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Abstract: To solve the problem of the single-phase ground fault and occurrence of electrical fires
due to the residual current in substation AC power systems, a residual current intelligent sensing
technology is proposed based on ensemble empirical modal decomposition (EEMD), sample entropy
(SE) reconstruction, and fire warning technology using a beetle antennae search algorithm. First,
through the residual current monitoring device to collect residual current information, EEMD and
SE reconstruction for arc-earth fault diagnosis and an analysis of the differences in the current char-
acteristics of each line after reconstruction are used to determine the fault line. Second, residual
current, temperature, and operating voltage as input parameters and fire probability are the output
parameters. The input–output relationship is established by a back-propagation neural network
(BPNN) and optimized by the beetle antennae search (BAS) algorithm to speed up the convergence
and improve the prediction accuracy to establish a substation fire warning scheme. Through sim-
ulation experiments, this paper proposes the residual current as a monitoring object method can
effectively diagnose ground faults and accurately predict the probability of fire occurrence to ensure
the safe and stable operation of substations.

Keywords: residual current; grounding faults; ensemble empirical modal decomposition; sample
entropy; fire warning; beetle antennae search algorithm

1. Introduction

A substation station power system is mainly composed of three parts: station AC
power system, DC power system, and AC uninterruptible power system [1,2]. Among them,
the station AC power system consists of transformers, an AC supply network, transformer
power supply, and other parts, and is one of the significant links to ensure the safe and
reliable operation of a substation. Station power systems can fail during operation due
to mechanical damage, overcurrent, insulation aging, and many other factors that cause
grid cables to malfunction [3,4] and cause electrical fires. Among them, the fire caused by
insulation damages the creep age arc. Due to arc impedance, the arc fault current is small,
cannot be protected by short circuit protection, and the residual current device is needed
for electrical fire protection [5].

For the grounding fault of the substation transmission line caused by the fault current,
the decomposition of the current signal can effectively extract fault characteristics and
judge the fault line. Reference [6] proposes a grounding fault line selection method based
on wavelet packet decomposition, which decomposes the zero-sequence current into
multiple components through a wavelet packet to select the fault line. Reference [7] applies
empirical mode decomposition (EMD) to the fault location of the offshore wind power
system. Through the EMD decomposition and extraction of the inherent mode function
(IMF) generated in the signal, the Hilbert transform is used to evaluate the fault location
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target, and the effectiveness of the proposed method is verified by comparison with the
wavelet transform. However, WPD needs to set the decomposition parameters in advance,
and EMD has the problem of modal aliasing in the decomposition process. Ensemble
empirical mode decomposition (EEMD) can solve the above problems and has been widely
used in time series prediction, fault feature extraction, distribution network fault location,
and so on [8–10]. In this study, EEMD is used to analyze the residual current, extract
the fault characteristics of the fault current, and judge the fault line. Combined with the
residual current monitoring device, the AC power supply grounding fault monitoring can
be realized.

An AC power system has a large number of cables, which are distributed in cable
trays and cable shafts. If it is in the fault state for a long time, the high temperature
generated by the fault current will lead to cable fire and cause severe losses. Therefore,
it is necessary to predict the probability of fire. Reference [11] uses the back-propagation
neural network (BPNN) to predict open flame probability, smoldering probability, and
no fire probability and takes smoke concentration, CO concentration, and temperature as
input variables. Reference [12] applies multi-information fusion and BPNN to building fire
alarms, taking smoke concentration, CO concentration, and temperature as input signals.
The actual fire probability is basically consistent with the expected fire probability, which
is conducive to fire detection. However, BPNN randomly selects weights and thresholds
in the prediction process, which will lead to slow convergence and fall into optimal local
values. Reference [13] uses the genetic algorithm (GA) to optimize the weight and threshold
of BPNN for predicting the fire risk index. The results show that GA-BP significantly
improves prediction accuracy. Similar methods include particle swarm optimization (PSO)
and other methods [14]. Although the above method optimizes the parameters of BPNN,
GA has a high complexity, and the PSO algorithm has a slow convergence speed [15]. The
beetle antennae search (BAS) algorithm is a heuristic search algorithm inspired by the
beetle’s predatory behavior. The algorithm has good global search ability and convergence.
According to the adaptive step size, it can effectively jump out of the optimal local value in
the early exploration stage and quickly converge at the end of the search [16]. At present, it
has been applied in a variety of industrial engineering applications. Reference [17] applies
the BAS algorithm to a rolling bearing diagnosis and combines it with a deep learning
method to improve fault diagnosis performance. Reference [18] proposed a multi-factor gas
explosion pressure prediction model based on BAS-BP, which considers gas, ignition, and
other factors and can predict more accurately than traditional methods. This study proposes
to use BAS to optimize BPNN and apply the BAS-BP model to fire probability prediction.

