
Citation: Lin, H.-C.; Wang, P.; Chao,

K.-M.; Lin, W.-H.; Chen, J.-H. Using

Deep Learning Networks to Identify

Cyber Attacks on Intrusion Detection

for In-Vehicle Networks. Electronics

2022, 11, 2180. https://doi.org/

10.3390/electronics11142180

Academic Editors: Muhammad

Salman Haleem, Liangxiu Han,

Ernesto Iadanza and Baihua Li

Received: 17 June 2022

Accepted: 7 July 2022

Published: 12 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Using Deep Learning Networks to Identify Cyber Attacks on
Intrusion Detection for In-Vehicle Networks †

Hsiao-Chung Lin 1 , Ping Wang 1,* , Kuo-Ming Chao 2, Wen-Hui Lin 1 and Jia-Hong Chen 1

1 Green Energy Technology Research Center, Faculty of Department of Information Management,
Kun Shan University, Tainan 710303, Taiwan; fordlin@mail.ksu.edu.tw (H.-C.L.);
linwh@mail.ksu.edu.tw (W.-H.L.); s106000750@g.ksu.edu.tw (J.-H.C.)

2 Department of Computing & Informatics, Bournemouth University, Bournemouth BH12 5BB, UK;
kchao@bournemouth.ac.uk

* Correspondence: pingwang@mail.ksu.edu.tw; Tel.: +886-6-205-0545
† This paper is an extended version of our paper published in 4rd IEEE Eurasia Conference on Biomedical

Engineering, Healthcare and Sustainability 2022 (IEEE ECBIOS2022), Tainan, Taiwan, 28–31 May 2022.

Abstract: With rapid advancements in in-vehicle network (IVN) technology, the demand for multiple
advanced functions and networking in electric vehicles (EVs) has recently increased. To enable
various intelligent functions, the electrical system of existing vehicles incorporates a controller area
network (CAN) bus system that enables communication among electrical control units (ECUs). In
practice, traditional network-based intrusion detection systems (NIDSs) cannot easily identify threats
to the CAN bus system. Therefore, it is necessary to develop a new type of NIDS—namely, on-the-
move Intrusion Detection System (OMIDS)—to categorise these threats. Accordingly, this paper
proposes an intrusion detection model for IVNs, based on the VGG16 classifier deep learning model,
to learn attack behaviour characteristics and classify threats. The experimental dataset was provided
by the Hacking and Countermeasure Research Lab (HCRL) to validate classification performance
for denial of service (DoS), fuzzy attacks, spoofing gear, and RPM in vehicle communications. The
proposed classifier’s performance was compared with that of the XBoost ensemble learning scheme to
identify threats from in-vehicle networks. In particular, the test cases can detect anomalies in terms of
accuracy, precision, recall, and F1-score to ensure detection accuracy and identify false alarm threats.
The experimental results show that the classification accuracy of the dataset for HCRL Car-Hacking
by the VGG16 and XBoost classifiers (n = 50) reached 97.8241% and 99.9995% for the 5-subcategory
classification results on the testing data, respectively.

Keywords: in-vehicle network; car-hacking; HCRL dataset; VGG16; XGBoost

1. Introduction

With the rapid development of Internet of Vehicles (IoV) technology, electronic devices
with in-vehicle networks (IVN) are becoming increasingly connected to the Internet to
provide online communication and real-time updates on traffic. However, security and
privacy issues, such as remote network intrusions into the controller area network (CAN),
are critical concerns for IoV networks. In other words, while equipping existing vehicles
with mobility services will create new business opportunities, it will also raise new cyber
security threats for car manufacturers and consumers with the advent of the era of ubiq-
uitous network connections and on-demand service such as over-the-air (OTA). Security
vulnerabilities for OTA updates have been mitigated by process enhancements via user
authentication with a system firmware examination.

According to a research report by Fortune Business Insights, the global electric vehi-
cle (EVs) market size reached USD 246.70 billion in 2020. More than 10 million vehicles
throughout the world’s roads in 2020 were battery-powered electric models. The market
is anticipated to grow from USD 287.36 billion in 2021 to USD 1318.22 billion in 2028, at

Electronics 2022, 11, 2180. https://doi.org/10.3390/electronics11142180 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11142180
https://doi.org/10.3390/electronics11142180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8304-4786
https://orcid.org/0000-0001-8077-4759
https://doi.org/10.3390/electronics11142180
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11142180?type=check_update&version=1

Electronics 2022, 11, 2180 2 of 18

a CAGR of 24.3% in the 2021–2028 periods [1]. A series of security incidents targeting
vehicular communications have occurred recently using denial of service (DoS), fuzzers,
insertion, and spoofing gear/RPM attack techniques. Information security hazards include
not only individual hackers highlighting their technical capabilities, but also group attacks
aiming to extract financial gain. These attacks by hackers have concerns with car manufac-
turers. The hackers behind the aforementioned attacks demanded a large ransom from car
manufacturers, and threatened to detonate money using implanted malicious codes.

Network communications are widely used in IVNs, which deploy CAN as a protocol
for electronic control units (ECUs). ECUs can be used to control the transmission, engine,
speed, airbags, powertrain, and many other subsystems of a vehicle. In practice, CAN
suffers from multiple security issues, including the lack of data encryption and user au-
thentication in inter- and intra-vehicle communications [2]. Generally, CAN buses are
designed to guarantee reliable, rather than secure, communication in IVNs. For example,
CAN uses the carrier sense multiple access with collision detection (CSMA/CD) protocol
as a network communication, which allows nodes to capture unencrypted messages going
through the network by a hacker. Furthermore, the ECUs in the CAN bus are vulnerable to
cyberattacks because they lack security features such as user authentication and message
encryption. Therefore, the improved CAN bus incorporates the network-based IDS on
in-vehicle network system, namely, on-the-move intrusion detection system (OMIDS) into
in-vehicle networks to help users detect abnormal connections in a timely manner [3].

The network-based IDS on an in-vehicle network (i.e., OMIDS) plays a role of data
collector and data analyzer over the CAN bus that identifies security threats and attacks of
in-vehicle network systems by using detection of anomalous CAN bus messages with pro-
tocol analyses [4]. Thus, distinct NIDSs on in-vehicle network systems are being developed
for detecting threats of the CAN bus network attacks within in-vehicle communication
protocol associated with potential attacks exploited, categorising the anomaly messages in
securing in-vehicle networks and the related information systems on vehicles [2–7].

The concept of IDS deployed to the automotive system was first introduced by
Hoppe et al. [5]; later, IDS deployment strategies were discussed by [6,7]. For NIDS to
monitor and inspect the communication messages in the CAN network from different
sources, it is recommended to be deployed to the central gateway [2]. As shown in Figure 1,
the OMIDS was placed at a central gateway that monitors activities in the CAN network
and identifies the attacks.

In the identification of possible attacks, OMIDS can be used to collect routing messages
on the CAN Bus and identify attack categories for the IVN successfully. Therefore, a number
of message records in the CAN bus must be collected, analysed, and classified in real time.
Many classification approaches incorporate machine learning (ML) algorithms—such as
the naïve Bayes classifier, decision tree, logistic regression (LR), support vector classifier
(SVC), and deep convolutional neural networks [7–12]—to help managers precisely identify
network attacks. In the future, OMIDS may encounter a more diverse range of attacks
and extortions.

Most existing ML approaches for detecting cyber-attacks on OMIDS involve cyber-
threat analyses that match routing information to potential attack profiles based on be-
havioural analysis techniques with packet collection, filtering, and feature comparisons.
The routing information of CAN devices is used to classify possible attack categories,
identify the real attack type, mark the compromised ECU, and initiate countermeasures.

Consequently, deep convolutional neural network techniques, such as recurrent neu-
ral networks (RNN) [8], long short-term memory (LSTM) [7], and convolutional neural
networks (CNN) [9–12], have been adopted to help security managers detect complex
threats from various sources. Typically, deep convolutional neural networks provide a
new approach to improve threat recognition accuracy of network intrusion detection and
reduce the false positive rate (FPR). However, a single base classifier does not sufficiently
match the data distribution, either with a high bias (low-degree-of-freedom models) or high
variance to be robust (high-degree-of-freedom models) [12]. Considering the increasing

Electronics 2022, 11, 2180 3 of 18

security threats in the CAN bus systems, the challenges for automatic ML-based intrusion
detection on the in-vehicle network systems are summarized as:

(i) The idea of machine learning-based IDS deployed to the CAN bus network was
first introduced by Kang et al. in 2016 [13]. In this case, they used unsupervised pre-
training of deep belief networks (DBN) model in detecting any deviations from normal
frequencies of CAN message. Later, Taylor et al. used a support vector machine for
binary classification to classify the CAN traffic flows [14]. Recently, Hossain et al.
(2020) developed an LSTM to detect the threat predict using sequence data inputs and
achieved an overall detection accuracy of 99.995% [7].

Electronics 2022, 11, x FOR PEER REVIEW 3 of 19

Figure 1. Deployment of the OMIDS within in-vehicle networking systems.

In the identification of possible attacks, OMIDS can be used to collect routing
messages on the CAN Bus and identify attack categories for the IVN successfully.
Therefore, a number of message records in the CAN bus must be collected, analysed, and
classified in real time. Many classification approaches incorporate machine learning (ML)
algorithms—such as the naïve Bayes classifier, decision tree, logistic regression (LR),
support vector classifier (SVC), and deep convolutional neural networks [7–12]—to help
managers precisely identify network attacks. In the future, OMIDS may encounter a more
diverse range of attacks and extortions.

