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Abstract: The paper presents an analysis of power losses in a three-phase T-type neutral point
clamped converter with insulated gate bipolar transistors. The paper’s main aim is to perform a
detailed analysis of power losses in the converter operating as an active power filter. The study is
based on the use of characteristics of semiconductor devices provided by the manufacturer in the
module datasheet. Thanks to the analysis, it is possible to recognise the value of power losses, which
facilitates the design of the converter cooling system. Identifying how power losses are distributed
between the module switching devices is also possible. Power losses are shown as functions of the
output current and module temperature. The analysis results were successfully verified by measuring
power losses using a laboratory model of the converter with rated currents of 10 and 20 A. The
obtained results indicate relatively low power losses and a relatively even distribution of power
losses between the semiconductor devices. This is a superior feature of the three-level T-type neutral
point clamped converter topology.

Keywords: power losses; three-level T-type neutral point converter; active power filter operation

1. Introduction
1.1. Motivations

Power losses in power electronic converters play a crucial role in the design of their
cooling system. Better recognition of power losses allows the converter designers to
choose the appropriate cooling system in terms of its performance and size. This paper
presents a detailed analysis of the power losses of the T-type Neutral Point Clamped
(TNPC) converter, which is applied to the active power filter. The selection of this converter
topology is dictated by the relatively low power losses and the fact that in this topology, as
in other three-level topologies, the middle point of the dc circuit is available. In the case of
an active filter, the neutral wire is connected to this middle point so that a fourth converter
leg is not required. An additional advantage of the selected converter, in relation to the
classical two-level topology, is the possibility of reducing the dimensions and the cost of
the grid-side passive filter.

1.2. Literature Review

The topologies of multilevel converters were developed more than twenty years
ago [1,2]. Multilevel converters were introduced mainly because of their possible use
in converting medium voltage energy. Thanks to these converters, it was possible to
efficiently convert electrical energy without using expensive and large transformers [3,4].
Over the years, it has become clear that many multilevel converter topologies often have
better performance parameters than the classic two-level converter, even at low voltage
levels [5–9]. One of the most important features of these converters is high efficiency, which
was not always an obvious fact with the greater number of semiconductor devices used
in converters with a very high number of voltage levels [10–12]. The high efficiency of
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the converter is an essential parameter because due to low power losses, the converter’s
lifetime is longer, and the total cost of its operation is lower [13].

Because power loss evaluation of converters is a complex and multivariable issue [14–19],
it is crucial to identify power losses in converters operating under various conditions
accurately. The knowledge about converter power losses is vital for designers of converter
cooling systems and manufacturers of semiconductor modules. Nowadays, semiconductor
modules can be optimised for one converter operating mode but will not be suitable for
other operating conditions. For example, the module optimised for grid-tied PWM rectifiers
has diodes with higher current ratings than the module optimised for the PWM inverter.
Typically, power loss analysis is performed individually for each converter topology.

This paper analyses the three-phase T-type neutral point clamped (TNPC) converter.
The converter belongs to the group of three-level converters [20] in which there are also
classical neutral point clamped (NPC) converter [21], active neutral point clamped (ANPC)
converter [22], and advanced neutral point clamped converter [23].

The NPC converter, apart from lower power losses and better output voltage wave-
form, is characterised by an uneven distribution of power losses among semiconductor
devices [24]. The solution to this issue is the development of the ANPC converter, which,
using transistors instead of clamping diodes, makes it possible to distribute power losses
between the semiconductor devices better. A further improvement of the three-level con-
verter is the TNPC converter [25]. The power losses of this converter are analysed in this
article. A very advantageous feature of this converter is the lower number of semiconductor
switches compared to the ANPC or NPC topologies and lower power losses [26].

The selection of the T-type neutral point clamped converter for the active power filter
is made mainly based on the requirements for reducing the size of the grid filter and the
dimensions of the cooling system. The second aspect, which directly relates to the power
loss analysis, is a topic of this paper. The other reason for the selection of the 3-level
topology is the access to the medium point of the dc-link circuit. By the connection of the
neutral wire to the medium point, it is possible to reduce the number of necessary converter
legs, which additionally reduces the converter losses.

