snyder proposed the x-vector
model [8], which uses the TDNN structure for feature extraction, and compared to the d-
vector, which simply averages the speaker features as the voice pattern model, the x-vector
aggregates the speaker features and inputs them into the DNN again to obtain the final
voice pattern model. The r-vector model proposed by Hossein et al. [60] applies ResNet,
which further reduces the EER compared to the x-vector model. Mirco Ravanelli [61] argues
that acoustic features extracted by traditional i-vector methods and deep learning methods
using signal processing techniques (e.g., MFCC, and FBank) would lead to a loss of acoustic
features in the original audio, for which he proposed the SincNet model, which uses a data-
driven approach to learn filter parameters directly, allowing the model to learn narrowband
speaker characteristics, such as pitch and resonance peaks, well from the original data.
In recent studies, Brecht et al. [9] proposed ECAPA-TDNN, a new TDNN-based vocal
feature extractor; ECAPA-TDNN further develops on the original x-vector architecture,
focusing more on the channels as well as the propagation and aggregation of features,
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resulting in a 19% improvement in the EER performance of the system compared to the
x-vector model. The deep speaker [62] proposed by Baidu adopts an end-to-end strategy to
aggregate feature extraction and speaker recognition into the network structure, which can
improve the performance of the fixed speaker list.

Table 1. Common victim SR models.

Strategy Model Dataset Task Metrics Performance

Statistics GMM-UBM NIST SRE OSI/SV EER 1.81%
i-vector NIST 2008 OSI/SV EER 6.3%

Embedding

AudioNet LibriSpeech CSI ACC 99.7%
VGGvox Voxceleb1 CSI ACC 92.1%
d-Vector Google data OSI/SV EER 4.54%
x-vector VoxCeleb OSI/SV EER 4.16%
r-Vector VoxCeleb OSI/SV EER 1.49%
SincNet LibriSpeech OSI/SV EER 0.96%
ECAPA-
TDNN VoxCeleb2 OSI/SV EER 0.87%

End to End ResCNN MTurk OSI/SV EER 2.83%
GRU MTurk OSI/SV EER 2.78%

2.4. Datasets

Depending on different tasks and target models, researchers choose publicly available
mainstream datasets to evaluate their attack performance. Some mainstream datasets are
presented here: TIMIT [63], NTIMIT [64], Aishell [65,66], LibriSpeech [67],
Voxceleb1/2 [62,68], YOHO [69], and CSTR VCTK [70], and their details are shown in
Table 2 below.

Table 2. Generic datasets for speaker recognition.

Datasets Sample
Rate

Data Size Spk Num Language Text
Dependency

Condition

TIMIT 16 kHz 6300
sentences

630 English TI Clean

NTIMIT 8 kHz 6300
sentences

630 English TI Telephone
line

Aishell 16 kHz 178 h 400 Chinese TI No noise
LibriSpeech 16 kHz 153,516

utterances
>9000 English TI /

VoxCeleb1 16 kHz 1,128,246
utterances

1251 English TI Multi-
media

VoxCeleb2 - 100 w
sentences

6112 Multilingual TI Multi-
media

YOHO 8 kHz 5500
phrases

138 English TD Office

CSTR
VCTK 48 kHz 1000

sentences
30 English TD Wild

• TIMIT: The standard dataset in the field of speech recognition is a relatively small
dataset that enables the training and testing of models in a short period of time, and
its database is manually annotated down to the phoneme, with speakers from all parts
of the United States, and provides detailed speaker information, such as ethnicity,
education, and even height.

• NTIMIT: The dataset that puts the audio data in TIMIT on a different telephone line for
transmission and then reception is a dataset created to implement voice recognition in
the telephone network.
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• Aishell: Aishell-1 is the first large data volume Chinese dataset, with 178 h of speech,
400 speakers, 340 people in the training set, 20 people in the test set, and 40 people
in the validation set, each of whom speaks about 300 sentences. Aishell-2 expands
the data volume to 1000 h of speech, with 1991 speakers, each of whom speaks
500 sentences. The words spoken by each person may be repeated.

• LibriSpeech: The dataset is a large corpus containing approximately 1000 h of English
speech. The data come from the audiobook recordings read by different readers of
the LibriVox project, organized according to the sections of the audiobooks. It is
segmented and correctly aligned.

• Voxceleb1,Voxceleb2: Two speaker recognition datasets without intersection, both of
which are obtained from open source video sites captured by a set of fully automated
programs based on computer vision technology development. They differ in size, with
VoxCeleb2 compensating for the lack of ethnic diversity in VoxCeleb1 by being five
times larger than VoxCeleb1 in terms of data size.

• YOHO: A speech dataset collected in an office environment that is text dependent,
where the speaker speaks in a restricted textual combination.

• CSTR VCTK: A dataset including noisy and non-noisy speech with a sampling rate of
48 kHz and in which the speaker is accented.

3. Adversarial Attack

Adversarial attacks against SRSs use small perturbations that are imperceptible to
human ears to mislead the system to wrong decisions. In this section, we will describe the
adversarial attacks in deep networks and different methods of the attacks against SRSs
in detail.

3.1. Overview of Adversarial Attack

Adversarial examples are aggressive data that make DNN models confused. As re-
vealed in recent works, DNNs in different fields, such as image recognition, object detection,
sentiment recognition and speech recognition, are susceptible to adversarial attacks. There
are also adversarial attacks against SRSs. Figure 2 shows the general framework of adver-
sarial attacks against SRSs.

Figure 2. General framework of adversarial attacks against SRSs.

Formally, an adversarial audio can be defined as follows:

x′ = x + δ, s.t. ||δ||p < ε (4)

where x is the original audio, δ is the perturbation introduced to the audio (as shown in
Figure 3a), and x′ is the adversarial audio, which can make the SRSs misjudge the original
speaker y as y′ (y′ can be any random speaker ID other than the original speaker or a
speaker ID specified by the attacker). Figure 3b illustrates a didactic example of inserting a
perturbation δ into a legitimate audio x on a 2D space.
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Figure 3. A sample of adversarial example generated from inserting a perturbation δ into a legiti-
mate audio x on a 2D space. Figure (a) shows the waveform and mel-spectrogram of the original
audio, noise and adversarial audio. Figure (b) denotes the presentation of dyadic samples on the
data distribution.

To make the attack effective, we propose the following three constraints:

• x′ must be within a proper range such that the waveform can be recovered into
an audio;

• δ must be as small as possible;
• SRSs will identify x′ as the special target specified by the attacker beforehand (it can

also be any other random target, but this is not meaningful).

Due to the strong similarity between image processing and audio processing tasks
in deep models, existing works mainly transfer the advanced attack methods in image
domain to SR. Table 3 shows the specifics of attack methods, and we systematically classify
current adversarial attacks against SRs in terms of attack targets, attack strategies, etc.

Table 3. Related works on adversarial attacks against existing SRSs.

Methods Target Capability Knowledge Generate
Strategy

Perturbation
Object Metrics OTA Victim

Model Corpus

SEC4SR
[58]

Both Individual White
Black

Gradient Sign
Optimization
Evolutionary

Mel-Spec ASR/SNR
PESQ

Digital
Physical

AudioNet
GMM i-vecor

x-vector
LibriSpeech

Kreuk
[71]

Untarget Individual White
Black

Gradient Sign Mel-Spec
MFCC ACC Digital End-to-end YOHO

NTIMIT

Abdullah [72] Target Individual Black Audio process MFCC ASR Digital Microsoft Azure -

Li [73] Target Individual White
Black

Gradient Sign LPMS
MFCC EER Digital i-Vector

x-vector VoxCeleb1

Villalba
[74]

Both Individual White
Black

Optimization MFCC EER/SNR
minDCF

PESQ

Digital
ResNet34

ThinResNet34
TDNN

Voxceleb1&2

Jati [75] Both Individual White Gradient Sign Mel-Spec
STFT ASR Digital 1D-CNN

TDNN LibriSpeech

Joshi [76] Both Universal White Gradient Sign
Optimization Fbank ACC Digital

ResNet34
Transformer

x-vector
LibriSpeech

VoxCeleb

Two-step
[77]

Target Universal White Optimization - ASR/WER
CER/SNR

Digital
Physical

VGG
Thin-ResNet-34

Fast-ResNet
LibriSpeech
Voxceleb2

Liu [78] Target Individual White Gradient Sign Mel-Spec EER
min-tDCF

Digital
LCNN-Big

LCNN-Small
SeNet

ASVspoof
2019

MI-FGSM
[79]

Target Individual Black Gradient Sign
log-power
magnitude
spectrum

ASR Digital
LCNN/AFNet

SENet50
ResNet34

ASVspoof
2019

Quasi [80] Both Individual White Optimization MFCC EER Digital GMM i-vector Voxceleb1

FakeBob [81] Both Individual Black Evolutionary PLP
MFCC

ACC
SNR

Digital
Physical

GMM-UBM
i-vector
x-vector

LibriSpeech

Li [82] Both Individual White Optimization Waveform ASR/SNR
PESQ

Digital SincNet TIMIT
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Table 3. Cont.