Most existing ML approaches for detecting cyber-attacks on OMIDS involve cyber-
threat analyses that match routing information to potential attack profiles based on
behavioural analysis techniques with packet collection, filtering, and feature comparisons.
The routing information of CAN devices is used to classify possible attack categories,
identify the real attack type, mark the compromised ECU, and initiate countermeasures.

Consequently, deep convolutional neural network techniques, such as recurrent
neural networks (RNN) [8], long short-term memory (LSTM) [7], and convolutional
neural networks (CNN) [9–12], have been adopted to help security managers detect
complex threats from various sources. Typically, deep convolutional neural networks
provide a new approach to improve threat recognition accuracy of network intrusion
detection and reduce the false positive rate (FPR). However, a single base classifier does
not sufficiently match the data distribution, either with a high bias (low-degree-of-
freedom models) or high variance to be robust (high-degree-of-freedom models) [12].
Considering the increasing security threats in the CAN bus systems, the challenges for
automatic ML-based intrusion detection on the in-vehicle network systems are
summarized as:
(i) The idea of machine learning-based IDS deployed to the CAN bus network was first

introduced by Kang et al. in 2016 [13]. In this case, they used unsupervised pre-
training of deep belief networks (DBN) model in detecting any deviations from
normal frequencies of CAN message. Later, Taylor et al. used a support vector
machine for binary classification to classify the CAN traffic flows [14]. Recently,

Figure 1. Deployment of the OMIDS within in-vehicle networking systems.

With the proliferation of attacks on an in-vehicle network, the traditional artificial
neural network (ANN) failed to detect in some complex attack cases, such as fuzzy attack
in [15]. In this case, Song et al. (2020) used the deep neural network models, deep
convolutional neural network (DCNN), and LSTM to achieve high accuracy with low
error rate for prediction results.

Theoretically, assembling multiple classifiers can reduce false positives and produce
more accurate classification results than single classifiers [16]. For example, Rajadurai and
Gandhi used a stacked ensemble model of different base classifiers to build a stronger
learner and showed that the stacked ensemble model produced more accurate results than
that of a single algorithm [17]. Therefore, ensemble learning-based techniques such as
boosting [18], random forest [19], gradient boost DT (GBDT) [20], and XGBoost [21–24]
have been developed to reduce the bias and variance.

(ii) In a supervised ML model, it requires complete labeled data in the training process.
There are difficulties in predicting and generating attack behaviour in evaluating
the CAN bus system [2]. Practically, existing signature-based approaches for the
NIDS are based on behavioural features to categorize the threats [25]. Importantly,
high accuracy of the OMIDS needs continuous updating for high-resolution feature
set inputs extracted from attack scenarios of CAN bus, which is not a trivial task.
Moreover, it cannot efficiently work if an unknown message is abnormal. Thus, the

Electronics 2022, 11, 2180 4 of 18

development of an accurate and robust approach for automatic threat detection for
in-vehicle network systems is still a challenge.

In this study, we used a CNN-based scheme called VGG16 [10] (a specific CNN model
specialising in image recognition) to handle a diverse range of threat classification problems.
The system validation incorporates the XBoost and naïve Bayes classifiers, decision tree,
LR, and SVC to compare their performance.

In summary, the primary contributions of this study are as follows:

• For vehicle network security, this study addresses a diverse range of threat classification
problems in intrusion detection systems using the VGG16 model to verify performance;

• In our experiment, the accuracy of the VGG16 model for intrusion detection is
100%/100% (Table 9) for binary classification on the training and testing data;

• As shown in Table 10, the proposed VGG16 approach provides higher prediction
accuracy (97.9420%/97.8241%) for multiclass classification (five categories) than those
of Naïve Bayes (91.0095%/91.0273%) and SVC classifier (91.0095%/91.4137%) on
training and testing data;

• To compare the classification accuracy of competing approaches, including the XBoost
classifier, Naïve Bayes classifier, DT, LR, and SVC, the test cases are capable of intrusion
detection in terms of accuracy, precision, recall, and F1-score;

• In our experiment, the XBoost classifier’s prediction error for intrusion detection
decreased most steadily among the four models, followed by the VGG16 model, naive
Bayes, decision tree, logistic regression, and SVC;

• The average accuracy of the classification of intrusion detection by the VGG16 and
XBoost classifiers (n = 50) for the testing data was 97.8241% and 99.9995%, respectively.

The remainder of this paper is organised as follows: Section 2 reviews other relevant
studies in the field. Section 3 introduces the proposed CNN-based model for in-vehicle
network security analysis. Section 4 presents the performance analysis and its results.
Finally, Section 5 provides concluding remarks.

2. Overview of Intrusion Detection for In-Vehicle Network

This section reviews approaches for addressing threats to in-vehicle networks, and
introduces a CNN-based model, VGG16, and an ensemble method, XGBboost, for intrusion
detection to categorise possible attacks.

2.1. Potential Vulnerabilities for In-Vehicle Network

The problem of identifying potential threats in an automotive communication system,
specifically for the CAN bus protocol, is referred to as the security of the in-vehicle network
(SOVN) problem. Typically, the SOVN problem involves a guarantee of data confidentiality,
integrity, and availability that can never be breached within the ECUs or CAN bus in the
security management of existing vehicles [3]. Solving the SOVN problem is of crucial
concern in identifying possible attacks, given a constraint on both the quantity of routing
CAN packets collected by OMIDS, and the computational time. Consequently, many
detection methods for discovering true IVN attacks have recently been proposed.

Currently, the CAN bus fails to ensure all three essential security levels that would
maintain necessary protection from diverse and complex threats. The CAN protocol does
not have inherent cryptographic protections to ensure that only authorised parties have
access to information. Consequently, it allows intruders to access sensitive user data and
invade privacy. Furthermore, the CAN protocol does not feature a comprehensive integrity
check, and fails to maintain the accuracy, completeness, and validity of data. Although
the CAN bus has a CRC for the verification of integrity against transmission errors, it
cannot prevent the injection of data by malicious parties. Given the nature of priority-based
messaging in CAMA/CD, if a message with the highest priority is inserted, the network
will be inaccessible by the lower-priority nodes, thus violating availability. Therefore, an
OMIDS must be established for in-vehicle networks to detect possible threats under certain
real-time constraints.

Electronics 2022, 11, 2180 5 of 18

For instance, Miller and Valasek first demonstrated that they can hack into a Ford
Escape and Toyota Prius, and control the brakes and steering through the use of physical
access to the onboard diagnostics (OBD-II) computer port on each vehicle [26]. Later,
Mahaffey and Rogers exploited the keyless flaws of Tesla Model S to remotely unlock
the vehicle’s doors, start the vehicle, and drive away by issuing a kill command to shut
down the vehicle’s systems, bringing it to a stop [27]. Recently, the Keen Security Lab
of Tencent reported that attackers can exploit these flaws to take full control of a Tesla
vehicle’s infotainment system without any user interaction. In one experiment, they gained
entrance from wireless Wi-Fi/Cellular, compromised of many in-vehicle systems, including
firmware on IC, Gateway, and injected malicious messages into the CAN bus to perform a
series of operations such as opening the car door, window, and trunk.

These security cases showed the existence of weak points in EVs that may affect
the car manufacturers’ reputations with substantial financial implications such as recalls.
Safety and security are the highest short- and mid-term challenges in the automotive
industry [28]. Therefore, extensive studies have been conducted to find possible solutions
to the vulnerabilities of the CAN bus. Some of these studies have performed successful
experimental attacks on cars [2,23–25,29,30]. Furthermore, researchers have proposed
preventative methods for known attacks, including network segmentation, encryption,
authentication, and intrusion detection systems (IDSs).

To address the lack of data encryption and user authentication of the CAN protocol
in inter- and intra-vehicle communications, many studies on network detection have
primarily focused on the use of digital signature mechanisms, such as symmetric secret key
techniques, to defend against cyber threats [28]. In practice, digital signatures with pair-
wise symmetric secret keys require a high computation time and communication overhead
for in-vehicle networks. Because the bandwidth of CAN is limited to 500 kbps in the
original design, this is not a practical approach for data encryption and user authentication.
However, this approach may be realised for CAN-XL, which will support high transmission
speeds of 10 Mbps in the future. However, most current approaches have been conducted
with a low communication overhead on the intrusion detection system.

2.2. In-Vehicle Detection of Targeted CAN Bus Attacks

Modern vehicles’ initiatives taken by the automotive manufacturers have increased
the number of ECUs per vehicle. For example, there are nearly 70 ECUs deployed in the
modern vehicle. With its increasing applications, CAN bus has become a standard choice
for automobiles, as well as for other applications too such as EV batteries, planes, ships,
machineries, and many more [31]. Practically, modern vehicles often use the CAN bus
for communication among their components. From the intrusion reports [4–7,26,29,30],
hackers exploited the vulnerabilities and intruded the in-vehicle network to compromise
the targeted ECU of the vehicle and issue attack commands. As shown in Figure 2, an
example of DoS attack injected high priority of CAN messages (0x000) in a short cycle
from the compromised ECU node thru the use of OTA update and delayed the normal
message communications.