The proposed method of calculating power losses in the TNPC converter is similar to
the method proposed in [26]. The difference is that in [26–28], the semiconductor switch
output characteristics have been approximated by linear functions. Still, in this paper, the
approximation is made with more precise power functions that also recognise the influence
of temperature on these characteristics. Further, the functions of energy losses are more
accurately presented than in [26–28]. The results of power loss analysis are shown in
this paper mainly as a function of the output current and temperature with the switching
frequency and phase-shift angle set to constant values.

Currently, intensive works are ongoing worldwide on converters with SiC MOSFETs,
such as the TNPC converter [29] or the ANPC hybrid converter combining the IGBTs with
the SiC-MOSFETs in a single topology [30]. This topology is characterised by even lower
power losses than the TNPC topology. Despite the increasing share of converters with
SiC-MOSFET transistors, the topology of the TNPC converter using IGBT transistors still
has good properties. Such properties include low power losses, favourable output voltage,
and a low level of generated disturbances. It is believed that accurate recognition of the
power loss is needed.

1.3. Contribution

The analysis presented in this paper is performed for the TNPC converter operating as
an active filter. The details on the laboratory model of the TNPC converter are given in [31].
This converter practically generates reactive current with only a small share of power losses
constituting the active power. Connecting the converter to the electrical grid causes the
modulation index and the phase-shift angle to be almost constant. This, in turn, means that
the analysis presented in the article can be performed with a limited number of changing
parameters affecting power losses.
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Power losses generated in the TNPC converter should be small due to the long
operation time of the converter and the need for its long lifetime. In many cases, the
lifetime of power electronic converters is approx. 20 years, during which even minor losses
contribute to high costs for the end-user of the converter.

Many works on power losses in the TNPC converters are devoted to inverters with
a phase-shift angle close to zero. For this mode of operation, the natural parameter is the
converter efficiency, which, in the case of the converter operating as an active filter, cannot
be used. The converter efficiency parameter is replaced in this paper by a per kVA power
loss ratio. Such a parameter can be useful when comparing different converter topologies
or different active filter solutions.

The main contributions of this paper are listed below.

• The development of a detailed analysis of power losses for the TNPC converter. This
analysis allows the user to quickly determine the power losses when one or more
operating parameters of the converter or its design parameters are changed. The
developed power loss model of the TNPC converter is an analytical model that has
an advantage over the simulation model because obtaining results in the form of
characteristics is much faster. However, this is done at the expense of the use of a
number of mathematical equations, which in the case of simulation models do not
need to be used.

• The model uses an accurate approximation of characteristics of semiconductor devices
for currents changed between 0 and the rated current value. This approximation
guarantees that power losses are better mapped than in the case of using a model with
a piecewise-linear approximation.

• The analysis proposed in the paper is based on characteristics obtained from the semi-
conductor datasheet. The development of such an analysis is faster when compared
to analyses requiring the prior measurements in specific test circuits as is typically
used in the literature, e.g., [27,28]. Using the datasheet characteristics can be done,
however, when the parameters of the converter gate circuit and the dc-link circuit are
comparable to the parameters used in the datasheet.

• The analysis proposed in the paper has regard to eight different parameters influencing
the power losses they are (1) output current amplitude of the fundamental component,
(2) dc-link voltage, (3) switching frequency, (4) phase-shift angle of the fundamental
components of output current and voltage, (5) semiconductor temperature, (6) modu-
lation index, (7) PWM modulation technique, and (8) gate resistances in a transistor
driver circuit. Such analysis is comprehensive and can be applied to converters operat-
ing under different conditions. In this paper, the operational conditions are restricted
to the operation of the active power filter.

It is believed that a detailed power loss analysis for the TNPC converter is needed and
is an original contribution. In many papers, power losses are presented only for a specific
case of converter operation, and this is mainly for the inverter operation. In this paper,
power losses are shown more broadly.

1.4. Paper Organisation

This paper is organised as follows. Section 2 shows the complete power loss analysis in
the TNPC converter. Section 3 presents the experimental validation of power loss analysis
on the example of two test setups with TNPC converters. Section 4 presents the conclusions.
After the conclusions, the nomenclature is presented in which all parameters used in this
paper are listed. After that, Appendix A lists all values of the design parameters of the
TNPC converter in the study.