Therefore, this study takes the residual current as the monitoring object, designs the
residual current decomposition method of EEMD-SE, and solves the problem of parameter
setting of WT and EMD mode aliasing. The entropy value of the IMF component is
calculated by SE and reconstructed to reduce the number of components and better extract
the characteristics of the fault current signal to diagnose the fault line. For a fire caused by
fault current, the residual current and temperature are taken as the research objects, and
a prediction model based on BPNN is proposed. The weight and threshold of BPNN are
optimized by the BAS algorithm, which improves the speed of fire probability prediction
and the accuracy of the results. The main innovations of this study are as follows:

1. Through monitoring the residual current, the EEMD is used to decompose the current,
calculate the entropy of the IMF component and reconstruct it, remove the redundant
information, and analyze the difference between the fault line and the normal line
according to the reconstructed signal.

2. Residual current is selected as the input of BPNN and applied to fire probability
prediction. Aiming at the problems of slow convergence speed and easily falling
into the optimal local value of the BP algorithm, the BAS algorithm is proposed to
optimize the weight and threshold of BPNN.
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3. Simulation verification. The fault line is judged by analyzing the reconstructed signal’s
characteristics. BAS-BP is compared with BPNN, and the model’s performance is
evaluated according to the probability of fire occurrence.

2. Residual Current Monitoring

For residual current, also known as leakage current, with normal use of the low-
voltage distribution system, the current vector sum of phases A, B, C, and N is in balance.
When a fault occurs, the balance breaks, and the current vector sum is not 0. Generally, the
fault usually occurs at the power consumption side because the fault causes the incoming
and outgoing current of the primary circuit to no longer maintain balance, and a current
instantaneous vector practical value, namely residual current, will be formed. Residual
currents are generated for many reasons, such as the long-term use of the connecting
conductor, resulting in aging and breakage; construction irregularities; irregular design;
and failure to change the line as required [19].

As one of the important causes of electrical fires, the generation of leakage current
destroys the protection device of the equipment; failing insulation protection, the leakage
current itself is not the direct cause of the fire. However, when the leakage current occurs,
the fire line is connected to the earth to produce a larger current, according to the thermal
effect, generating much heat and igniting combustible materials, resulting in fire occurrence.
An electrical fire caused by leakage current is hidden and not easily found, which is
very dangerous.

Monitoring residual current has become an effective means of the early prevention
and control of electrical fires to better monitor the residual current and obtain timely
and accurate electrical data. This paper establishes a residual current monitoring scheme.
Through a residual leakage current transformer (CT), combined with a GPS positioning
system, data are transmitted to the protection device and the integrated monitoring unit in
real-time, achieving real-time transmission, early warning, early action, etc. [20,21]. The
residual current monitoring scheme is as follows (See Figure 1 for details).
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Figure 1. The residual current monitoring scheme. Figure 1. The residual current monitoring scheme.

3. Research on AC Power Ground Fault in Substations
3.1. Station AC Power Ground Fault Intelligent Sensing Technology

The arc grounding fault diagnosis technology forms a station AC power ground-
ing fault-sensing technology system by the online monitoring of the AC power residual
current through the wavelet decomposition method. As in Figure 2, the cable operation
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condition is analyzed through a residual current monitoring device. The pure signal is
extracted by filtering and separation mainly through wavelet decomposition, and the
wavelet decomposition method is used to characterize the monitoring data.
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Figure 2. Long cable residual current acquisition.

3.2. EEMD

Empirical mode decomposition (EMD), which can decompose any complex signal into
multiple intrinsic mode functions (IMF), can be used to analyze time series.