Miller and Valasek [26] opened a new era of security analyses for intrusion detection
in in-vehicle networks using open intrusion datasets published in 2013. In the experiments,
we used well-known open datasets for the targeted intrusion detection of car hacking
developed by the Hacking and Countermeasure Research Lab [32]. The datasets include
normal flow as well as attack data, with the five major represented attack types being
denial-of-service (DoS), fuzzers, insertion, spoofing gear/RPM, and hybrid attacks. Related
details regarding attacks and detection methods are found in [3–6,29–32]. For instance,
attackers often use fuzzy attacks to recognise the reaction of ECUs to certain data packets.
In a fuzzy attack, spoofed random CAN ID and data packets are rapidly inserted into
the CAN bus, causing network nodes to receive a large number of meaningless messages,
which results in vehicle failure. Network attack types on the CAN bus are summarised in
Table 1.

Electronics 2022, 11, 2180 6 of 18

Electronics 2022, 11, x FOR PEER REVIEW 6 of 19

high transmission speeds of 10 Mbps in the future. However, most current approaches
have been conducted with a low communication overhead on the intrusion detection
system.

2.2. In-Vehicle Detection of Targeted CAN Bus Attacks
Modern vehicles’ initiatives taken by the automotive manufacturers have increased

the number of ECUs per vehicle. For example, there are nearly 70 ECUs deployed in the
modern vehicle. With its increasing applications, CAN bus has become a standard choice
for automobiles, as well as for other applications too such as EV batteries, planes, ships,
machineries, and many more [31]. Practically, modern vehicles often use the CAN bus for
communication among their components. From the intrusion reports [4–7,26,29,30],
hackers exploited the vulnerabilities and intruded the in-vehicle network to compromise
the targeted ECU of the vehicle and issue attack commands. As shown in Figure 2, an
example of DoS attack injected high priority of CAN messages (0x000) in a short cycle
from the compromised ECU node thru the use of OTA update and delayed the normal
message communications.

Figure 2. An example of DoS attack on in-vehicle networks.

Miller and Valasek [26] opened a new era of security analyses for intrusion detection
in in-vehicle networks using open intrusion datasets published in 2013. In the
experiments, we used well-known open datasets for the targeted intrusion detection of
car hacking developed by the Hacking and Countermeasure Research Lab [32]. The
datasets include normal flow as well as attack data, with the five major represented attack
types being denial-of-service (DoS), fuzzers, insertion, spoofing gear/RPM, and hybrid
attacks. Related details regarding attacks and detection methods are found in [3–6,29–32].
For instance, attackers often use fuzzy attacks to recognise the reaction of ECUs to certain
data packets. In a fuzzy attack, spoofed random CAN ID and data packets are rapidly
inserted into the CAN bus, causing network nodes to receive a large number of
meaningless messages, which results in vehicle failure. Network attack types on the CAN
bus are summarised in Table 1.

Figure 2. An example of DoS attack on in-vehicle networks.

Table 1. Common attacks for in-vehicle network.

Features Results/Countermeasures

DoS
Typically, DoS attacks are prepared by

injecting high-priority CAN messages in
a short cycle.

As the ECU that attempts to send a message with the
most dominant CAN ID always wins the bus in the
arbitration phase, other ECUs are prevented from

transmitting their messages.
The agent and SVM were used to improve the

detection precision of intrusive attacks for network
intrusion detection (NID).

Fuzzers

The fuzzy attack is similar to the DoS
attack; however, the CAN ID and data

values of messages are entirely random.
Generally, fuzzy attacks are used to learn
how ECUs react to certain packet types.

Spoofed random CAN ID and data packets are
rapidly inserted into the CAN bus, causing failure.

IDS detects the fuzzy attacks based on the
differences from the insertion attack, because the

random ID might not appear benign.

Insertion attacks

The method inserts packets to the CAN
bus with an arbitrary ID and data frame.
Unlike the fuzzy attack, insertion attack
packets feature truly arbitrary IDs and

data frame.

The use of insertion attacks might cause the vehicle
to malfunction.

Indeed, it is difficult to detect insertion attacks due
the true arbitration of ID and data frame.

Spoofing gear/RPM

The spoofing attack enabled us to deceive
the original ECU and change the RPM

(revolution per minute) gauge and drive
gear on the instrument panel.

The spoofing attack enabled us to deceive the
original ECU and change the RPM gauge and the

drive gear on the instrument panel.

Hybrid attacks
This method interleaves benign data with
DoS attacks, fuzzers, spoofing gear/RPM,

and insertion attacks.

The use of hybrid attacks may cause serious
malfunctions in vehicles.

In the identification of possible attacks, defenders
used IDS on the CAN bus to collect sufficient

routing information to identify attack categories
successfully in the optimal time.

2.3. VGG16

VGG Net is a pre-trained CNN invented by Simonyan and Zisserman from the Visual
Geometry Group (VGG) at the University of Oxford in 2014 [33]. This model obtained
92.7% test accuracy for ImageNet [34], winning it the ImageNet 2014 competition. To date,
VGG16 is still considered an excellent vision model architecture, and has successfully been
used in many real-world applications [10,35,36].

Electronics 2022, 11, 2180 7 of 18

The standard VGG16 architecture consists of 13 convolutional layers, five max-pooling
layers, three fully-connected layers (FCLs), and a softmax classifier. The number of filters
in the original block was 64, though it was doubled in subsequent blocks until it reached
512 [10]. Thus, VGG16 offers a straightforward and simple architecture that sufficiently
categorises cyber threats according to collected feature sets.

Inspired by [33], the VGG16 model parameters were used in the model training
phase. In the developed model, the feature vectors were transformed into matrices, which
formed VGG16 input images to accurately classify cyberattacks. Specifically, VGG16 uses
a cascade of numerous layers of nonlinear processing units for feature extraction and
transformation, and exhibits superior results in image recognition applications. The data
were then clustered into categories according to classification weights. Consequently, the
proposed model can minimise the classification error and maximise the generalisability of
learning using convolutional features.

Classification is the most frequently encountered issue in ML. Most existing classi-
fication approaches for intrusion detection employ data mining algorithms to categorise
cyber threats using feature sets by training a classifier. Classification problems based on
convolutional features are illustrated as follows:

Consider a given training dataset D(xi, yi), where xi denotes the number of observa-
tions of a sample (xi ∈ RN , i = 1, . . . , n), and yi indicates the class to which the point xi
belongs yi, i = 1, . . . , n, yi is assigned to each observation xi. Each facial feature xi is of a
dimension that corresponds to the number of propositional variables:

fθ = {(xi,yi)}xi, ∈ Rn, yi ∈ {0, 1, . . . m}}n
i=1, (1)

Generally, a mapping function fθ(xi) = W·xi + b is defined for classification as follows:

ŷ(i) ∼= y(i) = fθ(xi) = s(W·xi + b), (2)

where ŷ(i) is the final class of the output; y(i) represents the output result of the training
process; W represents the convolution kernel of the feature matrix; b is the bias of the feature
vector; fθ represents a mapping function in the CNN; and s represents the softmax function.

2.4. XGBoost Classifier

Most previous studies [2,3,7–9] on intrusion detection in in-vehicle networks focus on
detecting abnormal CAN messages using a base classifier such as DT, LR, SVC, CNN, or
LSTM, as shown in Figure 3.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 19

categorise cyber threats using feature sets by training a classifier. Classification problems
based on convolutional features are illustrated as follows:

Consider a given training dataset),(ii yxD , where ix denotes the number of
observations of a sample (niRx N

i ,...,1, =∈), and iy indicates the class to which the
point ix belongs ,,...,1, niyi = iy is assigned to each observation ix . Each facial
feature ix is of a dimension that corresponds to the number of propositional variables:

,}},...1,0{,|){(1,,
n
ii

n
iii myRxyxf =∈∈=θ , (1)

Generally, a mapping function bxWxf ii +=)(θ is defined for classification as
follows:

)(
)(^

i
i

yy ≅ = 𝑓 (𝑥) = 𝑠(𝑊. 𝑥 + 𝑏), (2)

where
)(^ i

y is the final class of the output;)(iy represents the output result of the
training process; W represents the convolution kernel of the feature matrix; b is the bias of
the feature vector; θf represents a mapping function in the CNN; and s represents the
softmax function.

2.4. XGBoost Classifier
Most previous studies [2,3,7–9] on intrusion detection in in-vehicle networks focus

on detecting abnormal CAN messages using a base classifier such as DT, LR, SVC, CNN,
or LSTM, as shown in Figure 3.

Figure 3. General architecture of a base classifier.

As shown in Figure 3, a base (individual) classifier in ML models use the selected
feature vectors from the training instances to train the model, determine the
hyperparameters of the trained model, and predict the possible categories of test data. In
the training process, there are important topics for the ML model: (i) feature selection.
Feature selection is the process of reducing the number of input variables to develop a
predictive model using a selected feature set to improve the performance of the model by
reducing the computational costs of modelling [37]. (ii) hyperparameter tuning.
Essentially, the prediction performance of the machine learning network model is
influenced quite heavily by the choice of hyperparameters, hence it can corporate the grid
search optimisation process to improve the searching efficiency in model development
[38].

Figure 3. General architecture of a base classifier.