2. Power Loss Analysis

Most converter power losses in power electronic converters are generated due to the
conduction and switching of semiconductor devices. This paper only considers these two
sources of losses generated in a T-type NPC converter without considering the dead-time
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effect and dc-link voltage ripple. Both conduction and switching losses are calculated
analytically based on approximated IGBT module characteristics provided by the man-
ufacturer [32]. Although a single leg of the TNPC converter consists of four transistors
and two diodes, as seen in Figure 1, power losses in only three semiconductor devices are
considered. They are transistors T1 and T2 and diode D4. This approach is adopted because
transistors T1 and T4 have the same parameters and are exposed to the same currents and
voltages phase-shifted by half of the fundamental period. A similar situation exists for
transistors T2 and T3 and diodes D1 and D4. Other losses generated in the converter are
also considered, among which are the dc-link capacitor losses and losses generated in pcb
tracks due to resistance.
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Figure 1. Single leg of the TNPC converter consisting of two conventional IGBTs, T1 and T4, two
reverse blocking RB-IGBTs, T2 and T3, and two diodes, D1 and D4.

2.1. Conduction Power Losses

The conduction losses (Equation (1)) are calculated separately for each switching
device by calculating the average value of the power obtained from the integral of instanta-
neous power pX (t) = iX (t) vX (t), where iX (t) is the device X current and vX (t) is the voltage
across this device. The integration of instantaneous power is performed in theωt domain
from angle α1 to α2. Because the device current iX (ωt) is a modulated phase current
iO (ωt), it must be multiplied by the modulation function SX (t), iX (ωt) = iO (ωt) SX (ωt).
The modulation function is closely related to the modulating signal SM (ωt) used in the
converter PWM modulator.

PconX(TX) =
1

2π

α2∫
α1

{iX(ωt)·vX(ωt, TX)}dωt =
1

2π

α2∫
α1

{iO(ωt)·SX(ωt)·vX(ωt, TX)}dωt, (1)

2.1.1. Output Characteristic Approximation

In the presented power loss analysis, the output current is assumed as sinusoidal,
iO = Im sin (ωt − ϕ), and the device voltage vX (t, TX) is a function of the current and device
junction temperature TX as in Equation (2).

vX(ωt, TX) = vX(iX(ωt), TX) = VX0(TX) + (VXn(TX)−VX0(TX))

(
iX(ωt)

In

) 1
nX(TX)

, (2)

where VX0 (TX) is a temperature-varying threshold voltage, VXn (TX) is a temperature-
varying device voltage at nominal current In, and 1/nX (TX) is a temperature-varying
exponent of the power function representation of the device on-state characteristic. The
threshold voltage VX0 (TX) and nominal voltage VXn (TX) are linear functions obtained from
on-state characteristics at temperatures TX = 25 and TX = 125 ◦C (Equations (3) and (4)).

VX0(TX) = aX0TX + bX0 =
VX0,125 −VX0,25

125 ◦C− 25 ◦C
TX + VX0,25 −

VX0,125 −VX0,25

125 ◦C− 25 ◦C
25 ◦C, (3)
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VXn(TX) = aXnTX + bXn =
VXn,125 −VXn,25

125 ◦C− 25 ◦C
TX + VXn,25 −

VXn,125 −VXn,25

125 ◦C− 25 ◦C
25 ◦C, (4)

The values of function parameters given in Equations (3) and (4) for the analysed IGBT
TNPC module are listed in Table 1 and shown in Figure 2.

Table 1. Parameters of temperature-varying functions VX0 (TX) and nominal voltage VXn (TX) of
transistors T1 and T2 and diode D4.

Device X VX0,25, V VX0,125, V VXn,25, V VXn,125, V aX0, V/◦C bX0, V aXn, V/◦C bXn, V

T1 0.70 0.50 1.72 1.94 −0.002 0.750 0.0022 1.665
T2 0.70 0.50 2.35 2.46 −0.002 0.750 0.0011 2.323
D4 0.75 0.55 1.69 1.85 −0.002 0.800 0.0016 1.650
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Figure 2. Output characteristic of transistor T1 from the three-phase TNPC IGBT module
12MBI75VN120−50 (VCES = 1200 V, In = 75 A).