Methods Target Capability Knowledge Generate
Strategy

Perturbation
Object Metrics OTA Victim

Model Corpus

GE2E [83] Target Individual White Optimization Feats SR/SNR
MNR

Digital d-vector TIMIT

Dictionary [84] Target Individual White Dictionary Mel-Spec SR Digital VGGvox VoxCeleb2

VMask [85] Target Individual Grey
Black

Gradient Sign
Optimization Mel-Spec WER/SER

SNR
Digital

Physical
VGGVox LibriSpeech

Abdullah
[86]

Untarget Individual Black Feature
Process MFCC ASR Digital End-to-end TIMIT

LibriSpeech

Siren [87] Target Individual White
Black

Evolutionary MFCC ASR
SNR

Digital End-to-end VCTK
IEMOCAP

AdvPulse [88] Target Individual White Optimization MFCC ASR Physical x-vector VCTK

Xie [89] Both Universal White Gradient Sign MFCC ASR Simulated x-vector VCTK

AS2T [90] Both Individual White
Black

Gradient Sign
Optimization Waveform ASR/SNR

PESQ/L2

Digital
Physical

Open source SRSs LibriSpeech

Occam
[91]

Target Individual Black Optimization - ASR/SNR API Commercial
SRSs LibriSpeech

Li [92] Both Individual White Gradient Sign
Optimization Waveform ACC

ASR
Digital

Physical
x-vector VCTK

UAPG [93] Target Universal White Optimization MFCC FR/SR Digital x-vector VCTK

Xie [94] Both Universal White Gradient Sign MFCC ASR Simulated x-vector VCTK

NRI-FGSM
[95]

Target Individual Black Gradient Sign Waveform ASR/SNR
PESQ/L2

Digital x-vector
ECAPA LibriSpeech

FoolHD [96] Target Individual White Optimization MFCC ASR/JND
PESQ

Digital - Voxceleb

Inaudible [97] Target Individual White Gradient Sign Waveform ASR Digital x-vector Aishell-1

UAPs [98] Both Universal White Gradient Sign Waveform SER/PTR
SNR

PESQ

Digital End-to-end TIMIT
LibriSpeech

Specifically, as shown in Figure 4, existing works can be divided into two dimension-
sadversarial example generation and example evaluation. Firstly, for example generation,
the attack strategies designed by attackers differ for identification tasks with different
target models (e.g., CSI, OSI, and SV) (detailed in Section 3.2), and also differ under dif-
ferent attack targets (targeted or untargeted) (detailed in Section 3.2). To the best of our
knowledge, the a priori knowledge of the internal structure of the victim model is the
key factor to consider when an attacker launches attacks. We classify the attacks into
white-box, grey-box and black-box, according to whether the attacker has the internal
information of the SRSs, including model structure, parameters, loss function and model
gradient, etc. In general, due to the ability to grasp all the information of the victim model,
it is easy to launch a successful white-box attack, but this is hardly the case in real-world
scenarios. In contrast, its grey-box and black-box counterparts that are more challenging to
launch are better aligned with real-world situations (detailed in Section 3.3). In addition,
an adversarial perturbation with strong aggressiveness is necessary, so in the adversarial
example generation stage, we need to discuss whether the adversarial example generated
by attackers can be generalized. By the generalization capacity of the adversarial example,
we divide the attacks into individual and universal. In individual attacks, the attacker must
generate perturbations specific to each genuine sample, which reduces the attack efficiency
(all attack methods described in Section 3.3 are individual attacks). We discuss the more
practical attacks: over-the-air and commercial SRSs in Section 3.4. In universal attacks,
however, the attacker only needs to introduce a universal adversarial perturbation (UAP)
obtained by pretraining into the clean samples to fool the SRSs. Compared with individual
attacks, universal attacks have considerably improved the attack efficiency, but the cost for
generating a UAP can be enormous (detailed in Section 3.5). Adversarial attacks against SR
models are different from those against image- or text-processing models: as SR models
can be trained by original audio signals or frequency features, perturbations against SR
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models can be divided into the time domain and frequency domain. As the name suggests,
time-domain perturbations are perturbations introduced to the sampling value of the origi-
nal audio, whereas the frequency-domain perturbations are perturbations introduced to
acoustic features, such as MFCC (detailed in Section 3.6). A proper perturbation created as
per the model architecture can considerably improve the attack success rate.

Figure 4. Taxonomy of adversarial audios in SRSs.

In terms of adversarial example evaluation, it is important to limit the size of the per-
turbation as small as possible since perturbations in audio are easier perceived, compared
to images and texts. Methods to introduce perturbations can be divided by the perturba-
tion constraint into perturbation regularization and psychoacoustic masking (detailed in
Section 3.7). In Section 3.8, we elaborate on the evaluation metrics for adversarial attacks.

3.2. Adversarial Task

It is essential to specify which kind of speaker recognition tasks the target model own
before attacking, and designing special attack algorithms for different task models can
usually improve the success rate of the attack.

• CSI: As mentioned in Section 2.2.1, close-set speaker recognition is a simple classifica-
tion task and involves no thresholds. Thus, how to make the confidence coefficient
of the decoded adversarial audio skew toward the target label is the key to attacks
against the CSI models. To transfer adversarial attack algorithms from the field of
image processing is a good choice.

• OSI: Different from CSI models, the OSI model uses the back-end scoring module
to obtain a decision threshold, which is relied on to make the final judgments. If
the internal structure and threshold are known, the perturbation can be scaled up to
increase the attack intensity; if the internal parameters of the model are unavailable,
how to identify the model decision threshold is a challenge in OSI attack tasks.

• SV: In adversarial attacks against SV models, we need only simulate the voice features
of a single speaker to make the model score bigger than the threshold. Attacks against
SV models are easier than attacks against OSI systems; however, for models whose
internal parameters are unknown, the internal structure and decision threshold of the
model should be considered.
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After identifying the type of task, we need then identify whether it is a targeted attack
or an untargeted attack. In untargeted attacks, the attacker only needs to fool the SRSs to
generate a wrong result. In targeted attacks, the attacker needs not only to fool the SRSs
toward a wrong decision, but to make it generate a specific identification result. The next
section provides a systematic introduction to different types of adversarial attacks.

3.3. Adversarial Knowledge

The attacker’s mastery of the a priori knowledge of the attack target has a significant
impact on the efficiency and success rate of his attack. Therefore, the attack scenarios can
be classified as white-box, grey-box and black-box according to the different degrees of the
attacker’s mastery of the a priori knowledge of the SRSs. Additionally, as per whether the
generated perturbation is applicable to different target audios, we can divide the attacks
into individual attacks and universal attacks. In this section, we discuss the individual
attack under the three attack scenarios as it is the mainstream attack, and universal attacks
are discussed in Section 3.5.

3.3.1. White-Box

If the attacker knows all the information of the model, including the model architecture,
parameters, loss function, activation function, input and output data, or even the embedded
defense strategies, the attack is termed a white-box attack. By the basis of the attack, the
attacks can be divided into gradient-sign-based attacks and optimization-based attacks.

(1) Gradient-based attack.

As shown in Figure 5, the deep neural network is trained by the gradient descent
method to minimize the target loss function, and attackers against this type of network
model needs only maximize the loss function along the direction of the gradient ascent.
This is the underlying principle of gradient sign-based attacks, which generate adversarial
perturbations based on the gradient information of the model and perform iteration through
the gradient of the input to maximize the loss function and reduce the model’s recognition
accuracy. Common gradient-sign-based algorithms include fast gradient sign methods
(FGSM), random fast gradient sign method (R-FGSM), iterative fast gradient sign methods
(I-FGSM), project gradient descent (PGD), and momentum iterative fast gradient sign
methods (MI-FGSM).

Figure 5. Gradient-based adversarial example generation algorithms. Figure (a) denotes the the
gradient direction of the model training and adversarial updating. Figure (b) shows a single-step
attack, and Figure (c) precedes the single-step attack with a random perturbation. Figure (d) shows a
typical multi-step iterative attack, taking one small step in each step, and in figure (e), momentum is
accumulated at each iteration step.

As Figure 5 shows, the gradient-based methods employ the internal gradient of the
model, and move L steps toward the sign of the largest losses. Figure 5b,c aims to identify
the proper moving steps to maximize the impacts on the target model. Among them,
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FGSM [29] aims at single-step attack methods that take one step ε in the direction of
maximum deviation, with a fixed value of ε,

x′ = x + ε · sign(∇xL( f (x), y)) (5)

where the function f (x) is the encoded network of the speaker feature vectors; L(·) is the
loss function, which is usually the cross-entropy loss. y is the real label of clean samples.
Perturbations are ensured to be undetectable by restricting ||x′ − x||∞ ≤ ε. In other words,
a larger ε means a more effective attack (reducing the model’s recognition efficiency), but it
also means that the perturbation is more likely to be detected.

Moving a fixed length of step each time seems to fail to work in face of gradient
masking defense strategies. Tramèr et al. [99] proposed a method to introduce a random
perturbation before each step:

x̂ = x + α · sign(N(0, I)) (6)

x′ = x + (ε− α) · sign(∇xL( f (x), y)) (7)

where 0 < α < ε. This simple method increases the robustness of attacks, but it is still a
single-step attack. Wang et al. [100] put forward the iterative fast gradient sign method
(I-FGSM) or the basic iterative method (BIM), which uses a small iteration step length σ
along the gradient direction:

x′i+1 = x + clipε(x′i + σ · sign(∇xL( f (x), y)− x) (8)

where x′0 = x, i is the iterative step of optimization, the function clip(·) ensures that the L∞
norm of the perturbation stays below ε after each time of optimization. Experiments prove
that this attack is more aggressive in practical applications. In addition, the project gradient
descent (PGD) method [101] generalizes for the LP norm of the BIM, which is usually L1,
L2 and L∞,

x′i+1 = x + Pp,ε(x′i + σ · sign(∇xL( f (x), y)− x), (9)

where Pp,ε is the projection operator of LP. The PGD attack can also consider several options
for taking a random initialization for the perturbation θ and using the one that produces
the largest loss.