As shown in Figure 3, a base (individual) classifier in ML models use the selected
feature vectors from the training instances to train the model, determine the hyperparame-
ters of the trained model, and predict the possible categories of test data. In the training

Electronics 2022, 11, 2180 8 of 18

process, there are important topics for the ML model: (i) feature selection. Feature selection
is the process of reducing the number of input variables to develop a predictive model
using a selected feature set to improve the performance of the model by reducing the com-
putational costs of modelling [37]. (ii) hyperparameter tuning. Essentially, the prediction
performance of the machine learning network model is influenced quite heavily by the
choice of hyperparameters, hence it can corporate the grid search optimisation process to
improve the searching efficiency in model development [38].

As mentioned above, ensemble learning approach allows the production of better
predictive performance compared to a single model [16]. Ensemble learning algorithms,
such as extreme gradient boosting (XGBoost), can overcome overfitting in threat data. In
particular, XGBoost energises machine learning model performance and computational
speed, where decision trees are built in parallel instead of sequentially, as in GBDT.

To overcome overfitting in threat data and increase detection accuracy of normal and
intrusive patterns, this paper proposes an improved ensemble-based learning algorithm
associated with an XGBoost classifier to identify features from qualified threats.

XGBoost is an efficient implementation of the gradient boosting machine learning
algorithm that employs stochastic gradient or tree boosting to create a powerful machine
learning technique that performs well on a wide range of challenging problems [21].
It has been shown to provide state-of-the-art results on several standard classification
benchmarks. Furthermore, XGBoost is a scalable and highly accurate implementation of
gradient boosting that limits the computing power of boosted tree algorithms. In other
words, XGBoost provides parallel tree boosting, and is the leading machine-learning library
for regression, classification, and ranking problems (Figure 4).

Electronics 2022, 11, x FOR PEER REVIEW 9 of 19

As mentioned above, ensemble learning approach allows the production of better
predictive performance compared to a single model [16]. Ensemble learning algorithms,
such as extreme gradient boosting (XGBoost), can overcome overfitting in threat data. In
particular, XGBoost energises machine learning model performance and computational
speed, where decision trees are built in parallel instead of sequentially, as in GBDT.

To overcome overfitting in threat data and increase detection accuracy of normal and
intrusive patterns, this paper proposes an improved ensemble-based learning algorithm
associated with an XGBoost classifier to identify features from qualified threats.

XGBoost is an efficient implementation of the gradient boosting machine learning
algorithm that employs stochastic gradient or tree boosting to create a powerful machine
learning technique that performs well on a wide range of challenging problems [21]. It has
been shown to provide state-of-the-art results on several standard classification
benchmarks. Furthermore, XGBoost is a scalable and highly accurate implementation of
gradient boosting that limits the computing power of boosted tree algorithms. In other
words, XGBoost provides parallel tree boosting, and is the leading machine-learning
library for regression, classification, and ranking problems (Figure 4).

Figure 4. Operational flow of the XGBoost classifier.

As shown in Figure 2, XGBoost is an ensemble of decision tree algorithm, where new
trees fix the errors present in trees that were already part of the model. New trees are
generated until no further improvements can be made to the model. XGBoost provides a
highly efficient implementation of the stochastic gradient boosting algorithm, as well as
access to a suite of model hyperparameters designed to provide control over the model-
training process [21]. The most significant factor behind the success of XGBoost is its
scalability in all scenarios. The system runs more than ten times faster than existing
popular solutions on a single ML machine, and scales to billions of examples in distributed
and memory-limited settings.

XGBoost Features
XGBoost improves upon the gradient boosting algorithm, where the Newton–

Raphson–Gradient method is used to explore the solution of the loss function by
expanding its Taylor series to the second order, as well as adding a regularisation term.
The objective function during training consists of two parts: the loss of the gradient
boosting algorithm and the regularisation term.

The loss function of the XGBoost model is defined as [21,23]:

Figure 4. Operational flow of the XGBoost classifier.

As shown in Figure 2, XGBoost is an ensemble of decision tree algorithm, where new
trees fix the errors present in trees that were already part of the model. New trees are
generated until no further improvements can be made to the model. XGBoost provides a
highly efficient implementation of the stochastic gradient boosting algorithm, as well as
access to a suite of model hyperparameters designed to provide control over the model-
training process [21]. The most significant factor behind the success of XGBoost is its
scalability in all scenarios. The system runs more than ten times faster than existing popular
solutions on a single ML machine, and scales to billions of examples in distributed and
memory-limited settings.

Electronics 2022, 11, 2180 9 of 18

XGBoost Features
XGBoost improves upon the gradient boosting algorithm, where the Newton–Raphson–

Gradient method is used to explore the solution of the loss function by expanding its Taylor
series to the second order, as well as adding a regularisation term. The objective function
during training consists of two parts: the loss of the gradient boosting algorithm and the
regularisation term.

The loss function of the XGBoost model is defined as [21,23]:

L(t) =
n

∑
i=1

l(y′iyi + fk(xi)) + ∑
k

Ω(fk), (3)

where l is the loss function, fk is the kth tree output, and Ω is a normal term. Assuming that
L(t) is a convex function, y′i represents the predicted value for the training sample at time
t − 1, and yi denotes the true value of the training sample at time t. One major approach
to ensure fast calculation is the approximation of the Taylor expansion as:

L(t) ≈
n

∑
i=1

l(y′iyi) + gi fk(xi) +
1
2

hi fk
2 + ∑

k
Ω(fk), (4)

where gi and hi are the loss function’s first and second derivatives, respectively. The
normal term defines the model’s complexity, and can be simplified as

Ω(fk) = γT +
1
2
λ||w||2, (5)

where γ and λ are the given parameter values, w is the vector formed by the values of all
leaf nodes of the decision tree, and T is the number of leaf nodes. XGBoost was developed
into an optimised distributed function library for the gradient boosting model, with the
purpose of achieving high efficiency, flexibility, and portability.

3. An Analysis Model for Intrusion Detection of an In-Vehicle Network

The proposed network intrusion detection model combines the CNN model with an
ensemble learning XGBoost algorithm to maintain high precision in predicting the stability
of network intrusion detection after the collection of suspicious network flows. The overall
structure of the model is exhibited in Figure 5, which illustrates the three sub-phases
in the behaviour classification process: (1) data pre-processing, (2) model training, and
(3) model validation.

Step 1. Data Preprocessing
First, the training sample data were obtained from two data sources: the common

HCRL intrusion detection archive [32], and the HCRL Car-Hacking dataset, the latter of
which were used in several other CAN IDS case studies [39,40]. The HCRL dataset contains
30–40 min of CAN traffic, with approximately 4 million total messages. For our approach,
we only evaluated spoofing attacks on the driving gear and RPM gauge from this set. In
these attacks, only the messages for a single ID out of approximately 25 were attacked in
each case. Therefore, only messages with these IDs were evaluated.

Step 1.1. Experiment Data Sources
In the intrusion detection experiment, the overall HRCL dataset was selected as a

comprehensive dataset to examine the performance of the developed XGBoost classifier.
The HRCL dataset was compiled by Culture Makers and the Korea Internet and Security
Agency for car security to include synthetic contemporary attack behaviours in real-world
in-vehicle network traffic.

To extensively examine the developed model’s performance, we reconstructed the
experimental dataset to generate five major attack types by comprising a CAN-intrusion
dataset and a CAN-hacking dataset. To simplify the amount of training data and improve
efficiency of the training process, redundant normal messages were removed and injected
messages were extracted.

Electronics 2022, 11, 2180 10 of 18

Electronics 2022, 11, x FOR PEER REVIEW 10 of 19

 𝐿(𝑡) = 𝑙(𝑦 𝑦 +𝑓 (𝑥)) + Ω(𝑓), (3)

where 𝑙 is the loss function, 𝑓 is the kth tree output, and Ω is a normal term. Assuming
that L(𝑡) is a convex function, 𝑦 represents the predicted value for the training sample
at time t − 1, and 𝑦 denotes the true value of the training sample at time t. One major
approach to ensure fast calculation is the approximation of the Taylor expansion as:

 𝐿(𝑡) ≈ 𝑙(𝑦 𝑦) +𝑔 𝑓 (𝑥)+ 12ℎ 𝑓 + Ω(𝑓), (4)

where 𝑔 and ℎ are the loss function’s first and second derivatives, respectively. The
normal term defines the model’s complexity, and can be simplified as Ω(𝑓)= γT + 12||𝑤|| , (5)

where γ and λ are the given parameter values, w is the vector formed by the values of all
leaf nodes of the decision tree, and T is the number of leaf nodes. XGBoost was developed
into an optimised distributed function library for the gradient boosting model, with the
purpose of achieving high efficiency, flexibility, and portability.

3. An Analysis Model for Intrusion Detection of an In-Vehicle Network
The proposed network intrusion detection model combines the CNN model with an

ensemble learning XGBoost algorithm to maintain high precision in predicting the
stability of network intrusion detection after the collection of suspicious network flows.
The overall structure of the model is exhibited in Figure 5, which illustrates the three sub-
phases in the behaviour classification process: (1) data pre-processing, (2) model training,
and (3) model validation.

Figure 5. Operation flow of network intrusion detection for in-vehicle networks.

Step 1. Data Preprocessing
First, the training sample data were obtained from two data sources: the common

HCRL intrusion detection archive [32], and the HCRL Car-Hacking dataset, the latter of
which were used in several other CAN IDS case studies [39,40]. The HCRL dataset

Figure 5. Operation flow of network intrusion detection for in-vehicle networks.