Finding exponent nX(TX) of the power function is performed by applying the curve
fitting method to a normalised function (Equation (5)), which is obtained from Equation (2)

iX
In

= f (TX) =

(
vX(iX, TX)−VX0(TX)

(VXn(TX)−VX0(TX))

)nX(TX)

, (5)

where vX (iX, TX) is the output characteristic voltage taken from the IGBT module datasheet.
For transistor T1, the normalised function (Equation (5)) for TT1 = 125 ◦C is depicted in
Figure 3. The normalised function (Equation (5)) always crosses points (0, 0) and (1, 1) even
though the temperature TX varies.
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Figure 3. Normalised output characteristic of transistor T1 from the TNPC module 12MBI75VN120-50
(VCES = 1200 V, In = 75 A) for temperature TT1 = 125 ◦C.

In Figure 3, one can see that the normalised function iT1/In for TT1 = 125 ◦C with
nT1 (125 ◦C) = 1.65 matches the data for a normalised voltage in the range between 0 and
1. Still, for voltages between 1 and 2, some discrepancy is observed. This discrepancy is
not problematic because it occurs for currents higher than the rated value In in the range,
which is out of the scope of the analysis presented in this paper. The best-fitting exponents
for normalised functions of all converter devices are collected in Table 2; these parameters
are given for temperatures TX = 25 and TX = 125 ◦C.

Table 2. Exponents of power functions for output characteristics of all TNPC converter devices T1

and T2 and D4 for two temperatures TX = 25 and TX = 125 ◦C.

Device X nX (25 ◦C) nX (125 ◦C)

T1 1.51 1.65
T2 1.71 1.66
D4 1.89 1.81

The exponent nX (TX) given in Equation (5) is a function of temperature TX and is
approximated by a linear function obtained from two points, nX (25 ◦C) and nX (125 ◦C),
which are calculated from Equation (6).

nX(TX) = anXTX + bnX =
nX(125 ◦C)− nX(25 ◦C)

125 ◦C− 25 ◦C
TX + nX(25 ◦C)− nX(125 ◦C)− nX(25 ◦C)

125 ◦C− 25 ◦C
25 ◦C, (6)

After substituting Equations (2)–(6) into Equation (1), each device’s conduction losses
are given as Equation (7).

PconX(TX) =
1

2π

α2∫
α1

{
Im sin(ωt−ϕ)·SX(t)·

[
VX0(TX) + (VXn(TX)−VX0(TX))

(
Im sin(ωt−ϕ)

In

) 1
nx(TX)

]}
dωt, (7)

2.1.2. Conduction Angles and Modulation Function

Power loss analysis is performed in theωt domain. Therefore, it is essential to identify
the corresponding conduction angles for each semiconductor device in the TNPC converter
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(Figure 1). All devices’ currents for exemplary output current and modulation index ma are
shown in Figure 4.
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Each TNPC converter device conducts switched currents for different angles. The
angle at which a device starts conducting is referred to as α1, and the angle when a device
stops conducting the current is α2. Both angles are different for each converter device, as
is seen in Figure 4 and Table 3. In Figure 4, device currents are modulated according to
modulation functions SX (ωt). For example, transistor T1’s current, iT1, is modulated by
function ST1 (ωt) = SM (ωt), but transistor T2’s current is modulated by the complementary
function ST2 (ωt) = 1−SM (ωt) for ωt = (0, π) and ST2 (ωt) = 1 + SM (ωt) for ωt = (π, 2π).
Modulation functions of all device currents are given in Table 3.

Table 3. Conduction angles α1 and α2 and modulated functions SX (ωt) of devices T1, T2 and D1.

Device X α1 α2 SX (ωt)

T1 ϕ π SM (ωt)
T2 ϕ π + ϕ 1−|SM (ωt)|
D4 π π + ϕ −SM (ωt)
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2.1.3. Results of Conduction Power Losses