The EMD decomposition steps are as follows:

1. Identify all maxima and minima and fit their envelopes, eup(t) and elow(t), and calculate
the average value of the upper and lower envelopes m1(t).

m1(t) =
eup(t)− elow(t)

2
(1)

2. The IMF component c1(t) is removed from the original signal to extract the
residual component,

r1(t) = x(t)− c1(t) (2)

However, the above algorithms introduce the modal aliasing problem when processing
signals with abrupt changes in time scales. EEMD can effectively improve the modal
aliasing problem by adding Gaussian white noise to the original signal and then performing
multiple EMDs to define the overall averaging of the decomposed IMF components [22,23].

The specific decomposition steps of the EEMD method are:

1. Add a random Gaussian white noise sequence to the target signal:

xl(t) = x(t) + nl(t) (3)

In the lth experiment, nl(t) is the white noise sequence with an added standard
normal distribution.

2. Decomposition of the signal using EMD to obtain n IMF components and
1 RES component.

xl(t) =
n

∑
i=1

cli(t) + rl(t) (4)

3. Repeat the above steps by adding a different sequence of white noise each time.
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4. Using the characteristic that the white noise spectrum has zero mean, the above
components are averaged to obtain the final decomposition results as follows:

ci(t) = 1
N

N
∑

l=1
cli(t)

r(t) = 1
N

N
∑

l=1
rl(t)

(5)

where: N is the number of times white noise is added; ci(t) is the i-th IMF component
after integrated averaging; and r(t) is the final residual component.

3.3. SE

Entropy is a quantitative descriptive tool to measure the complexity of a system, and
the entropy value varies with the system’s state. The sample entropy value’s magnitude
accurately reflects the time series’ complexity [24]. The steps to calculate the sample entropy
are as follows:

1. Time series {xi} = {x1, x2, . . . , xN} form the series into an m-dimensional vector
according to the ordinal number:

Xi = [xi, xi+1, . . . , xi+m−1], (i = 1, 2, . . . , N −m + 1) (6)

2. Ascertain distance between the vectors X(i) and X(j); dm[X(i), X(j)] is the absolute
value of the maximum difference between the two corresponding elements.

dm[X(i), X(j)] = max
0∼m−1

[|x(i + k)− x(j + k)|] (7)

3. Given the similarity tolerance r, for each value of the i statistics number of
d[Xm(i), Xm(j)] < r, denoted as Bm(i), calculate the ratio to a total number of dis-
tances N-m, denoted as Bm

i (r). Definition:

Bm
i (r) =

Bm(i)
N −m

, 1 ≤ i ≤ N −m, i 6= j (8)

4. Find the average of all Bm
i (r) and denote as Bm(r), then

Bm(r) =
1

N −m + 1

N−m+1

∑
i=1

Bm
i (r) (9)

5. Update m to m + 1 and repeat the above steps, noting as Bm+1(r)

Bm+1(r) =
1

N −m

N−m

∑
i=1

Bm+1
i (r) (10)

6. SE is

Samp En(m, r) = lim
N→∞

{
− ln

(
Bm+1(r)

Bm(r)

)}
(11)

When N is a finite value, the estimate of SE is

Samp En(m, r, N) = − ln
(

Bm+1(r)
Bm(r)

)
(12)

In text, take m = 2, r = 0.2 Std.



Electronics 2022, 11, 2159 6 of 14

4. Substation Fire Warning Method Research

This paper sets the residual current, temperature, and operating voltage as the input
signals. The BPNN is used to output no fire’s probability, smolder’s probability, and open
flame’s probability to determine the fire situation of a substation. The BPNN is divided into
an input layer, implicit layer, and output layer, and gradient descent is used to realize the
algorithm’s operation by quickly calculating the function’s derivative. The BPNN that falls
into local optimum is easy; for a prediction to solve the above problems, the BAS algorithm
is introduced for optimization.

4.1. Establishing Input and Output Relationships

The input signal is set to Xi, where i = 1, 2, . . . , n. The output signal is set to Yj,
j = 1, 2, . . . , m. The relationship is expressed as

Sk =
n

∑
i=1

vkiXi + vk0, 1 ≤ k ≤ h (13)

Zk = σ(Sk), 1 ≤ k ≤ h (14)

Yj =
h

∑
k=1

wjkZk + wj0, 1 ≤ j ≤ m (15)

For reverse pass error, update modification weights vki and vk0, and threshold wjk and
wj0, until the requirement is satisfied, the error function is

E =
1
2

t

∑
a=1

m

∑
k=1

(qa
k − pa

k)
2 (16)

where qa
k is the actual output, and pa

k is the desired output.