Step 1.2. Normalisation
All fields in the HRCL dataset were regarded as symbolic features. First, we performed

symbol conversion of the network packets. Then, the attack categories of Flag were
converted to a numerical format (1–5) according to different attack types, where normal
traffic was assigned to ‘0’ through a one-hot encoding process.

Step 2. Model Training Phase
In this step, the experimental data were divided into a training set and a testing set.

The training set contained 175,341 records (68.05%), whereas the testing set contained
82,332 records (31.95%). Furthermore, the training set contained 119,341 (68.06%) and
56,000 (31.95%) attack and normal files, respectively, whereas the testing set had 45,332
(55.06%) attack files and 37,000 (44.94%) normal files.

For the model training phase, the VGG16 model was used to accurately categorise
cyber threats. In the experiment, the revised VGG16 was trained to detect network intrusion
based on the behavioural patterns of collected samples. The softmax function was used to
evaluate the model, and a cross-entropy function was used to adjust the learning rate to
minimise the classification error and increase the speed of the training process.

Step 3. Model Validation Phase
In the model validation phase, the trained model’s performance was assessed and

compared using the XGBoost classifier with Equations (3)–(5). After training the base
classifiers, the results were aggregated from randomly selected sub-datasets of the training
data; finally, a meta-classifier was trained to perform threat classification of the samples.

In practice, the DLN training process and classification performance of the model
are significantly influenced by the choice of hyperparameters. Therefore, we used Grid-
SearchCV to set the model parameters for multi-classification on XGBoost. The learning
results were used as a basis for the parameters in the validation phase, including weight
matrix, batch size, epochs, and classification accuracy.

4. Experimental Results

All experiments were conducted in Python using the ML library of the scikit-learn
package, which is an open-source library for classification algorithms. The software,
presented in Table 2, was run on an Intel Core i3-4160 dual core CPU clocked at 3.0 Ghz
and 8 GB of DDR3 RAM. The operating system was Ubuntu Desktop 20.04.3 LTS, and the
database platform was MongoDB 5.0.3.

Electronics 2022, 11, 2180 11 of 18

Table 2. Experimental environment.

Numerical and Machine Learning Library

Python 3.8.10

Tensor flow 2.1.0
scikit-learn

Numpy 1.21.5
scipy 1.0.1

Pandas 1.2.0

Step 1. Data Pre-Processing Phase
Step 1.1. Experiment Data Sources
The experimental dataset for HCRL Car-Hacking comprises four major types of net-

work attacks: DoS, fuzzy, spoofing the gear gauze (gear spoofing), and spoofing the RPM
gauze (RPM spoofing), as shown in Table 3.

Table 3. Overview of the experiment HCRLCar-Hacking dataset.

Attack Type # of Injected
Messages

of Normal
Messages Total

DoS Attack 587,521 (16.03%) 3,078,250 (83.97%) 3,665,771 (100.0%)
Fuzzy Attack 491,847 (12.81%) 3,347,013 (87.19%) 3,838,860 (100.0%)
Gear Spoofing 597,252 (13.44%) 3,845,890 (86.56%) 4,443,142 (100.0%)
RPM Spoofing 654,897 (14.17%) 3,966,805 (85.83%) 4,621,702 (100.0%)

We selected the HRCL dataset because it offers three advantages over other benchmark
datasets. First, it contains up-to-date behavioural features with existing attack sequences
of CAN messages. Furthermore, it includes a set of features from the CAN IDs (header of
packets) and DATA to reflect the network packets efficiently. In addition, it contains many
complex features that the model can learn to discriminate more accurately, as shown in
Table 4, which lists the numbers of normal and malicious messages in the experimental
datasets. Referring to HRCL attack scenarios, we reconstructed and aggregated four major
attack datasets: DoS attack, fuzzy attack, spoofing the drive gear, and spoofing the RPM
gauge. Each dataset was generated by simulating ECUs while injecting fabricated CAN
messages in a controlled environment. These four basic attack messages were then mixed
and grouped for our experimental dataset, which was subsequently divided into training
and testing sets.

Table 4. Details of experiment messages.

Attack Type No. of Record Message Details

Normal 14,237,958(85.93%) Normal CAN messages

DoS 587,521(3.55%) Inject the message with CAN ID of ‘0x000’

Fuzzy 491,847(2.97%) Randomly inject deceptive messages with CAN ID and DATA

Gear Spoofing 597,252(3.6%) Inject the messages of imitating nodes with Arbitrary ID = ‘0x43f’

RPM Spoofing 654,897(3.95%) Inject the messages of imitating nodes with Arbitrary ID = ‘0x316’

Total 16,569,475(100%)

Then, four CSV files of HCRL Car-Hacking were merged into 16,569,475 messages
with a balanced sampling policy to enhance the precision of the multiclass classification
model. In other words, the four types of attacks are equivalent to distributing with similar
probabilities in the experiment dataset. Relevant data are presented in Table 4.

The CAN message data attributes in Table 4 include the timestamp, CAN ID, DLC,
DATA [0], DATA [1], DATA [2], DATA [3], DATA [4], DATA [5], DATA [6], DATA [7], and

Electronics 2022, 11, 2180 12 of 18

flag fields which are summarized as Table 5. To perform multi-label classification, we
specified the class label for each CAN message in the model training data, as shown in
Figure 6. Therefore, a set of reduced features with 10 feature sets, including items 2–5, was
used for the threat classification of in-vehicle networks:

Timestamp: recorded time (s)
CAN ID: identifier of CAN message in HEX (ex. 043f)
DLC: number of data bytes, from 0 to 8
DATA [0~7]: data value (byte)
Flag: T or R, T represents injected special attack messages while R represents normal messages

Table 5. Data attributes for CAN message.

Field Description of CAN Message

Timestamp recorded time (s)

CAN ID identifier of CAN message in HEX (ex. 043f)

DLC number of data bytes, from 0 to 8

DATA [0~7] data value (byte)

Flag T or R, where ‘T’ represents injected special attack
messages while ‘R’ represents normal messages

The training set contained 13,255,580 records (80.0%), whereas the testing set contained
3,313,598 records (20.0%), including malicious and normal files. The training set had
11,390,366 (85.93%) and 1,865,214 (14.07%) normal and intrusion attack files, respectively.
The testing set had 2,847,375 (85.93%) and 466,223 (14.07%) normal and intrusion attack
files, respectively.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 19

The CAN message data attributes in Table 4 include the timestamp, CAN ID, DLC,
DATA [0], DATA [1], DATA [2], DATA [3], DATA [4], DATA [5], DATA [6], DATA [7],
and flag fields which are summarized as Table 5. To perform multi-label classification, we
specified the class label for each CAN message in the model training data, as shown in
Figure 6. Therefore, a set of reduced features with 10 feature sets, including items 2–5, was
used for the threat classification of in-vehicle networks:

Timestamp: recorded time (s)
CAN ID: identifier of CAN message in HEX (ex. 043f)
DLC: number of data bytes, from 0 to 8
DATA [0~7]: data value (byte)
Flag: T or R, T represents injected special attack messages while R represents normal

messages

Table 5. Data attributes for CAN message.

Field Description of CAN Message
Timestamp recorded time (s)
CAN ID identifier of CAN message in HEX (ex. 043f)
DLC number of data bytes, from 0 to 8
DATA [0~7] data value (byte)

Flag
T or R, where ‘T’ represents injected special attack messages
while ‘R’ represents normal messages

The training set contained 13,255,580 records (80.0%), whereas the testing set
contained 3,313,598 records (20.0%), including malicious and normal files. The training
set had 11,390,366 (85.93%) and 1,865,214 (14.07%) normal and intrusion attack files,
respectively. The testing set had 2,847,375 (85.93%) and 466,223 (14.07%) normal and
intrusion attack files, respectively.

Figure 6. Samples of training data set with class labels.

Step 1.2. Normalisation
All fields in the HRCL dataset were regarded as symbolic features. First, we

performed symbol conversion on the network packets. Then, the attack categories of Flag
were converted to a numerical format (1–5) according to different attack types, and normal
traffic was assigned to ‘0′ through a one-hot encoding process.

Step 1.3. Feature Conversion
In the following, the feature vectors were transformed into feature images (i.e., image

matrix transformation), which formed the input images of the VGG16 model to accurately
categorise cyber threats in in-vehicle networks. To recognise the feature differences
between malicious attacks and normal applications in binary format, we used a feature
matrix to represent the behavioural features of traffic connections using the quantile

Figure 6. Samples of training data set with class labels.

Step 1.2. Normalisation
All fields in the HRCL dataset were regarded as symbolic features. First, we performed

symbol conversion on the network packets. Then, the attack categories of Flag were
converted to a numerical format (1–5) according to different attack types, and normal traffic
was assigned to ‘0′ through a one-hot encoding process.