Since the I-FGSM multi-step iteration does not consider the effect of the current
gradient on the perturbation, Dong et al. [102] used the sum of the upper previous gradients
as momentum and improved the I-FGSM method by adding this momentum term to the
optimization process. The method is called the momentum iterative fast gradient sign
method (MI-FGSM), as described in Equation (10):

gi+1 = µ · gi +
∇xL( f (x), y)
||∇xL( f (x), y)||1

(10)

x′i+1 = clipε{x′i + σ · sign(gi+1)} (11)

where gi gathers the gradient of the previous i iterations with the momentum decay factor
µ = 0. From Equation (10), we can see that the MI-FGSM will turn into I-FGSM when
µ = 0.

Kreuk et al. [71] introduced perturbations onto the MFCC features by the FGSM, and
reconstructed the speaker features into acoustic waveforms, which achieved an ASR of 90%
against an end-to-end DNN-based SAV system. They also analyzed the attack performance
on different datasets and under different features (to the best of our knowledge, different
speaker features can affect the model’s accuracy). This is the first work to demonstrate the
existence of adversarial attacks for SRSs, but their work does not consider the size of the
incorporated perturbations, which may make the noise too loud to be perceived by the
human ear. To achieve attacks on advanced SRSs, Li et al. [73] successfully attacked the
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GMM i-vector model (a Kaldi-based system) by FGSM. To explore the transferability of the
adversarial examples, they transferred the attack against the x-vector model by adversarial
examples generated by the GMM i-vector model under different speaker features. Their
experiments showed that the transfer attack worked better under the same model with
different features, but had weaker performance when both the model and feature vary.

Both the basic iterative method (BIM) [100] and the projected gradient method
(PGD) [101] can be considered multi-step iterative FGSM algorithms. Specifically, the
BIM (also known as multi-step iterative fast gradient notation I-FGSM) optimizes one tiny
step at a time in the gradient direction, and the optimized perturbation parametrization
will be limited to a small range during the iterative process.The PGD method, on the other
hand, optimizes the BIM perturbation parametrization limit by projecting the optimized
perturbation to an arbitrary Lp parametrization (BIM is equivalent to PGD-L∞), while PGD
adds a random perturbation in the initialization stage to make the loss maximized (in BIM,
the initial value of the perturbation is 0). Although these two methods generate more ag-
gressive adversarial examples than FGSM, they require more training overhead. To clarify
the effectiveness of the above methods, refs. [74–78] investigated various algorithms, such
as FGSM, R-FGSM, BIM and PGD for several x-vector systems with different structures,
and showed through experimental data that the multi-step iterative I-FGSM method has
better attack performance. At the same time, as the number of iterations increases, the
generated adversarial examples are more aggressive and can often achieve an attack success
rate of 100%. Nonetheless, increased iterations also mean more computing resources and a
lower quality of the generated audio.

The momentum iterative fast gradient notation (MI-FGSM) achieves accelerated coun-
teracting perturbation generation by accumulating the acceleration vector in the direction
of the increasing gradient of the loss function during the iterative process, and this method
is able to avoid local maxima. Zhang et al. [79] integrated MI-FGSM with the iterative
ensemble method (IEM) and reached an ASR 100% in attacks against white-box models.
They also conducted transfer experiments of adversarial examples, in which the adversarial
examples generated by a known model could successfully attack other black-box mod-
els, with a cross-model ASR as high as 84%. Their experiments also revealed that larger
adversarial perturbations meant stronger transferability of the attacks, and the ε of the
perturbation should be at least larger than 2.5 to achieve successful attacks. In fact, the ASR
of black-box attacks across models varies considerably from 24% to 84%, which may be
related to the structure of the victim models; in addition, the perturbations generated by
their method are very likely to be perceived by human ears (to be detailed in Section 4.4).

(2) Optimization-based attack

While the gradient-sign-based method configures the attack algorithm based on the in-
ternal gradient of the model, the optimization-based algorithm does not require knowledge
of the model gradient, and the attack can be performed by obtaining the logits of the model
output. As shown in Figure 6, the core idea is to define the adversarial sample generation
process as an optimization problem that minimizes the perturbation while successfully
misleading the model recognition as a target label to achieve an imperceptible effect to the
human ear. Therefore, this approach usually has two optimization goals: higher attack
success rate and smaller perturbation. We can design an optimization model or use the
idea of C&W to minimize the loss of the above two objectives.
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Figure 6. Diagram of optimization-based attacks.

The C&W approach performs the attack by finding the minimum perturbation δ,
which deceives the neural network model while keeping the perturbation imperceptible,
and δ is obtained by minimizing the loss:

C(δ) = D(x, x + δ) + c · f (x + δ) (12)

where D(·) is the distance metric that constrains the size of perturbation size to achieve
imperceptibility, which can usually be done with the L2 parametrization. Different from
perturbations to images, audio perturbations can be constrained from two perspectives:
the original speech signals and the speaker features (detailed in Section 3.6). The function
f (·) is defined as a standard where only when f (x + δ) ≤ 0 will the attack be considered
successful. The SR model can be regarded as a classification model, and f (·) can be defined
as follows:

f (x + δ) = max(max{Z(x′)i:i 6=t} − Z(x′)t,−κ) (13)

where Z(x′)i is the logit value that the model predicts x′ as class i and κ is the attack
confidence hyperparameter. f (x + δ) ≤ 0 is an indication of a successful attack. This
condition is satisfied when at least one of the logit of the attack target class is larger than
the normal class by κ. We can increase the confidence in the success of the attack by setting
κ > 0. The weights c balance the function D(·) and the function f (·).

In optimization-based models, to make the perturbations more covert, an attack
network model G is designed to generate adversarial examples, and the SRSs prediction
results and the loss of target labels are used to reversely optimize the parameters in the G
network and minimize the perturbations.

Carlini et al. [30] proposed the C&W algorithm for image processing models, and
applied the algorithm for the generation of adversarial examples against automatic speech
recognition systems. Specifically, they optimized and modified the waveform of the original
audio to generate adversarial examples, which proved the feasibility of the C&W algorithm
in the field of audio processing. Some other researchers [58,74,76,77] constructed the loss
function following the C&W framework, and achieved an ASR as high as 100% on targeted
and untargeted attacks. A second-order proposed Newtonian attack method was proposed
in [80] to solve the optimization problem based on different level approximations of Taylor
expansion. The method generates a reduced relative perturbation size ρ from 9.91 to 0.24

(ρ =
||δ||p
||x||p , where x is the clean audio and δ is the counter perturbation) compared to the

relative perturbation size in [73]. To further reduce the perturbation size, an attack network
was trained in [81] to add interference to the input speech by training a lightweight attacker
network. Based on this optimization idea of building a model, in the latest work [103],
a FoolHD approach was proposed to generate and hide the adversarial perturbations
in the original audio file using a gated convolutional autoencoder GCA, trained in the
MDCT domain by a multi-objective loss function with target label probabilities and feature
differences, which, compared to the attack network of [82], generates an adversarial audio
PESQ value (perceptual evaluation of speech quality) was able to improve from 3.48 to 4.3,
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which is a very good result. Luo et al. [83] proposed an attack based on a generalized end-
to-end (GE2E) loss function for the SR model with end-to-end d-vectors. They designed a
novel loss function to construct a generator that uses generalized loss to reduce the distance
between the perturbed audio and the target speaker and limit the perturbation amplitude
to construct a multi-factor attack strategy that generates effective adversarial examples
under minor perturbations and is able to achieve an attack success rate of 82%. However,
this attack is limited to the SR model using triple loss and GE2E loss.

There are other works that do not follow the idea of the C&W attack. For instance,
Marras et al. [84] shifted to dictionary attacks against SRSs. Dictionary attacks can deal with
large amounts of attackers and dispense with the need of knowledge about the speaker
features or speech models of the target speaker. In this type of attack, perturbations
are added to the master voice to maximize the similarity between the master voice’s
spectrogram and that of most speakers. When the spectrogram similarity degree exceeds
the threshold and the master voice approaches the voices of most speakers in the crowd,
the spectrogram is reversed to generate time-domain waveforms for close matching with
multiple speakers in the crowd.

The above-mentioned works are perturbed for the whole audio and are static attacks.
To achieve a real-time streaming attack, Li et al. [85] proposed a subsecond, synchronization-
free and targeted adversarial perturbation, AdvPulse. Using an optimization-based algo-
rithm that maximizes the expected output probability of the target class under different
delay conditions, the identification of the streaming audio input is changed in a targeted
and synchronization-free manner, without modifying the entire audio input, at any point
of the streaming audio. Add a very short hostile interference (0.5 s) to launch a targeted
counter attack. For the physical domain SRSs, the attack success rate is able to reach 89.2%.

The white-box attacks mentioned above show extent advantages when the prior
knowledge of the model is available, implying that the SRSs will be completely exposed to
the attacker. The white-box attack approach is an important basis for our research, but has
limitations in practical attacks.

3.3.2. Grey-Box Attack

In grey-box scenarios, the adversary only knows the scores and recognition results
output from the SRSs, and has no detailed information about the speaker verification
system, much less whether there is a defense mechanism for the model. Existing solutions
to the problem of unknown gradients in grey-box models include difference gradient
estimation and natural evolution.