After substituting all parameters related to device output characteristics, conduction
angles and modulation function into Equation (7), the total conduction power losses can be
calculated. It is assumed that the output current is sinusoidal with the phase-shift-angle
equal to ϕ = π/2 and the modulation index ma = 0.86. The phase-shift angle ϕ = π/2
corresponds to the converter operation as a reactive power compensator. In practice, the
converter operates with a small share of power losses, which reduces the phase-shift angle
to nearly ϕ = 89◦. Since such a difference in the angles does not significantly impact the
value of the power losses, the value of ϕ = π/2 is assumed. The analysis also assumes that
power losses are calculated for the same junction temperature of all switching devices. The
conduction losses of the three-phase TNPC converter given as a function of temperature
Tj are depicted in Figure 5a. These losses are calculated as the sum of losses in all devices
multiplied by the number of phases and duplicated due to the number of devices in each
converter leg, Pcon = 6PconT1 + 6PconT2 + 6PconD4.
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Figure 5. Conduction power losses of the three-phase TNPC converter for the modulation index
ma = 0.86 and the phase-shift angle ϕ = π/2 given as (a) a function of temperature for the output
current rms value IOrms = 20 and 50 A and (b) a function of the rms value of the output current for
temperatures of 25 and 125 ◦C.

From the characteristics shown in Figure 5b, conduction power losses for the current
of IOrms = 20 A decrease with temperature increase. Such behaviour of power losses can
be explained by the negative thermal coefficient occurring in output device characteristics
present for currents below 15 A for transistors T1 and T4 (as in Figure 2), below 35 A for
transistors T2 and T3, and below 30 A for diodes D1 and D4.

Conduction power losses for the device temperature of 25 ◦C and the output currents
of IOrms = 20 and 50 A equal 73.6 and 250.1 W, respectively. The distribution of conduction
power losses among converter devices is not even, as presented in Figure 6.
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index ma = 0.86 and the phase-shift angle ϕ = π/2, temperature T = 25 ◦C and two rms values of the
output current 20 and 50 A.

From Figure 6, one can see that the distribution of conduction power losses for a
constant phase-shift angle ϕ and modulation index ma is slightly different with the change
of the output current rms value. The RB-IGBT transistors T2 and T3 have the largest share
of conduction losses. This is because these transistors conduct modulated currents for half
of the fundamental period (α2 − α1 = π) compared to transistors T1 and T4, which conduct
modulated currents for α2 − α1 = π − ϕ = π/2 (for ϕ = π/2) and diodes D1 and D4, which
conduct such currents for α2 − α1 = π + ϕ − π = π/2.

2.2. Switching Power Losses

The TNPC converter has smaller switching power losses compared to other converters.
This is because switching losses in transistors T1 and T4 occur at blocking voltages Vdc/2
even these transistors must withstand the entire Vdc similarly as in a two-level converter. In
a two-level converter, power losses occur at voltages Vdc; thus, switching losses, which are
proportional to the blocking voltage, in the TNPC converter is reduced to half of such losses
of a two-level converter. This is true when a TNPC converter uses identical transistors as a
two-level converter. However, RB-IGBTs (T2 and T3) have better switching performance
because they are designed for withstanding the voltage of Vdc/2.

Switching power losses are generated in IGBTs during transistor turn-on and turn-off
processes. They can be calculated as an average value of a sum of energies during turn-on
Eon and during turn-off Eoff over the fundamental period multiplied by the switching
frequency f S. These energies are functions of the device current iX (ωt), device temperature
TX, blocking voltage Vb and the resistances of the gate circuit RG. In the presented analysis,
resistances RG are chosen to the same values selected by the manufacturer in the module
datasheet [32]. However, due to the resistance of driver output, the resistances are equal
RG1 = 3.2 Ω, RG2 = 5.7 Ω. The switching power losses are an integral of energies in the
interval restricted by switching angles α3 and α4 (Equation (8)).

PswX(TX) = fS
1

2π

α4∫
α3

{EonX(iX(ωt), TX, Vb) + EoffX(iX(ωt), TX, Vb) + ErrX(iX(ωt), TX, Vb)}dωt, (8)

where Err is the switching energy generated in the diode due to reverse recovery. For
diodes, energies Eon and Eoff are equal to zero; similarly, for transistors, Err is equal
to zero.
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2.2.1. Switching Angles

The switching angles α3 and α4, which are not the same as conduction angles, can be
shown by device current and voltage waveforms in Figure 7 and are listed in Table 4.
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Table 4. Switching angles α3 and α4 of devices T1, T2, D2 and D4 with indicated switching mode.