Step 1.3. Feature Conversion
In the following, the feature vectors were transformed into feature images (i.e., image

matrix transformation), which formed the input images of the VGG16 model to accurately
categorise cyber threats in in-vehicle networks. To recognise the feature differences between
malicious attacks and normal applications in binary format, we used a feature matrix to
represent the behavioural features of traffic connections using the quantile normalisation
formula. In statistics, the quantile normalisation process is a technique for equalising the
statistical properties of two distributions. Thus, quantile normalisation was implemented
to form a feature map for model training. As shown in Figure 7, the feature maps generated

Electronics 2022, 11, 2180 13 of 18

by the normal application and malware from the HRCL dataset are significantly different.
Therefore, they can be used for image classification.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 19

normalisation formula. In statistics, the quantile normalisation process is a technique for
equalising the statistical properties of two distributions. Thus, quantile normalisation was
implemented to form a feature map for model training. As shown in Figure 7, the feature
maps generated by the normal application and malware from the HRCL dataset are
significantly different. Therefore, they can be used for image classification.

Figure 7. Feature map generated by the feature similarity matrix.

Step 2. Model Training and Optimization Phase
Inspired by [33], the VGG16 model parameters were used in the model training

phase, as listed in Table 6. VGG16 is a CNN architecture used to win the ImageNet 2014
competition. To date, it is considered an excellent vision model architecture.

Table 6. Architecture of the revised VGG16 model.

Layer No. of Filter Filter Size Feature Map Generated
Convolution layer C1 64 3 × 3 × 3 150 × 150 × 64

Pooling layer P1 1 2 × 2 75 × 75 × 64
Convolution layer C2 128 3 × 3 × 64 150 × 150 × 128

Pooling layer P2 1 2 × 2 37 × 37 × 128
Convolution layer C3 256 3 × 3 × 128 37 × 37 × 256

Pooling layer P3 1 2x2 18 × 18 × 256
Convolution layer C4 512 3 × 3 × 256 18 × 18 × 512

Pooling layer P4 1 2 × 2 9 × 9 × 512
Convolution layer C5 512 3 × 3 × 512 9 × 9 × 512

Pooling layer P6 (Max) 1 2 × 2 4 × 4 × 512
Pooling layer P7 (Avg) 1 2 × 2 512

Dense (256) - - 256
Dropout (rate = 0.5) - - 256

Classification (Softmax) - -
2 for binary classification
5 for multi-classification

VGG16 comprises 13 convolutional layers, five max-pooling layers, and three fully-
connected layers. The number of filters in the first block is 64, and is doubled in
subsequent blocks until it reaches 512. As listed in Table 6, each VGG block consists of a
sequence of convolutional layers, which are followed by a max-pooling layer. The same
kernel size (3 × 3) was applied to all convolutional layers.

In the experiment, the input size is a 150 × 150 × 3 image converted from a set of
network features, batch_size = 32, epoch = 20, strides = (1, 1), activation function= ‘tanh’,
loss = ‘categorical_crossentropy’, optimiser = ‘dadelta’. The learning results were used as
a basis for the validation parameters, including weight matrix, batch size, epochs, and
classification accuracy. The experimental results of model training using VGG-16 are
shown in Figure 8 and Table 7.

Figure 7. Feature map generated by the feature similarity matrix.

Step 2. Model Training and Optimization Phase
Inspired by [33], the VGG16 model parameters were used in the model training

phase, as listed in Table 6. VGG16 is a CNN architecture used to win the ImageNet 2014
competition. To date, it is considered an excellent vision model architecture.

Table 6. Architecture of the revised VGG16 model.

Layer No. of Filter Filter Size Feature Map Generated

Convolution layer C1 64 3 × 3 × 3 150 × 150 × 64
Pooling layer P1 1 2 × 2 75 × 75 × 64

Convolution layer C2 128 3 × 3 × 64 150 × 150 × 128
Pooling layer P2 1 2 × 2 37 × 37 × 128

Convolution layer C3 256 3 × 3 × 128 37 × 37 × 256
Pooling layer P3 1 2 × 2 18 × 18 × 256

Convolution layer C4 512 3 × 3 × 256 18 × 18 × 512
Pooling layer P4 1 2 × 2 9 × 9 × 512

Convolution layer C5 512 3 × 3 × 512 9 × 9 × 512
Pooling layer P6 (Max) 1 2 × 2 4 × 4 × 512
Pooling layer P7 (Avg) 1 2 × 2 512

Dense (256) - - 256
Dropout (rate = 0.5) - - 256

Classification (Softmax) - - 2 for binary classification
5 for multi-classification

VGG16 comprises 13 convolutional layers, five max-pooling layers, and three fully-
connected layers. The number of filters in the first block is 64, and is doubled in subsequent
blocks until it reaches 512. As listed in Table 6, each VGG block consists of a sequence of
convolutional layers, which are followed by a max-pooling layer. The same kernel size
(3 × 3) was applied to all convolutional layers.

In the experiment, the input size is a 150 × 150 × 3 image converted from a set of
network features, batch_size = 32, epoch = 20, strides = (1, 1), activation function= ‘tanh’,
loss = ‘categorical_crossentropy’, optimiser = ‘dadelta’. The learning results were used
as a basis for the validation parameters, including weight matrix, batch size, epochs, and
classification accuracy. The experimental results of model training using VGG-16 are shown
in Figure 8 and Table 7.

Step 3. Model Validation Phase
To validate the prediction accuracy of the developed model, we applied the XGBoost

classifier to ensure that the prediction accuracy of a meta-classifier, such as XGBoost,
is superior to that of a base classifier. In practice, it is necessary to first determine the
number of trees (component classifiers) to be generated in the XGBoost classifier. Very
few practical cases involve more than 300 trees, and such cases may significantly increase

Electronics 2022, 11, 2180 14 of 18

the computation time for learning [41]. In this study, GridSearchCV with a 10-fold cross-
validation scheme was used to set the model parameters of multi-classification on XGBoost.
The search parameters for the XGBoost classifier are listed in Table 8 and Figure 9.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 19

Figure 8. Training and validation loss of VGG16 for binary classification.

Table 7. Binary classification accuracy of VGG16 model.

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Training Time (s)
100.0 100.0 100.0 100.0 389 sec

Step 3. Model Validation Phase
To validate the prediction accuracy of the developed model, we applied the XGBoost

classifier to ensure that the prediction accuracy of a meta-classifier, such as XGBoost, is
superior to that of a base classifier. In practice, it is necessary to first determine the number
of trees (component classifiers) to be generated in the XGBoost classifier. Very few
practical cases involve more than 300 trees, and such cases may significantly increase the
computation time for learning [41]. In this study, GridSearchCV with a 10-fold cross-
validation scheme was used to set the model parameters of multi-classification on
XGBoost. The search parameters for the XGBoost classifier are listed in Table 8 and Figure
9.

Table 8. Initial parameter search for XGBoost classifier using GridSearchCV.

Parameter
Model n-Estimators Max-Depth Learning Rate Optimizer

XGBoost [50, 100, 150, 200, 250,
300]

[4, 5, 6, 7, 8] 0.0001 Negative Log
Likelihood Loss

Figure 9. Searching for hyperparameters using 10-fold cross-validation with GridSearchCV.

In this study, experiments to determine the appropriate number of trees on the
XGBoost classifier were conducted by examining overall accuracy with different numbers

Figure 8. Training and validation loss of VGG16 for binary classification.

Table 7. Binary classification accuracy of VGG16 model.

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Training Time (s)

100.0 100.0 100.0 100.0 389 sec

Table 8. Initial parameter search for XGBoost classifier using GridSearchCV.

Model

Parameter
n-Estimators Max-Depth Learning Rate Optimizer

XGBoost [50, 100, 150,
200, 250, 300] [4, 5, 6, 7, 8] 0.0001 Negative Log

Likelihood Loss

Electronics 2022, 11, x FOR PEER REVIEW 15 of 19

Figure 8. Training and validation loss of VGG16 for binary classification.

Table 7. Binary classification accuracy of VGG16 model.

Accuracy (%) Precision (%) Recall (%) F1 Score (%) Training Time (s)
100.0 100.0 100.0 100.0 389 sec

Step 3. Model Validation Phase
To validate the prediction accuracy of the developed model, we applied the XGBoost

classifier to ensure that the prediction accuracy of a meta-classifier, such as XGBoost, is
superior to that of a base classifier. In practice, it is necessary to first determine the number
of trees (component classifiers) to be generated in the XGBoost classifier. Very few
practical cases involve more than 300 trees, and such cases may significantly increase the
computation time for learning [41]. In this study, GridSearchCV with a 10-fold cross-
validation scheme was used to set the model parameters of multi-classification on
XGBoost. The search parameters for the XGBoost classifier are listed in Table 8 and Figure
9.

Table 8. Initial parameter search for XGBoost classifier using GridSearchCV.

Parameter
Model n-Estimators Max-Depth Learning Rate Optimizer

XGBoost [50, 100, 150, 200, 250,
300]

[4, 5, 6, 7, 8] 0.0001 Negative Log
Likelihood Loss

Figure 9. Searching for hyperparameters using 10-fold cross-validation with GridSearchCV.

In this study, experiments to determine the appropriate number of trees on the
XGBoost classifier were conducted by examining overall accuracy with different numbers

Figure 9. Searching for hyperparameters using 10-fold cross-validation with GridSearchCV.

In this study, experiments to determine the appropriate number of trees on the XGBoost
classifier were conducted by examining overall accuracy with different numbers of trees
ranging from 50 to 300. The low classification error of the XGBoost classifier shown in
Figure 10 was obtained with data approximately 50 trees.