Specifically, in order to implement the acoustic adversarial attack without any knowl-
edge of the model structure and parameters, Zhang et al. [85] proposed an adversarial
sample generation strategy called VMask, which estimates the gradient based on the differ-
ence in similarity scores of multiple queries and uses zero-order optimization [104] to solve
the gradient unknowability problem, while using psychoacoustic masking (described in
detail in Section 3.7.2) to make the perturbation imperceptible. Their approach is able to
achieve a successful attack in the VGGVox model with the guarantee that the adversarial
audio and the original audio have exactly the same transcription. However, this attack is
performed with the knowledge of the model’s thresholds, which are not normally given
by the SRSs. To further estimate the thresholds in SRSs, Chen et al. [81] proposed a Fake-
Bob’s attack which estimates the gradient by a natural evolutionary strategy [103] and also
estimates the thresholds for SV and OSI tasks using a circular iterative algorithm. Their
attack starts from the original input speech rather than from a randomly perturbed speech
and uses an early stopping strategy to reduce the number of queries, i.e., stop searching
once an adversarial sample is found. Similar to the C&W attack, FakeBob also provides an
option to control the confidence of the adversarial examples by parameter κ.
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3.3.3. Black-Box Attack

The black-box attack scenario is not like the white-box and grey-box ones, which can
obtain certain information inside the model. We define the black box as the attacker only
being able to obtain the decision result of the model, i.e., the decision result is “yes” and
“no” in the SV system, and “speaker id” in the CSI or OSI system. The confidence of the
decision is also unavailable. This is the most difficult existing attack scenario, but at the
same time, it is also more in line with the realistic attack scenario. This type of attack can
be divided into the data-level and model-level by the area of attack.

From data-level attacks, Abdullah et al. [86] was able to successfully attack some
mainstream SRSs by performing inverse Fourier transform on MFCC features in the signal
processing layer and time-domain compression on the original audio, and this method
does not require a priori knowledge of the internal structure and parameters of the model.
However, the adversarial audio generated by the above method is a piece of noise, and this
attack is highly detectable in a real attack scenario. In their latest work, [72] proposed a
spectrum estimation method based on discrete Fourier transform (DFT) and singular spec-
trum analysis (SSA), which introduces perturbations to single phonemes of imperceptible
low-frequency audio in the original audio input (one phoneme is perturbed every eight
words). This method will not reduce the quality of the original audio file, and can make
successful attacks, even when there are transcoding, jitters, or packet dropouts in network
transfer. As data-level attacks focus on the signal processing and feature extraction stages
before the deep neural network model and do not interfere with the model, such attacks
have strong transferability.

Model-level black-box attacks mainly employ substitution models and genetic al-
gorithms [85]. As all existing SR models project a high-dimensional audio space onto a
low-dimensional speaker space, we can train a local deep learning SRS to mimic the victim
black-box system. The attacker can extract speaker feature vectors of the victim speaker
from recordings of any random speeches from the victim speaker, and add slight noises
to the audio of any other speakers to generate an attack audio that represent the victim’s
voice [71,73,74,78]. As the features learned from the high-dimensional space are similar,
adversarial examples generated in white-box models can be used to attack black-box sys-
tems, but the ASR is below 40% across databases or across models. FakeBob proposed by
Chen et al. [81] has also been applied to black-box attacks, and the major approach is to
transfer adversarial examples that have successfully attacked the grey-box system. Recently,
CC-CMA-ES proposed by [91] applied a cooperative co-evolution (CC) framework to the
powerful covariance matrix adaptation evolution strategy (CMA-ES) to solve the large
and complex problem in the strictly black-box setting. Additionally, they adopt gradient
inversion method to attack

In addition to the idea of using substitution models, SirenAttack [87] used a gradient-
free particle swarm optimization (PSO) method [74] to search for adversarial examples. PSO
is an algorithm that mimics the food-searching behaviors of bird flocks; in PSO, the solution
to each optimization problem is considered a particle in the search space, and each particle
is a candidate solution, and the weighted linear combination of the inertia, individual
optimum and local optimum are iteratively updated to converge into a global optimum
and generate adversarial examples. Most existing attacks to black-box models are realized
by sample or model transfer from white-box or grey-box attacks, which have considerable
limitations and will become invalid when the model or database is changed. Though
attacks based on natural optimization and genetic algorithms are effective, the noises are
rather obvious, with the signal-to-noise ratio (SNR) staying between 6 and 12 dB, which
is not applicable to real-world physical domain attacks. In the future, physical-domain
black-box attacks will be the focus and major challenge in SRS adversarial attacks.

3.4. Practicality

The adversarial attacks mentioned above seem to show powerful attack capabilities
on mainstream CSI, OSI and SV models, but do such attack capabilities really exist? In
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this section, we focus on whether existing adversarial attacks are practically relevant,
whether they achieve powerful attacks in over-the-air environments, whether they have
good transferability, and whether they can successfully attack commercial systems.

3.4.1. Over-the-Air

Adversarial examples have shown powerful attack capabilities in the digital domain,
but when applied to actual smart devices, their attack performance is greatly reduced. In
the digital domain, SRS reads the voice information directly from the wav file, which is
an almost non-destructive operation, whereas the attack in the physical domain is a lossy
process. The audio is first converted into an analog signal by a digital signal, which is
undoubtedly a lossy process. Then the analog signal will be propagated in the air, will
be affected by environmental noise, reverberation and media transmission attenuation,
and the audio quality will be significantly reduced. This leads to adversarial audio in
over-the-air scenarios being very difficult to attack. Some works simulate over-the-air
attacks by applying the room impulse response (RIR), natural noise and signal attenuation,
such as [77,81,88–90]. As shown in Table 4, we consider the attack task, attack target, the
distance of the audio transmission, ASR, and whether the victim model has a defense
module. However, it is challenge to conduct a through evaluation of adversarial attacks
over-the-air in the physical world.

Table 4. Related works on adversarial attacks for physical domain.

Ref. Task UT/T OTA Distance
(m) Methods ASR

(%)
Generation

Model
Victim
model

Commercial
System Defense Time

[77] SV T Real 1.7 RIR 67.7 Res34-V Res34-V - RD -

[81] OSI/SV T Real 0.25–8 NES+RIR 100 GMM -
laptop (Dell)

Shinco OPPO, JBL
iphone 6 plus

LS, QT
AS, TDD -

[86] CSI/SV T Real 0.3 TDI, RPG,
HFA, TS 100 - - Azure VAD -

[88] SI T Real 1.6∼3 RIR+BPF 96.9 ? - TKGOU
Honda - -

[89] CSI T Real - RIR 90.19 x-vector
(Tensorflow)

x-vector
(Kaldi) - - 0.015 s

[90] CSI UT Sim.
Real - RIR+RN 97.4 ? ? - - -

[91] SI/SV T Real 0.15 GI 71.7 ASplRE -
Google Assistant Siri,

iFlytek Cortana
Amazon Echo

- -

[92] SV UT+T Real - GA+RIR 50 x-vector - Talentedsoft
Azure - -

UT/T: Untarget and target attack; SI: Unclear whether it is CSI or OSI; OTA: Over-the-air; Sim.: Simulate; RIR:
Room impulse response; RN: Random noise; ASR: Attack success rate; Generation Model: Crafting adversarial
examples from generation model; RD: Replay attack detection; LS: Local smoothing; QT: Quantization; AS:
Average smoothing; TDD: Temporal dependency detection; GA: genetic algorithm; ?: Indicates mentioned in the
literature but not clear.

3.4.2. Commercial SRSs

It is worth noting that most of the attacks we have discussed so far are on academic re-
search SRSs, while SRSs used in industry consider more assumptions compared to academic
SRSs, with some advanced functional modules for denoising and false audio detection
deployed externally. There is currently very little work attacking actual commercial SRSs.
The current attacked commercial systems contain three types: voice assistant (e.g., OPPO,
and Google Assistant), smart home (e.g., JBL, and Amazon Echo) and smart car (e.g., Honda
Civic Sedan).
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3.5. Universal Attack

The universal attack referred to in previous work focuses on data-agnostic. In this
paper, we define the universal attack as two aspects: data-agnostic and model-agnostic.

3.5.1. Data-Agnostic

The perturbation strength is also an indicator for the quality of attacks. As Table 1
shows, individual attacks in which specific perturbations are generated to each clean audio
are the dominating research direction at present. Universal attacks that use universal
adversarial perturbations, however, are effective on most samples, and hence are more
harmful than individual attacks. Attacks based on universal adversarial perturbations
(UAPs) do not require any prior knowledge of the target model in the testing stage, but are
strongly invasive with a single perturbation, which lowers the bar of adversarial attacks
and are likely to gain popularity among attackers. UAPs have received broad attention from
researchers on speaker recognition and verification, but there are few studies in this regard.
Li et al. [93] proposed a generative network to learn the mapping from the low-dimensional
normal distribution to the UAPs high-dimensional subspace, synthesized 3200-dimension
UAPs using 100-dimension noise inputs that conformed to standard normal distribution
through multiple convolution modules, and embedded the synthesized UAPs after scaling
into any input signals to fool well-trained speaker recognition models with high probability;
the UAPs achieved an ASR of 97% in untargeted attacks, with a mean SNR of 49.87 and a
PESQ of 3.0 (generally, the closer the PESQ value approaches 4.5, the better the quality of
the audio). However, they only applied the UAPs to digital attacks, but did not analyze
attacks in real-world physical scenarios.

To achieve attacks in physical scenarios, Xie et al. [94] put forward a real-time and
universal attack method applicable to the physical domain. To make the UAPs fit voice
inputs with different lengths, they first generated a small fixed length unit universal noise,
and then built the desired length of adversarial perturbations on the top of this via repeated
playback to generate the adversarial utterance. Meanwhile, the magnitude of perturbations
was adaptively adjusted via spectral gating to make the attack more imperceptible. They
also introduced the room impulse response (RIR) [105] loss to the primary target loss
function, and simulated magnitude loss of the audio in the physical world to achieve
attacks in physical environments, but only achieved an ASR of 90.19% and 90.32% in
simulated indoor environments. Their method is able to not only launch effective attacks,
but reduces the time cost for generation of adversarial audios. In their latest work [106], they
designed a fast attack perturbation generator (FAPG) and a universal attack perturbation
generator (UAPG), which can make real-time perturbations on any clean samples and lead
the target model to misclassification.