4.2. BAS Algorithm

The BAS algorithm is mainly developed based on the actual situation of the aspen
foraging learning summary, and aspen whiskers are the primary tool for aspen to hunt and
feed. The left and right aspen whiskers make judgments based on food smell and perform
the corresponding actions to hunt. According to the foraging behavior of the aspen, it can
be seen that the aspen whisker search algorithm can avoid the local optimum.

The BAS process is:

1. Set up random variables and normalize them:

→
b =

rand(k, 1)
‖rands(k, 1)‖ (17)

The rand is a random function; ‖rand‖ indicates the spatial dimension.

2. Create spatial coordinates: 
xlt = xt −

d0 ∗
→
b

2

xrt = xt −
d0 ∗

→
b

2

(18)

The intensity of the food odor received by the left and right whiskers is calculated
using the adapted function f (x).

3. Location update:

xt+1 = xt − sign( f (xrt)− f (xlt))δt ∗
→
b (19)
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4.3. Optimized Prediction Model Based on BAS-BPNN Algorithm

Due to the randomness of the initial threshold and weight selection, the convergence
times are different, and even the standard error cannot be reached within the specified
times. BPNN is optimized using the BAS algorithm. The BAS-BP process is:

1. Random vectors of beetle antennae are created and normalized;
2. The left and right spatial coordinates of longicorn whiskers are obtained. According

to the fitness function f (x), determine the strength of the food odor be obtained from
the left and right, judge the moving direction of the longicorn beetle, and update the
position of the longicorn beetle;

3. Select step factor δt. It is mainly used to control the area search ability of beetles; select
a more significant value as much as possible to avoid falling into local optimization.
The step factor changes dynamically with time;

δt+1 = δt · eta (20)

The formula: eta is the step attenuation factor, and the value range is [0, 1];

4. Assuming the initial value, calculate the fitness function value, and store the current
initial position of the bestX and the corresponding fitness function value bestY;

5. Calculate the length of beetle antennae and build a search space. The position of
beetle antennae that must receive information updates through beetle antennae, the
fitness function, calculates the second fitness function value, compares it with bestY,
determines the current optimal fitness value, and saves the corresponding weight as
the current optimal weight;

6. Test the termination condition of the algorithm. If the conditions are met, the algorithm
will jump out. Otherwise, a new round of optimization will be carried out. Figure 3 is
the flow chart of the BAS-BP algorithm.
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5. Case Study
5.1. Grounding Fault Simulation Analysis

A single-phase ground fault simulation model is built, as show in Figure 4. After
obtaining the waveform signal of each line, the current waveform is decomposed by EEMD,
and the A-phase ground fault occurs in Line 3 at 0.05 s.
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According to the results in Figure 5, before 0.05 s, the three lines are normal, and the
zero-sequence current of each line is zero. At 0.05 s, the third line suddenly produces an
A-phase arc grounding fault.
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Figure 5. (a) Three-phase current of the faulty line. (b) Zero sequence current of three lines.

EEMD decomposes the zero sequences current waveform. The EEMD results show
that the frequency domain signal direction of the fault line is different from the direction of
the first two lines, and the current amplitude of the ground fault line is larger. The fault line
can be found by comparing the difference between the normal line and the abnormal line.
After calculating the signal energy proportion after EEMD decomposition, it is found that
the proportion of the 0–8 Hz frequency range is high so that fault analysis can be carried
out according to the signals in this range.

This paper sets the grounding resistance of 100 Ω, and the current signal after EEMD
decomposition is reconstructed. The comparison of decomposition waveforms of the 100 Ω
normal line and fault line is shown in Figure 6.
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The sample entropy values calculated for each line are shown in Table 1.

Table 1. Sample entropy values for different line components.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 RES

Line 1 2.0726 1.4908 0.5703 0.0154 0.0068 0.0027 0.0032 0.0025 0.0021 0.0014 0.0025 0.0018
Line 2 2.0682 1.5051 0.5863 0.0128 0.0070 0.0023 0.0032 0.0025 0.0019 0.0015 0.0025 0.0022
Line 3 2.0638 1.4853 0.6760 0.0098 0.0053 0.0024 0.0039 0.0026 0.0017 0.0015 0.0026 0.0021

According to the sample entropy value, the decomposed waveform is reconstructed
(See Figures 7–9 for details). Comparing the amplitude and polarity of the reconstructed
signals in different frequency bands, the faulty line can be judged, where the normal line
polarity is negative and the faulty line polarity is positive. It can be judged that the line is
faulty, which is consistent with the setting of the faulty line in the simulation model.
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Figure 9. Reconstructed signal and spectrum for Line 3.