From Table 9, it is seen that there is almost the same performance (i.e., accuracy
precision, recall, F1 Score, and ROC AUC) of multi-classification in six experiments (n = 50,
100, 150, 200, 250, 300). Notably, there is a low loss of cost function when training with the
training set for 50 trees (n = 50), compared to n =100, 150, 200, 250, 300. Accordingly, the
number of trees for the XGBoost classifier was set to 50, to produce the optimal benefit in
prediction performance from learning additional trees. The performance of the XGBoost

Electronics 2022, 11, 2180 15 of 18

classifier was then evaluated using Equations (3)–(5) by training component classifiers and
aggregating their results by randomly selecting sub-datasets of the training data. Finally, a
meta-classifier was trained with a majority voting approach to perform threat classification
of the samples.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 19

of trees ranging from 50 to 300. The low classification error of the XGBoost classifier shown
in Figure 10 was obtained with data approximately 50 trees.

Figure 10. Binary classification error with a given number of trees.

From Table 9, it is seen that there is almost the same performance (i.e., accuracy
precision, recall, F1 Score, and ROC AUC) of multi-classification in six experiments (n =
50, 100, 150, 200, 250, 300). Notably, there is a low loss of cost function when training with
the training set for 50 trees (n = 50), compared to n =100, 150, 200, 250, 300. Accordingly,
the number of trees for the XGBoost classifier was set to 50, to produce the optimal benefit
in prediction performance from learning additional trees. The performance of the
XGBoost classifier was then evaluated using Equations (3)–(5) by training component
classifiers and aggregating their results by randomly selecting sub-datasets of the training
data. Finally, a meta-classifier was trained with a majority voting approach to perform
threat classification of the samples.

Table 9. Multi-classification performance with the number of trees selected for the XGBoost
classifier.

 Accuracy (%) Precision (%) Recall (%) F1 Score (%) ROC AUC (%)
n = 50 99.7880 99.9480 98.5739 99.2347 99.7084
n = 100 99.7881 99.9480 98.5745 99.2350 99.7084
n = 150 99.7881 99.9480 98.5745 99.2350 99.7084
n = 200 99.6991 99.9284 97.9733 98.8968 99.9450
n = 250 99.7888 99.9482 98.5790 99.2375 99.7084
n = 300 99.7888 99.9482 98.5790 99.2375 99.7084

The average accuracy for both VGG16 and XGBoost classifiers (n = 50) was
approximately 100.0% (Table 10) for the binary classification results of the training and
testing data. The accuracy results (in %) associated with the optimal C and γ values were
obtained through a cross-validation scheme for the SVC. The binary classification
accuracy rates for the training and testing datasets were approximately 100.0% and 100.0%
(C = 1000, γ = 0.1), respectively.

The optimal parameters C = 1000 and γ = 0.1, for SVC were examined using Python
GridSearchCVparam = {‘C_range’:(0.1, 10, 100, 1000), ‘Gamma_range’:(0.1, 10, 100, 1000)},
and the fitting error with mean_squared_error was analysed for different values of C and
γ. After analysing the experimental results, C = 1000 and γ = 0.1 for SVC were selected.
Table 10 shows the same binary classification performance (i.e., accuracy = 100%, recall =
100%, precision = 100%, F1 Score = 100%, and ROC AUC = 100%) for the VGG16 model
and the four base classifiers, compared to the XGBoost classifier (n = 50).

Figure 10. Binary classification error with a given number of trees.

Table 9. Multi-classification performance with the number of trees selected for the XGBoost classifier.

Accuracy (%) Precision (%) Recall (%) F1 Score (%) ROC AUC (%)

n = 50 99.7880 99.9480 98.5739 99.2347 99.7084
n = 100 99.7881 99.9480 98.5745 99.2350 99.7084
n = 150 99.7881 99.9480 98.5745 99.2350 99.7084
n = 200 99.6991 99.9284 97.9733 98.8968 99.9450
n = 250 99.7888 99.9482 98.5790 99.2375 99.7084
n = 300 99.7888 99.9482 98.5790 99.2375 99.7084

The average accuracy for both VGG16 and XGBoost classifiers (n = 50) was approx-
imately 100.0% (Table 10) for the binary classification results of the training and testing
data. The accuracy results (in %) associated with the optimal C and γ values were obtained
through a cross-validation scheme for the SVC. The binary classification accuracy rates
for the training and testing datasets were approximately 100.0% and 100.0% (C = 1000,
γ = 0.1), respectively.

Table 10. Binary classification accuracy when 10 features were used.

Training Testing

VGG16 100.0% 100.0%
Naïve Bayes 100.0% 100.0%

CART 100.0% 100.0%
Logistic Regression 100.0% 100.0%

SVC 100.0% 100.0%
XGBoost classifier 100.0% 100.0%

The optimal parameters C = 1000 and γ = 0.1, for SVC were examined using Python
GridSearchCVparam = {‘C_range’:(0.1, 10, 100, 1000), ‘Gamma_range’:(0.1, 10, 100, 1000)},
and the fitting error with mean_squared_error was analysed for different values of C
and γ. After analysing the experimental results, C = 1000 and γ = 0.1 for SVC were
selected. Table 10 shows the same binary classification performance (i.e., accuracy = 100%,
recall = 100%, precision = 100%, F1 Score = 100%, and ROC AUC = 100%) for the VGG16
model and the four base classifiers, compared to the XGBoost classifier (n = 50).

Similarly, using the VGG16 and XGBoost classifiers (n = 50) on the testing data, the
multiclass classification accuracy levels for the five subcategories decreased to 97.8241%
and 99.9995%, respectively, as listed in Table 11.

Electronics 2022, 11, 2180 16 of 18

Table 11. Multiclass classification accuracy when 10 features were considered.

Training Testing

VGG16 97.9420% 97.8241%
Naïve Bayes 91.0095% 91.0273%

CART 99.3259% 99.3170%
Logistic Regression 99.3170% 98.9261%

SVC 91.0095% 91.4137%
XGBoost classifier 99.9997% 99.9995%

In addition, the multiclass accuracy levels (%) of naïve Bayes decreased to 91.01% and
91.03% for the testing data. Similarly, the multiclass accuracies (%) of CART decreased to
99.32% on the testing data. Obviously, there is better multi-classification performance for
the XGBoost model (n = 50) compared to VGG16 and the four base classifiers (i.e., naïve
Bayes, CART, logistic regression, and SVC).

5. Conclusions

This paper presents an intrusion detection model that incorporates an XGBoost classi-
fier with an ensemble of a decision tree algorithm to enhance the precision of a multiclass
classification model for in-vehicle network security. Moreover, the proposed approach
minimises classification errors using a balanced class with a set of reduced features to accel-
erate intrusion detection. Overall, the results indicate that the precision of the proposed
model for the XGBoost classifier in the intrusion detection analysis of in-vehicle networks is
higher than that for the VGG16 model, and those of the four base classifiers, on the HCRL
Car-Hacking dataset from Table 11.

Author Contributions: Conceptualization, P.W.; methodology H.-C.L. and K.-M.C.; resources, P.W.;
formal analysis, H.-C.L.; data curation, H.-C.L. and J.-H.C.; writing—original draft, H.-C.L. and
W.-H.L.; writing— review and editing, P.W. and K.-M.C.; software, H.-C.L. and J.-H.C.; valida-
tion, H.-C.L. and W.-H.L.; visualization, H.-C.L. and J.-H.C.; project administration, P.W.; funding
acquisition, P.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan under Grant
No. MOST 110-2410-H-168-003 and the green energy technology research center on the featured areas
research center program within the framework of the higher education sprout project from Ministry
of Education (MOE) of Taiwan under Grant No. MOE 2000-109CC5-001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fortune, the global Electric Vehicle Market Is Anticipated to Grow from $287.36 Billion in 2021 to $1318.22 Billion in 2028 at

a CAGR of 24.3% in Forecast Period, Electric Vehicle. Available online: https://www.fortunebusinessinsights.com/industry-
reports/electric-vehicle-market-101678 (accessed on 15 January 2021).

2. Lokman, S.F.; Othman, A.T.; Abu-Bakar, M.-H. Intrusion Detection System for Automotive Controller Area Network (can) Bus
System: A Review. EURASIP J. Wirel. Commun. Netw. 2019, 1, 184. [CrossRef]

3. Han, M.L.; Kwak, B.I.; Kim, H.K. Anomaly intrusion detection method for vehicular networks based on survival analysis. Veh.
Commun. 2018, 14, 52–63. [CrossRef]

4. Hoppe, T.; Kiltz, S.; Dittmann, J. Applying intrusion detection to automotive it-early insights and remaining challenges. J. Inform.
Assur. Secur. 2009, 4, 226–235.

5. Apvrille, L.; El Khayari, R.; Henniger, O.; Roudier, Y.; Schweppe, H.; Seudié, H.; Weyl, B.; Wolf, M. Secure automotive
on-board electronics network architecture. In Proceedings of the FISITA World Automotive Congress, Budapest, Hungary,
30 May–4 June 2010; Volume 8.

https://www.fortunebusinessinsights.com/industry-reports/electric-vehicle-market-101678
https://www.fortunebusinessinsights.com/industry-reports/electric-vehicle-market-101678
http://doi.org/10.1186/s13638-019-1484-3
http://doi.org/10.1016/j.vehcom.2018.09.004

Electronics 2022, 11, 2180 17 of 18

6. Studnia, I.; Alata, E.; Nicomette, V.; Kaâniche, M.; Laarouchi, Y. A languagebased intrusion detection approach for automotive
embedded networks. Int. J. Embed. Syst. 2018, 10, 1. [CrossRef]

7. Hossain, M.D.; Inoue, H.; Ochiai, H.; Fall, D.; Kadobayashi, Y. LSTM-Based Intrusion Detection System for In-Vehicle Can Bus
Communications. IEEE Access 2020, 8, 185489–185502. [CrossRef]

8. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef]

9. Rehman, A.; Ur Rehman, S.; Khan, M.; Alazab, M.; Thippa, R.G. Canintelliids: Detecting In-vehicle Intrusion Attacks on A
Controller Area Network Using CNN and Attention-based GRU. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1456–1466.