3.5.2. Model-Agnostic

Model-agnostic means that adversarial examples can have strong attack performance
in multiple models, regardless of whether the attacker has prior knowledge of those
models, which is also called transfer attack in other works. For data-agnostic, the universal
perturbation is aimed at the data level and cannot perform well in other models.

The model-agnostic adversarial attack is a commonly adopted method for black-box
attacks, which generates adversarial audio from a white-box model first and then uses
this audio to attack a black-box model. For example, some gradient-based white-box
attack methods were utilized to attack black SRSs [73,74] to explore the transferability of
the adversarial examples. However, the gradient-based attack method greedily perturbs
the audios in line with the direction of the sign of the gradient at each iteration, which
may easily fall into the local maximum and fail to attain global optimization, resulting
in low performance in SRSs. A multi-step iterative attack method called NRI-FGSM [95],
proposed to improve the attack success rate and achieve global optimization for the black-
box SRS, which represents the Nesterov accelerate gradient (NAG) and root mean squared
propagation (RMSProp) optimization-based iterative-fast gradient sign method. Compared
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to the traditional gradient-based methods, NAG can take a step forward and meanwhile
stabilize the direction of the gradient, which will correct the previously accumulated
gradient and thus avoid the local maximum. The RMSProp optimization method with
adaptive step size and momentum was used to optimize the step size dynamically. NMI-
FGSM-tri proposed by [107] can craft strong transferable adversarial examples to achieve
the attack on the black-box model. Specifically, they used ensemble ideology and NAG to
enhance the transferability of adversarial examples to improve the attack performance of
adversarial examples in the target system. At the same time, they found that the feature
distribution of audio in different models has certain similarities, and used a few query
attacks on the target model to monitor and correct the target speaker of the attack.

3.6. Perturbation Object

Besides prior knowledge of the victim model and adversarial audio generative meth-
ods, the attacker also needs to identify the perturbation object, i.e., where to add the
perturbations. In the field of image processing, perturbations are added to pixels; in text
processing, words are added, deleted or modified to generate adversarial examples; in
audio processing, the perturbation objects are more diverse. In speaker recognition or veri-
fication tasks, perturbations can be divided by the perturbation object into two categories:
time-domain perturbation and frequency-domain perturbation.

3.6.1. Time-Domain Perturbation

In attacks based on time-domain perturbations, the sampled time-domain values of
the original audio signals are taken as the perturbation object, and the sampled values are
minimized to fool SRSs while making the attack imperceptible. Such perturbations are easy
to add; moreover, the features are not required to be inverted into audio signals in the next
step, and the signal loss caused by conversion of model features into audios does not need
to be considered, which makes the attacks more convenient and efficient [72,75,82,92,93,96].
The perturbations are added to the original audio and then the perturbations are minimized
by an optimization algorithm to achieve effective attacks. Compared with frequency-
domain perturbations, time-domain perturbations can generate adversarial audios with
stronger attack performance.

To show the effect of time-domain perturbations, we here provide the waveforms of
original audios and adversarial audios generated by FGSM- and BIM-based time-domain
perturbations (Figure 7). As the figure shows, such perturbations mainly work in parts
without semantic information, and the magnitude of the perturbation is small. It should
be noted that, however, time-domain perturbations are easy to detect if the audios are
converted into Mel spectrograms. Figure 8 shows the Mel spectrograms of time-series
signals in Figure 6 converted by Fourier transform, and there are tangible perturbations
in the frequency domain. In the mainstream SRSs, the neural network learns frequency-
domain features, discrete Fourier transform is involved in the extraction of MFCC features,
and this process is non-differentiable, so time-domain perturbations are applicable only to
SRSs with differentiable features (unless the target SRSs is trained on time-domain features).
Additionally, time-domain perturbations can also be used in attack approaches based on
model optimization [82,96].
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Figure 7. A example of the waveforms of original audios and adversarial audios generated by FGSM-
and BIM-based time-domain perturbations. Figure (a) shows the waveform of the original audio,
while figure (b,c) show the waveforms of the adversarial audio generated by the FGSM and BIM
algorithms respectively.

Figure 8. A example of the Mel spectrograms of audios after introduction of FGSM- and BIM-based
time-domain perturbations. Figure (a) shows the spectrogram of the original audio, while figure
(b,c) show the spectrograms of the adversarial audio generated by the FGSM and BIM algorithms
respectively.

3.6.2. Frequency-Domain Perturbation

In attacks with frequency-domain perturbations, the frequency features of utterances
(Mel spectrograms, MFCC, and FBank, etc.) converted by Fourier transform are taken as
the perturbation object, and this type of perturbation is currently the mainstream form
of perturbations. Figure 9 shows the frequency spectra of audio files with perturbations
introduced to MFCC features extracted from the original audio files, which are closer
to the original spectra than perturbed audios generated by adding noises directly to the
original audio files. Nonetheless, refactoring of acoustic features will lead to losses in the
speech waveform, which need to be considered in attacks based on frequency-domain
perturbations. In some existing works [71,78,83,86], even though the adversarial examples
generated with frequency-domain perturbations can make effective attacks, the attack
capacity after refactoring of the time-series signals is not evaluated.
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Figure 9. A example of the MFCC of audios with by FGSM- and BIM-based frequency-domain
perturbations. Figure (a) shows the MFCC of the original audio, while figure (b,c) show the MFCC of
the adversarial audio generated by the FGSM and BIM algorithms respectively.

Through experiments, we found that the acoustic features after frequency domain
perturbation are highly aggressive and imperceptible. However, when we transform these
features back into audios to attack SRSs, the attack weakens and there are perceptible noises
in the audios.

3.7. Perturbation Constraint

Unlike visual perturbations, like perturbations to pixels in images and those to charac-
ters or sentences in texts, perturbations in voice adversarial attacks are auditory perturba-
tions. Methods that make perturbations imperceptible include perturbation measurement
and psychoacoustic masking.

3.7.1. Perturbation Measurement

Perturbation measurement is to introduce perturbation constraints to the loss function
to minimize the perturbation. By the object of constraints, perturbation measurement
methods can be divided into the time-domain measurement and frequency-domain mea-
surement. The time-domain measurement is to add constraints to the original audios, and
constraints used in this method include SNR, maximum signal-to-noise ratio (MNR), and
root mean square (RMS), as well as the commonly used Lp-norm. The frequency-domain
measurement is to perform L2 normalization on the frequency spectrum of the audio.
Shamsabadi et al. [96] employed the speech steganography technique and a gated con-
volutional autoencoder to generate adversarial audio examples; meanwhile, they trained
the model by a multi-objective loss function, and controlled the difference between the
MFCC features and the original features to produce adversarial examples. This method
can achieve a high ASR while minimizing the perturbations, with a PESQ (to be detailed in
Section 3.8) of 4.30. Thus, for different attack tasks, constraints can be added to different
frequency-domain features to achieve effective attacks.

3.7.2. Psychoacoustic Masking

Psychoacoustics [30] provides mathematical models for statistics of sound percep-
tion of humans, and whether a sound can be perceived by human ears depends on the
sound frequency, strength and noises. Psychological masking can be employed to im-
prove the aforementioned perturbation measurement methods. In psychoacoustic models,
perturbations are mainly introduced to frequency-domain features to conceal the attack.
Frequency masking occurs between two sounds with similar frequencies, in which the
sound with lower frequencies is covered by a simultaneous higher-frequency masker and
becomes imperceptible to human ears. Frequency masking is to create a “masking thresh-
old” in the frequency domain, and any signal below the threshold is imperceptible. Chen
et al. [58] proposed that auditory masking can occur before or after the masker, which
is termed time-domain masking or non-simultaneous masking. There are two types of
non-simultaneous masking: (1) pre-masking, which occurs right before the masker, and (2)
post-masking, which occurs after removal of the masker. The physiological mechanism
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underlying non-simultaneous masking is that the auditory system needs time to process
the perception of sounds, and higher-frequency sounds need more time to process than the
lower-frequency sounds.

As most automatic speech recognition and speaker verification systems process
frequency-domain signals, frequency masking is a dominating attack method. Inspired by
imperceptible adversarial examples in white-box attacks, Wang et al. [97] constrained the
perturbation under the masking threshold of the original audio, and generated targeted,
inaudible adversarial examples to the original sound waveform, which achieved an ASR of
98.5%. They also applied their method to irrelevant waveforms, such as music and achieved
good attack effects, but this method is still at the stage of development. Zhang et al. [85] put
forward VMask, which employs psychoacoustic masking to compute the hearing threshold
that indicates the masking threshold between different frequencies, and then this hearing
threshold is leveraged to restrain the adversarial perturbations under the human perception
threshold. VMask was proved to be effective in attacking the grey-box model VGGVox and
the black-box system Microsoft Azure, with a perturbation size around 13.13 dB. Compared
with FakeBob, VMask generates more imperceptible adversarial perturbations.

3.8. Attack Metrics

Generally, an adversarial example is considered good if it cannot only fool the victim
model effective, but avoid being perceived imperceptible. Adversarial examples can be
generated by different algorithms in different scenarios, and the quality of these examples
are often measured by their attack capacity and imperceptibility.

3.8.1. Effectiveness

Attack success rate (ASR). ASR is the ratio of adversarial audio that is identified as
the target speaker, assuming that the test sample is M and the number of samples that can
achieve a successful attack is N:

ASR =
N
M
× 100% (14)

In some works, ASR is also termed the prediction target rate (PTR).
False acceptance rate (FAR), false reject rate (FRR), and equal error rate (EER). Eval-

uation indicators for SRSs include FRR and FAR, which indicate the classification errors
of the target and non-target trials, and EER is a balanced measure when the FAR equals
FRR. As real-world attacks are close to non-target trials, the increase in FAR of the victim
model post adversarial attacks is more valued. In target trials, adding random noises
instead of adversarial perturbations can already lead the system to failure in recognizing
the legitimate speaker, so an increased FRR cannot well reflect vulnerability of the SRSs to
adversarial attacks. Therefore, we increase the efficiency and the efficiency coefficient to
measure the vulnerability of the system to adversarial attacks.