The reconstructed signal and spectrum of different lines are analyzed. The low-
frequency components of the fault line and the normal line change differently. The changing
amplitude of the periodic frequency component of the faulty line is greater than that of
the normal line at the beginning of the fault. The spectrum of the periodic frequency
component of the faulty line is also different from the normal line. Based on the above, the
analysis can determine line three for the fault signal.

5.2. Substation Fire Probability Prediction

The input and output signals are 3, the implied layer nodes are set to 6, the learning
speed is 0.01, the maximum training times are 5000, and the MSE is 0.0001. The predicted
probability of substation fire using the trained BAS-BP model is shown in Figure 10.
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From the analysis in Figure 10, the fire probability error predicted by BAS-BPNN is
significantly better than that of BPNN.

Two error indicators evaluate the accuracy of the substation fire warning model, the
YMAPE and YRMSE. The smaller the error, the more accurate the substation fire prediction
model, and the two error calculation formulas are shown:

YMAPE =
100%

n

n

∑
i=1

∣∣∣∣ya(i)− yp(i)
ya(i)

∣∣∣∣ (21)
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YRMSE =

√√√√√ n
∑

i=1

[
ya(i)− yp(i)

ya(i)

]2

n
(22)

where n denotes the total number of predicted results, and ya(i) and yp(i) are the actual
and predicted values of fire probability for the i-th test point. The RMSE and MAPE of the
BAS-BPNN algorithm and BPNN algorithm are shown in Table 2.

Table 2. Comparison of fire probability error between two algorithms.

Algorithm

RMSE MAPE/%

No Fire Smolder Open
Flame No Fire Smolder Open

Flame

BP 0.046 0.034 0.036 7.7 11.1 13.5

BAS-BP 0.021 0.020 0.032 4.8 8.53 10.8

As analyzed in Table 2, MAPE decreased by 37.66% and RMSE decreased by 54.35% for
the probability of no fire, MAPE decreased by 23.15% and RMSE decreased by 41.18% for
the probability of cloudy combustion, and MAPE decreased by 20% and RMSE decreased
by 11.11% for the probability of an open fire.

The fuzzy algorithm analyzes the output fire probability. The fire duration factor is
added to classify the decision output value u into four levels. When u < 0.25 is no fire,
0.25 ≤ u < 0.5 is alert, 0.5 ≤ u < 0.75 is the alarm, and u ≥ 0.75 is a serious alarm. A
comparison of fire probability output after processing by the fuzzy algorithm is shown
in Figure 11.
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Figure 11. Fire decision output classification.

As seen from the analysis of Figure 11, the fire probability after processing by the
fuzzy algorithm, BAS-BP prediction is the same as the actual; only the sixth fire test point is
different, BAS-BP judged as alert, and the actual situation is no fire. The reason for this may
be that the fire duration is set too long, and the training data is small. In order to reduce
the error, more data are needed to train the prediction model in the future.

6. Conclusions

In this study, residual current is taken as the research object, and a fault line judgment
method based on EEMD-SE and a fire probability prediction model based on BAS-BP are
proposed. The EEMD method avoids the problem of setting parameters in advance of WT
and solves the problem of the modal aliasing of EMD. By decomposing and reconstructing
the residual current signal, the difference between the fault line and the normal line
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can be better analyzed through simulation experiments, which provide a reference for
AC power supply grounding fault line selection. Aiming at fires caused by residual
current, residual current and temperature are the main factors affecting fire probability. The
influencing factors, such as smoke concentration and CO concentration, are removed. The
probability of fire occurrence is predicted in advance by BPNN. A BAS algorithm is used
to optimize the weight and threshold of BPNN, which further improves the prediction
accuracy and can more accurately judge whether a fire occurs. In the following work, the
combination of grounding fault line selection and artificial intelligence technology, as well
as the collaborative work of fire probability prediction and fire protection devices, will be
some of the research focuses.
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and Y.M. All authors have read and agreed to the published version of the manuscript.
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