10. Qassim, H.; Verma, A.; Feinzimer, D. Compressed Residual-VGG16 CNN Model for Big Data Places Image Recognition. In
Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV,
USA, 8–10 January 2018; pp. 169–175.

11. Zhang, H.; Gu, M.; Jiang, X.D.; Thompson, J.; Cai, H.; Paesani, S.; Santagati, R.; Laing, A.; Zhang, Y.; Yung, M.H.; et al. An Optical
Neural Chip for Implementing Complex-valued Neural Network. Nat. Commun. 2021, 12, 457. [CrossRef]

12. Zhu, H.H.; Zou, J.; Zhang, H.; Shi, Y.Z.; Luo, S.B.; Wang, N.; Cai, H.; Wan, L.X.; Wang, B.; Jiang, X.D.; et al. Space-efficient Optical
Computing with an Integrated Chip Diffractive Neural Network. Nat. Commun. 2022, 13, 1044. [CrossRef]

13. Kang, M.J.; Kang, J.W. Intrusion detection system using deep neural network for in-vehicle network security. PLoS ONE 2016,
11, e0155781. [CrossRef]

14. Taylor, A.; Japkowicz, N.; Leblanc, S. Frequency-based anomaly detection for the automotive CAN bus. In Proceedings of the
2015 World Congress on Industrial Control Systems Security (WCICSS), London, UK, 14–16 December 2015; pp. 45–49.

15. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun.
2020, 21, 100198. [CrossRef]

16. Mahfouz, A.; Abuhussein, A.; Venugopal, D.; Shiva, S. Ensemble Classifiers for Network Intrusion Detection Using a Novel
Network Attack Dataset. Future Internet 2020, 12, 180. [CrossRef]

17. Rajadurai, H.; Gandhi, U.D. A stacked ensemble learning model for intrusion detection in wireless network. Neural Comput.
Applic 2020, 1–9. [CrossRef]

18. Rocca, J. Ensemble Methods: Bagging, Boosting and Stacking, towards Data Science, 23 April 2019. Available online: https:
//towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205 (accessed on 22 February 2021).

19. Andy, L.; Matthew, W. Classification and Regression by Random Forest. R. News 2002, 2, 18.
20. Gradient Boosting. Available online: https://wikipedia.org/wiki/Gradient%20boosting (accessed on 22 February 2021).
21. Dhaliwal, S.S.; Al Nahid, A.; Abba, R. Effective Intrusion Detection System Using XGBoost. Information 2018, 9, 149. [CrossRef]
22. Ha, N. TreeBoosting-03: Why does XGBoost Win Every Machine Learning Competition? Data Science Blog. Available online:

https://datasciblog.github.io/2020/02/26/tree-boosting-03/ (accessed on 22 February 2021).
23. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
24. Omer, S.; Lior, R. Approximating XGBoost with an interpretable decision tree. Inf. Sci. 2021, 572, 522–542.
25. Singh, J.; Nene, M.J. A Survey on Machine Learning Techniques for Intrusion Detection Systems. Int. J. Adv. Res. Comput. Commun.

Eng. 2013, 2, 4349–4355.
26. Reuters, Hackers to Release Techniques for Attacking Toyota Prius, Ford Escape. 29 July 2013. Available online: https://www.

wheels.ca/news/hackers-to-release-techniques-for-attacking-toyota-prius-ford-escape (accessed on 22 February 2021).
27. Walker, M. Security Experts Reveal How a Tesla Model S Was Hacked, the Hollywood Report, 7 August 2015. Available

online: https://www.hollywoodreporter.com/news/general-news/security-experts-reveal-how-a-814062/ (accessed on
15 January 2021).

28. Le, V.H.; Hartog, J.; Zannone, N. Security and Privacy for Innovative Automotive Applications: A Survey. Comput. Commun.
2018, 132, 17–41. [CrossRef]

29. Islam, R.; Refat, R.U.D.; Yerram, S.M.; Malik, H. Graph-based Intrusion Detection System for Controller Area Networks. IEEE
Trans. Intell. Transp. Syst. 2020, 23, 21664787. [CrossRef]

30. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

31. Precedence Research, Automotive Communication Technology Market Size, Report 2021–2030. Available online: https://www.
precedenceresearch.com/automotive-communication-technology-market (accessed on 3 July 2022).

32. HCRL Dataset. Available online: https://goo.gl/WiVeFj (accessed on 22 February 2021).
33. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-scale Image Recognition. arXiv 2014, arXiv:1409.1556.
34. Hassan, M.U. VGG16–Convolutional Network for Classification and Detection, 20 November 2018. Available online: https:

//neurohive.io/en/popular-networks/vgg16/ (accessed on 30 April 2019).
35. Lee, H.; Whang, M. Heart Rate Estimated from Body Movements at Six Degrees of Freedom by Convolutional Neural Networks.

Sensors 2018, 18, 1392. [CrossRef] [PubMed]
36. Gopalakrishnan, K.; Khaitan, S.; Agrawal, A. Deep Convolutional Neural Networks with Transfer Learning for Computer

Vision-based Data-driven Pavement Distress Detection. Constr. Build. Mater. 2017, 157, 322–330. [CrossRef]

http://doi.org/10.1504/IJES.2018.089430
http://doi.org/10.1109/ACCESS.2020.3029307
http://doi.org/10.1162/neco_a_01199
http://doi.org/10.1038/s41467-020-20719-7
http://doi.org/10.1038/s41467-022-28702-0
http://doi.org/10.1371/journal.pone.0155781
http://doi.org/10.1016/j.vehcom.2019.100198
http://doi.org/10.3390/fi12110180
http://doi.org/10.1007/s00521-020-04986-5
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://wikipedia.org/wiki/Gradient%20boosting
http://doi.org/10.3390/info9070149
https://datasciblog.github.io/2020/02/26/tree-boosting-03/
https://www.wheels.ca/news/hackers-to-release-techniques-for-attacking-toyota-prius-ford-escape
https://www.wheels.ca/news/hackers-to-release-techniques-for-attacking-toyota-prius-ford-escape
https://www.hollywoodreporter.com/news/general-news/security-experts-reveal-how-a-814062/
http://doi.org/10.1016/j.comcom.2018.09.010
http://doi.org/10.1109/TITS.2020.3025685
http://doi.org/10.1109/5.726791
https://www.precedenceresearch.com/automotive-communication-technology-market
https://www.precedenceresearch.com/automotive-communication-technology-market
https://goo.gl/WiVeFj
https://neurohive.io/en/popular-networks/vgg16/
https://neurohive.io/en/popular-networks/vgg16/
http://doi.org/10.3390/s18051392
http://www.ncbi.nlm.nih.gov/pubmed/29724006
http://doi.org/10.1016/j.conbuildmat.2017.09.110

Electronics 2022, 11, 2180 18 of 18

37. Lin, H.C.; Wang, P.; Chao, K.M.; Lin, W.H.; Yang, Z.Y. Ensemble learning for threat classification in network intrusion detection
on a renewable energy security monitoring system. Appl. Sci. 2021, 11, 11283. [CrossRef]

38. Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter optimization for machine learning models based
on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40.

39. Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN Based Intrusion Detection System for In-vehicle Network. In Proceedings of the 2018
16th IEEE Annual Conference on Privacy, Security and Trust (PST), Belfast, Ireland, 28–30 August 2018.

40. Verma, M.E.; Iannacone, M.D.; Bridges, R.A.; Hollifield, S.C.; Moriano, P.; Kay, B.; Combs, F.L. Addressing the Lack of Compara-
bility & Testing in CAN Intrusion Detection Research: A Comprehensive Guide to CAN IDS Data & Introduction of the Road
Dataset. arXiv 2012, arXiv:2012.14600.

41. Ramon, J. Comment on: How to Determine the Number of Trees to Be Generated in Random Forest Algorithm. Available
online: https://www.researchgate.net/post/How_to_determine_the_number_of_trees_to_be_generated_in_Random_Forest_
algorithm (accessed on 12 September 2021).

http://doi.org/10.3390/app112311283
https://www.researchgate.net/post/How_to_determine_the_number_of_trees_to_be_generated_in_Random_Forest_algorithm
https://www.researchgate.net/post/How_to_determine_the_number_of_trees_to_be_generated_in_Random_Forest_algorithm

	Introduction
	Overview of Intrusion Detection for In-Vehicle Network
	Potential Vulnerabilities for In-Vehicle Network
	In-Vehicle Detection of Targeted CAN Bus Attacks
	VGG16
	XGBoost Classifier

	An Analysis Model for Intrusion Detection of an In-Vehicle Network
	Experimental Results
	Conclusions
	References