FAR =
FP

FP + FN
(15)

FRR =
FN

TP + FN
(16)

where TP (true positive) is the number of correctly-classified positive samples, FN is
the number of misclassified negative samples, FP is the number of misclassified positive
samples and TN is the correctly classified negative samples.

MinDCF (minimum detection cost function). In most cases, EER is not required. For
instance, an entrance guard system minimizes the FAR to the greatest extent, but has less
strict requirements on the FRR. Therefore, different weights are assigned to FRR and FAR.

MinDCF = Cmiss · Ptarget · FRR + CFalseAlarm · (1− Ptarget) · FAR (17)
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where Cmiss and CFalseAlarm denote the weights of false rejection and false acceptance,
respectively, i.e., the magnitude of the penalty. Ptarget and 1 − Ptarget denote the prior
probability of occurrence of the real speaker and impostor, respectively.

3.8.2. Imperceptibility

SNR (Signal-to-noise ratio) is the ratio of the power value of the audio and the power
value of the noise is used to calculate the size of distortion. The signal-to-noise ratio is
calculated as follows,

SNR = 10 · log10

(
σs

2

σe2

)2

(18)

where σs
2

σe2 is the mean square of the input signal/error. The larger the SNR ratio value, the
less noise in the audio.

MNR (maximum signal-to-noise ratio). Decibels (dB) is a unit of acoustic measurement
that calculates the acoustic characteristics of δ using the following equation:

dB(x) = max
i

20 · log10(xi) (19)

As the scale of sound perceived by human ears is a relative notion, it is not practical
to assess the scale of one single perturbed audio. Thus, we measure the distortion of the
adversarial audio from the original audio by the decibel difference between the perturbation
and the original audio input:

dBx(δ) = dB(δ)− dB(x) (20)

Obviously, the smaller the dBx(δ), the closer the antagonistic audio is to the original
audio, and the more difficult the added perturbation δ is to be perceived by the human.

PESQ [108] is an objective indicator of speech quality, calculated from the stable ratio
of spectral density reduction to the reference signal in each time-frequency unit, which can
directly and truly reflect the real situation of speech quality. After PESQ analysis, the score
ranges from 0 to 5. The higher the score, the better the audio quality, which is a practical
evaluation index to combat the problem of whether the audio is inaudible or not.

ABX test. In addition to objective metrics to demonstrate the imperceptibility of
counteracting perturbations, the perception of perturbations by the actual human ear can
also be measured by a live-action ABX test. The ABX test first provides the user with two
segments of speech A and B, each of which may be either the original clean audio or the
counteracting audio, and then randomly selects another segment of speech X from the set
A, B, and finally asks the tester to decide whether X is A or B. Refs. [73,79,81] carried out
this practical test in their work, and ABX testing is available to researchers in need via
Amazon’s MTurk platform [109].

4. Adversarial Defense

Boosted by the ASVSpoof Challenge series [110], most SRS defense methods are fo-
cused on detection of replay attacks, text-to-speech attacks and mimicry attacks, but studies
on defense algorithms against adversarial examples are rare. In [106,111], a comprehensive
overview of defense methods against adversarial attacks in computer vision is provided,
but not all these methods work in speech recognition (SR) tasks. In this section, we intro-
duce effective defense approaches against adversarial attacks to SRSs. By the perspective of
defense, the existing and future defense methods can be divided into three types (Figure 10):
adversarial training (detailed in Section 4.1), attack detection (detailed in Section 4.2), and
input refactoring (detailed in Section 4.3). Table 5 recaps the existing defense methods.
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Figure 10. Taxonomy of defense methods against adversarial attacks to SRSs.

Table 5. Existing defense methods against adversarial attacks to SRSs.

Categories Methods Metrics (%)

Evaluation

Model Dataset
Performance

Baseline Attack Defense

Adversarial
Training

Wang [112] EER GE2E-ASV TIMIT 4.87 FGSM 11.89
FGSM 8.31

LDS 9.26

Wu [113] ACC
VGG ASVspoof

2019
99.99

PGD
37.06

PGD
92.40

SENet 99.97 48.32 98.60

Pal [114] ACC 1D-CNN LibriSpeech 99.55

FGSM 6.03

HTA10

90.60

PGD-10 0.00 81.12

CW-10 0.00 80.12

Attack
Detection

Li [115]
DA

VGG-like VoxCeleb1 - BIM-xvec
90.65

EER 0.46

Villalba [116] ACC Espresso
VoxCeleb

1&2
- CW-L2 82.9

Peng [117] FAR Twin Models VoxCeleb1 - 4.48

Wu [118] ACC Representation
VoxCeleb

1&2
-

Vocoder
(0.01 FPR)

98.92

Joshi [119] EER AdvEst Voxceleb2 - FGSM/BIM/CW 14.57

Input
Refactoring

Joshi [76] ACC ResNet34 LibriSpeech 100
BIM 0 PWG

BPDA
97.2

CW 1.3 98.8

Wu [113] ACC
VGG ASVspoof

2019
99.99

PGD
37.06

AT+Mean filter
93.76

SENet 99.97 48.32 99.24

Zhang [120] EER SE-Resnext VCTK 1.43
FGSM 13.81 3.62

PGD 16.66 1.94

Wu [121] ACC
LCNN

ASVspoof 2019
80–90

PGD
(5–10) (80–90)

SENet 80–90 (5–10) (80–90)

Wu [122]

AdvFAR
x-vector

VoxCeleb1

5.97

BIM

87.36 16.54

AdvFRR 51.95 16.88

j-FAR
r-vector 8.40

48.04 17.84

j-FRR 30.41 18.51

Wu [123]
FRR Fast

ResNet-34
VoxCeleb

1&2
ASP

2.24
BIM-10

89.38 3.6

FAR 2.56 91.94 16.67
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Table 5. Cont.

Categories Methods Metrics (%)

Evaluation

Model Dataset
Performance

Baseline Attack Defense

Input
Refactoring

Wu [124] EER r-vector VoxCeleb1 8.87 BIM 66.02 22.94

Oliver [125] ACC 1D-CNN LibriSpeech 88
PGD 7

MAD
74

CW 9 69

Chang [126] ASR i-vector LibriSpeech - BIM 100 1

4.1. Adversarial Training

Adversarial training is a method for generating adversarial perturbations based on
model gradients and constraining the perturbations with normalized spheres in the em-
bedding space, thus improving the robustness of the model, which is first proposed by
Goodfellow [29]. As shown in Figure 11a, adversarial training further delineates the de-
cision boundary of the model through a robustness-enhanced training process, we can
consider it as a special adversarial data enhancement strategy. The working principle
underlying adversarial training is as follows: the adversarial examples are injected into
the training set as new training samples in the model training stage, so that the trained
model achieves not only a higher recognition accuracy, but stronger robustness against
adversarial examples. Adversarial training has proved to be an effective defense method in
image processing, and shows robustness in text processing tasks [127]. Thus, for specific
attacks, adversarial training may be the most effective defense method.

Figure 11. The two-dimensional visualization of different defense strategies. Figure (a) represents
the adversarial training with the aim of finding robust decision bounds. Figure (b) represents
attack detection, distinguishing clean samples from adversarial samples. Figure (c) represents input
reconstruction, which uses denoising, noise addition and sample purification to repair the input data.

In terms of SRS defense, Wang et al. [112] first put forward a virtual adversarial
training method with adversarial examples generated by the fast gradient sign method
(FGSM) and the local distributional smoothing (LDS) method [128]. FGSM-Adv is a
supervised adversarial training method, and it modestly reduces the EER of original attacks
from 11.89% to 8.31% when applied to the GE2E model [129], which is not a satisfactory
outcome. Likewise, the unsupervised virtual adversarial training scheme LDS-virtual
adversarial training (LDS-VAT) merely reduces the ERR to 9.26%. Though these works
proved applicability of adversarial training to SRSs, the defense effect falls short of the
ideal. To increase the defense capacity of adversarial training schemes, Wu et al. [113]
trained a model using adversarial examples generated by the projected gradient descent
(PGD) method that has stronger attack performance than FGSM, which increased the
testing accuracy of VGG from 37.06% to 98.60% (it increased the accuracy from 48.32% to
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92.40% on the SENet model). They also found that equipping adversarial training with
spatial smoothing based on introduction of median filters or mean filters can improve the
adversarial robustness.

Though single adversarial training has been proved effective in defense against similar
adversarial attacks, its defense performance drops considerably when the attack strat-
egy varies. To enhance the defense performance of adversarial training, Pal et al. [114]
put forward a new defense mechanism based on a hybrid adversarial training (HAT)
setup. Specifically, they employed multi-task objectives using cross-entropy (CE), feature
scattering (FS) [130], and marginal loss (ML) [30] to perform HAT. As shown in Table 5,
adversarial training with a richer collection of adversarial examples has better performance
than individual adversarial training, can defend some black-box attacks, and has better
adversarial robustness.

To the best of our knowledge, adversarial training is not perfect, and due to iterative
updates of attack methods, adversarial training does not fully defend against all attacks
and always lags behind existing attacks as well. On the other hand, it was shown through
research [30] that adversarial training degrades the recognition accuracy of the original
model to some extent, i.e., the recognition accuracy of the adversarially trained model
for clean samples tends to be slightly lower than that of the model without adversarial
training. Therefore, the decrease in recognition accuracy caused by adversarial training is a
meaningful research topic, and integrated adversarial training is likely to become a new
research hotspot in the future.

4.2. Attack Detection

Attack detection is to add a pretrained detection module to the original model to
discriminate adversarial examples from genuine samples, just as Figure 11b shows. Instead
of adding adversarial examples to the training set to train the SR model, the attack detec-
tion method needs to design a strongly discriminative detector. Li et al. [115] designed a
VGG-like binary classification detector, which captures the difference between the adver-
sarial examples and genuine ones by the convolutional layer and aggregates the speech
sequences by the pooling layer for decision. The binary classification detector showed good
adversarial robustness on cross-model SRSs, but reached a reduced recognition accuracy in
face of different attacks (the model trained on adversarial examples generated by the BIM
algorithm could detect 99.83% BIM attacks, but the detection rate dropped to 48.61% on
JSMA attacks). To identify different attacks, Villalba et al. [116] employed representation
learning to classify adversarial attacks. They applied probabilistic linear discriminant
analysis (PLDA) in the x-vector system for the detection and classification of attacks, which
reached a recognition accuracy as high as 71.8% on the classification of attacks within the
training set, and an error rate of merely 19.6% in detecting unknown attacks. Recently, they
proposed a method to estimate adversarial perturbation, which was named AdvEst [119].
Instead of adversarial examples, they trained the representation learning network by us-
ing adversarial perturbations, and employing the time-domain denoiser to estimate the
adversarial perturbations. Compared with the method proposed in [115], this method can
detect some unknown attacks, though the detection accuracy remains low. Wu et al. [118]
employed the neural vocoder in Parallel WaveGAN [131] to detect adversarial examples.
The vocoder modifies the audios in the time domain to re-synthesize new audios, and then
uses the difference between the ASV scores for the original and re-synthesized audio to
discriminate genuine and adversarial examples. It achieved a detection accuracy as high as
99.76%, which outperforms the Griffin–Lim algorithm [132].

Peng et al. [117] proposed a twin-model attack detection scheme and put forward a
twin-model design comprising two SV models as a defense strategy. For the two models,
the TDNN x-vector is set as the less-robust premier model, and the ResNet-34 r-vector as the
more robust mirror model; then, the one-class classification (OCC) classifier detects incon-
sistency in the verification scores output from the two models for a single sample to capture
potential adversarial attacks. In their method, a simple classifier, the minimum covariance
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determinant (MCD) [133], is used, and it is trained only by genuine samples to identify the
decision threshold for clean samples without the need for generating adversarial examples,
which improves the adversarial robustness of the defense.

The methods proposed in [115,116] are proved to be robust on varied ASV models
under the same type of attack, but its detection performance drops drastically for the same
ASV model under unknown attacks, which means the detector can only detect attacks
already present in the training set and has very limited performance. Models proposed
in [117,118] make use of the weak adversarial robustness of the model and detect potential
adversarial examples by score differences; such defense methods bypass the need to
know the attack methods beforehand, and hence are more robust than the aforementioned
methods, but it is yet to be explored whether they can defend adaptive attacks that are have
stronger attack capacity. Recent work in Chen’s research [134] has shown that adversarial
perturbations usually occur in the high-frequency part of the audio, and they involved
a MEH-FEST detector that is able to calculate the minimum energy at high frequencies
from the short-time Fourier transform of the audio and use it as a detection metric. MEH-
FEST can detect FakeBob attack samples with high accuracy, and false positives and false
negatives can approach 0.

4.3. Input Refactoring

Adversarial training requires prior knowledge about the attack method, and shows
reduced performance in the face of unknown attacks. Attack detection is a detection module
that performs binary classification of samples. From the perspective of data cleansing, as
shown in Figure 11c, a pretrained preprocessing module can be employed to denoise or
refactor the data, thereby cleansing the data, to reduce the probability of attack and achieve
the goal of defense. Such methods that preprocess the input data on the input layer are
collectively termed input refactoring, which involves denoising and noise addition.

4.3.1. Denoising

Denoising, which removes or reduces perturbations or noises in audios, is the most
prevalent defense strategy in audio processing at present. There are various denoising meth-
ods: we can directly process the audio files and denoise the audios in the frequency domain,
or train an effective neural network to perform frequency-domain denoising. Common
denoising methods include spatial smoothing, autoencoder, and separation network.

Spatial smoothing. Also termed filtering, spatial smoothing is a classical time-domain
denoising method. Smoothing filters, which smooth the central pixel with the pixels
around, have been widely used in denoising images. There are different smoothing filters
which have different weighting mechanism to neighboring pixels, such as SEC4SR [58],
the median filter [135] used in [115], the mean filter [87], and Gaussian filters, etc. Take
the mean filter, for example: a sliding window moves along the audio waveform, and the
center value in the window is replaced with the mean of all pixel values in the window.
Olivier et al. [125] explored a high-frequency smoothing method based on additive noise
masking, and applied the Gaussian filters—preemphasis filter and ButterWorth highpass
filter—to Gaussian noise, which are collectively called moving average difference (MAD)
smoothing or BW smoothing. They found that compared with traditional random smooth-
ing methods, the MAD or BW smoothing methods increased the defense accuracy from
13% to 64%, which improved the adversarial robustness of the model.

Autoencoder. The key of an autoencoder is to mask a proportion of original audio
inputs and then train a decoder for audio refactoring to achieve self-supervised learning. It
underlies all existing self-supervised learning-based defense strategies, though the masking
strategies and refactoring decoders vary. For instance, Wu et al. [121] proposed Mock-
ingjay [136], a decoder targeted for surface noises in the spectrogram of inputs, masked
selected frames to zero, and replaced all selected frames with random frames. In [124],
Wu et al. proposed transformer encoder representations from alteration (TERA), a more ad-
vanced self-supervised model than Mockingjay, and introduced the cascading mechanism
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to use cascaded TERA models as a deep filter, which substantially reduced the success
rate of adversarial attacks (10 cascaded TERA models increased the EER from 66.02%
to 22.94%). In their subsequent work [122], they introduced the voting mechanism, and
uploaded a refactored audio sample by different numbers of self-supervised models into
the SRSs for scoring to identify whether the sample is malicious by the average of scores.
Compared with defenses without the scoring mechanism, this method improved the EER
by 6%. Joshi et al. [75] refactored the speech waveform by Parallel WaveGan [131], which
achieved the best defense performance combined with random smoothing, and increased
the defense accuracy of the model from 52% to 93%.

Separation network. The adversarial disturbances are separated from the adversarial
examples to recover the natural clean audio. Specifically, a separate filtering module is
designed and applied before the audio that is about to be input to the SRSs, through which
the audio, semantic and identity information is retained, while the adversarial disturbances
are removed as noise. Zhang et al. [120] proposed an adversarial separation network (AS-Net)
that combines a PR-Net consisting of a compression structure and a reconstruction module
and an audio quality loss to reconstruct the input audio and supervise the recovered speech
generated by AS-Net with a (reality quality) RQ-Net network similar to the real clean audio.
It is shown experimentally that AS-Net has stronger defensive performance on SE-ResNet-
based speaker recognition models compared to adversarial training and APE-GAN.

4.3.2. Noise Addition

Different from denoising, the noise addition approach tries to interfere with the
adversarial audio so that the adversarial attack reduces or loses the ability to mislead the
SV system. Specifically, the reason for the success of this approach is that SRS is a slightly
skewed mapping function from data space to label space, which prevents the SR model
from covering some regions of the input space well. The uncovered input space can be
considered a blind spot, and the adversarial attacker deliberately tries various methods to
find the blind spot and make the SR model misjudge, and we can consider the adversarial
sample as the blind spot of the SR model. To solve the problem of existing blind spots, data
expansion is a more intuitive way to enrich the distribution of the model and thus cover
the blind spots. Adding noise of tiny Gaussian noise to the time domain of the input audio
for defense in [126] was able to reduce the 100% attack success rate of the FakeBob attack
to 5.2%. In addition, ref. [123] provided another approach to deal with blind spots: filtering
potential adversarial examples by voting. They randomly sampled samples within the
Gaussian sphere of the test sample as the “neighbors” of the test sample, and then asked the
“neighbors” of the test sample to vote for the correct answer. Due to the small size of these
blind areas, when random sampling is performed, the samples tend to jump out of the
blind spot if the sampling variance σ is large enough. The sampled “neighbors” are more
likely to be in the robust region of the model rather than in the blind spot region. Then,
after voting, the increased probability of being in the robust region leads to an increased
probability of making a “normal” decision.

Denoising and noise addition are two contradictory strategies, but in the current study,
both strategies enhance the model’s ability to combat robustness in the face of unknown
attacks, even if the defense performance is inferior to that of mixed adversarial training. The
existing noise addition strategies are performed in the time domain, and in combination
with the high-frequency filtering smoothing in Section 4.3.1, noise addition in the high-
frequency part of the frequency domain seems to provide some defensive effect as well. In
addition, with the recent boom in the migration of self-supervised pre-trained models from
text to image domains, it seems that such self-supervised mechanisms could also shine in
the study of voice recognition and its adversarial defense.

4.4. Defense Metrics

The performance of defense strategies needs to be measured by harmonized metrics,
but there is no universal set of evaluation metrics for now. In most works, the EER of the
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victim model is used to judge the performance of the defense strategies. To evaluate the
effects of adversarial training and input refactoring, Chang et al. [122] put forward AdvFAR
and AdvFRR, two indicators calculated based on EER, to assess the model’s performance
in defending against adversarial attacks.

AdvFAR =
|{Si ≥ τ : i ∈ Tant}|

|Tant|
(21)

AdvFAR =
|{Si < τ : i ∈ Tat}|

|Tat|
(22)

where τ is the threshold of the original ASV model, Tant is the set of samples of nontargeted
attacks, and Tat represents the set of samples of targeted attacks. The joint FAR (j-FAR) and
joint FRR (j-FRR) are calculated after blending the adversarial examples with clean samples.

j-FAR =
|{Si ≥ τ : i ∈ Tjnt}|

|Tjnt|
(23)

j-FAR =
|{Si < τ : i ∈ Tjt}|

|Tjt|
(24)

where Tjnt = Tant ∪ Tgt, and Tjt = Tat ∪ Tgt. Tgt and Tgnt denote the sets of trials consisting
of genuine target and genuine non-target trials, respectively. To assess the defense per-
formance of attack detection methods, Chen et al. [86] employed the indicator detected
accuracy (DA):

DA =
Tadv

Treal + Tadv
(25)

The fidelity of defense methods and the attack cost after introduction of the defense
methods can also be used as defense metrics. Fidelity measures the impacts of the intro-
duction of the defense strategies or models on the recognition accuracy of the original
model. As existing defense methods are not indestructible, more advanced attacks can be
designed to defy these defenses; however, the defenses will, to varied degrees, increase the
computing time and complexity of the attacks. Thus, the attack cost can also be used to
measure the defense performance.

5. Discussion

Previous sections have elaborated on previous works on SRS attacks and defenses. In
this section, we provide more discussions and point out the challenges in this field.

5.1. General Observations of Adversarial Audio

Here, we discuss the SRS attacks and defenses from the perspectives of attack di-
mension, perturbation amplitude, transferability, defense capacity, physical-domain black-
box scenarios.

With regard to the attack dimension, most SRS adversarial attacks are model-level attacks
targeting the model parameters or decisions, which have weak transferability. Data-level
attacks, however, seem unique to audio processing systems. Abdullah et al. [72,86]. have
probed deep into this field and realized attacks by the modification of single phonemes,
time-domain compression, and the inversion of sound features. However, the adversarial
audios they generated are basically noises, which are easy to be perceived by human ears,
and hence the effectiveness of such attacks is yet to be proved. Undoubtedly, there is still
much room for exploration in related research.
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Regarding the perturbation amplitude, most existing attacks need to add adversarial
perturbations to the whole audio inputs. To put it another way, the perturbation needs to
last as long as the audio input, which is infeasible in processing of streaming inputs. Addi-
tionally, the attacks are based on the assumption that the audio input and the perturbation
are strictly synchronized. To ensure synchronization, the adversarial perturbation needs
to be blended with the audio input beforehand and then played by the speaker during
the attack.

In terms of transferability, like adversarial examples in other fields, those against
SRSs are generated based on a specific dataset for a specific model. These examples can
successfully attack models with a similar structure as the one that outputs the examples,
but witness reduced attack capacity on models with a different structure. Thus, it is worth
further research to explore how to generate adversarial examples that are transferable
across models and datasets.

In terms of defenses, existing defense methods are not enough to cope with all ad-
versarial attacks. In [84], adaptive attack techniques, such as backward pass differentiable
approximation (BPDA) and expectation over transform (EOT) in image processing, are
employed to attack speaker recognition models, and how to cope with such high-strength
adaptive attacks is worth more research effort. Metric learning techniques, such as triplet
loss adversarial (TLA) training, have been proved to be able to learn close and robust
embeddings to defend adversarial attacks to image processing models, and they are found
to be applicable in protecting speaker recognition systems. One natural extension can verify
the adversarial robustness of metric learning defenses on SRSs.

Physical-domain black-box attacks and defenses are the focus of future research in
this field of adversarial attacks and defenses of SRSs. Most attacks against SRSs are digital
attacks, whereas works on over-the-air attacks are rare. One challenge of over-the-air attacks
is that as the audio signals, when transmitted in the physical world, may be damaged by the
air medium, the audio quality will be degraded and the attack strength will reduce. There
are only a few works that have attempted to address this problem: in [77,85], the researchers
simulated the distortion or reverberation of audios in a closed space by introducing the
idea of room impulse response (RIR) [92], and introduced RIR to the loss function to
generate robust adversarial audios. Though this method works well in room simulators,
there are more other factors to consider in physical-domain attacks, such as the impacts
from multiple audio sources or natural noises. Moreover, as the internet of vehicles, smart
vehicle-mounted systems, smart homes and other intelligent devices equipped with speech
or speaker recognition functions gain popularity, it is of more practical significance to
explore potential attacks to these systems and feasible defenses.

5.2. Challenges

Adversarial attack and defense remain a challenging research topic. As we predict,
the major challenges in the research on SRS adversarial attacks and defenses lie in the
following aspects:

Evaluation of attack or defense performance: Most of the recent works evaluate the
attack performance by the attack success rate or accuracy; very few works consider the
scale and efficiency, and these works factor in only the time cost for attacks. Whether there
are correlations between the scale of the dataset, the time cost for attacks and the success
rate of adversarial attacks is yet to be explored. If there are correlations, how to balance
the three aspects is likely to be another focus of future research. The evaluation of defense
performance faces the same situation.

Physical-domain attacks: Most existing attacks against SRSs are realized digitally and
have reached a high success rate. However, when the generated adversarial audios are
applied to SRSs in the physical world, the success rate of the attack drops substantially or
even approaches 0. Though there are works that probe into physical-domain attacks and
have achieved effective attacks, the generated adversarial audios are of poor quality, and the
perturbations are easy to detect by human ears, which is not rational in real-world scenarios.
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Real-time attacks: Existing attack methods are mainly static attacks, which are not
applicable to systems with streaming audios. Advpulse [88] is a pioneering attempt that
probes into real-time attacks, but falls far short of perfection. How to add imperceptible
perturbations to audios processed in real time and bypass the defense of the target systems
is another topic worth future research.

Generalization of defense strategies: Most defense methods are based on prior knowl-
edge of attacks, which can be nullified if the attacker improves the original attack to produce
stronger attacks. Thus, it is urgent to find universal defenses that are resistant to attacks
and do not undermine the robustness of the original model.

Lack of benchmarks and toolkits: As with the case of works on text and image process-
ing, there are no benchmarks for adversarial attacks and defenses on speaker recognition
or verification. As a result, there are no universal standards for evaluation, making it hard
to evaluate the effectiveness of related works. Moreover, unlike the situation for works
on text and image processing that have such adversarial attack and defense toolkits as
AdvBox [137], TorchAttack [138], FoolBox [139], Text attack [140] and OpenAttack [141],
there are no available toolkits for works in the audio processing field.

5.3. Future Directions

As the current development status and challenges mentioned above, we would suggest
the following directions for some future developments.

Firstly, a fair evaluation framework is necessary. It is difficult to evaluate the per-
formance of adversarial attacks and defenses between different efforts. We propose the
following benchmarks for future evaluation from both the attacker’s perspective and the
defender’s perspective. From the attacker’s perspective, a comprehensive evaluation is
conducted in terms of the time of adversarial generation, attack success rate, audio quality
(including signal-to-noise ratio, PESQ, STOI, etc.), transferability, perturbation generaliz-
ability, over-the-air, and whether it is useful to attack commercial SRSs. Different evaluation
schemes are set up according to different attack scenarios to measure the merits of two or
more attack methods. From the defender’s perspective, in addition to the FAR, FRR and
EER of the SRS, the memory and computational overhead of the defense module need to
be considered. The degree of impact on the recognition accuracy of the original system
after the introduction of the defense module is considered comprehensively.

Second, the attack ability of the adversarial examples can be improved by some
advanced ideas in other deep learning fields, such as model inversion, gradient inversion,
contrast-learning, and meta-learning. For example, there are various methods in which
meta-learning can be used, such as learning initial perturbations, learning attack algorithms,
learning how to optimize the internal gradient of a model, etc. In recent years, a series of
adversarial attack methods based on the ideas of meta-learning were proposed in the image
domain, and these methods can contribute more to the field of speaker recognition as well.

Thirdly, for physical-domain and real-time attacks, which are more practical, we can
further investigate at the data level. Since most works so far focus on the model level, as
far as we know, there are only three papers that aim at the data level, which is not enough.
The acoustic information is a subset of the signal, and we need to focus on some signal
processing aspects to improve the effectiveness of the attack.

Fourth, in terms of defense methods, most of the current defense is considered from
the model layer and lacks some data layer defense methods for anomaly detection of audio
acoustic features. In addition, some advanced defense methods in the field of applied
imagery, such as knowledge distillation, are model-based and Bayesian model-based.

Fifth, the open-source platform SEC4SR was used to enable thorough comparison
between some existing attacks and defenses (6 attacks and 24 defenses), and multiple
metrics such as SNR, PESQ, and STOI have been involved to evaluate the performance.
It accounts for the most comprehensive work on ASV adversarial attacks and defenses, but
the codes of the platform do not allow plug-and-play like a toolkit. A readily available
toolkit for adversarial attacks and defenses can save much time for repeated coding and
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advance research in this field. Thus, it is necessary to develop toolkits for adversarial
attacks and defenses.

6. Conclusions

In this paper, we investigated deep neural network based adversarial attack and
defense works on SRSs, reviewed almost all existing works on SRS adversarial attacks
and some recent works that provide possible defense solutions. First, we introduced deep
speaker recognition models and some commonly used speech or speaker datasets. Then,
we introduced and classified attacks by the attack method, perturbation strategies and other
aspects, and analyzed the robustness of different defense strategies. Finally, we discussed
the progress of works on adversarial examples against SRSs and potential problems. We
also pointed out the challenges in this field in hopes of facilitating future research. In future
works, we will continue focusing adversarial attack and defense against SRSs, and explore
real-time adversarial attack and defense strategies for physical-domain black-box models
so as to provide robust solutions to audio signal processing systems.
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