Device X α3 α4 Mode

T1 ϕ π A
T2 π π + ϕ B
D2 ϕ π A
D4 π π + ϕ B

Contrary to conduction losses, the switching losses in transistor T2 and diode D2 are
calculated separately. The RB-IGBT conduction losses are taken together for transistor
T2 and diode D2, which are connected in series and are represented by a single output
characteristic. The switching losses in RB-IGBT are separated for transistor T2 and diode
D2. For 0 < ωt ≤ π, transistor T2 is still turned on; thus, for positive device currents, which
is forϕ < ωt ≤ π, the switching power losses occur on diode D2 due to its reverse recovery
Err. This phenomenon can be explained by the fact that in this angle range, the voltage
vT2 is switched between negative voltage −Vdc/2 and 0. For iT2 > 0 and π < ωt ≤ π+ϕ,
switching losses are generated in transistor T2. In Table 4, one can see the modes of
commutation (Mode A and Mode B), which correspond to modes distinguished by the
manufacturer of the IGBT module. For Mode A, losses are generated in transistors T1
and T4, but because the switching losses in T4 are the same as in T1, only losses in T1 are
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calculated. In mode A, switching energies Err are generated in diodes D2 and D3. In mode
B, switching energies are generated in transistors T2 (and T3) and diodes D4 and D1.

2.2.2. Characteristics of Switching Energies

All characteristics of switching energies Eon, Eoff and Err are presented in Figure 8 as
functions of the device current for both switching modes. These functions are given for
two temperatures TX = 25 and TX = 125 ◦C, the blocking voltage Vdcref = 300 V, the gate
resistors RG1 = RG4 = 2.2 Ω and RG2 = RG3 = 4.7 Ω and for the gate voltages ranging from
−15 to +15 V.
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Figure 8. Switching energies given as a function of device current for module 12MBI75VN120-50,
(a) in mode A, energies Eon and Eoff occur in transistors T1 and T4, reverse recovery energy Err occur
in diodes D2 and D3, (b) in mode B, energies Eon and Eoff occur in transistors T2 and T3, reverse
recovery energy Err occur in diodes D1 and D4.

Switching energy characteristics for transistors given in Figure 8 can be approximated
by quadratic functions as in Equation (9) and multiplied by a factor kRGXY representing the
effect of the gate resistance on switching losses. The approximating function coefficients
for device current from 0 to 75 A are listed in Table 5.

EYX,TX(iX) = kRGYX

(
aYX,TXi2X + bYX,TXiX + cYX,TX

)
f or Y = {on, off}, (9)

Table 5. Coefficients of approximating quadratic functions of transistor switching energies as in
Equation (9).

Device X Switching Y kRGXY TX aYX×10−9, J/A2 bYX×10−6, J/A cYX×10−6, J

T1

on
1.083

25 ◦C 75.0 14.3 10.0
on 125 ◦C 150.6 19.1 32.9

off
1.010

25 ◦C −107.1 39.2 44.2
off 125 ◦C −244.0 55.5 18.3

T2

on
1.055

25 ◦C 47.6 20.4 18.3
on 125 ◦C 95.2 22.5 38.3

off
1.020

25 ◦C 45.8 17.6 21.3
off 125 ◦C −25.6 23.2 42.1
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The approximation of diode reverse recovery energy characteristics by quadratic
functions does not provide satisfactory results; therefore, the cubic function (Equation (10))
is chosen for these characteristics. The coefficients aYX, bYX, cYX and dYX are obtained using
a fitting algorithm for device currents from 0 to 75 A.

ErrX,TX(iX) = kRGYX

(
arrX,TXi3X + brrX,TXi2X + crrX,TXiX + drrX,TX

)
, (10)

The approximating cubic function coefficients for reverse recovery energy losses in
diodes are listed in Table 6.

Table 6. Coefficients of approximating cubic functions of diode reverse recovery energies.

Device X TX kRGX arrX×10−9, J/A3 brrX×10−6, J/A2 crrX×10−6, J/A drrX×10−6, J

D2
25 ◦C

0.96
5.38 −0.88 54.1 −9.39

125 ◦C 6.31 −1.25 85.3 −22.12

D4
25 ◦C

1.00
8.84 −1.34 64.3 −10.30

125 ◦C 9.32 −1.39 68.5 −0.76

The temperature influence on switching energies in each device is considered by
approximation of each polynomial coefficient z = a, b, c and d by linear function obtained
from two points zYX,25 (for TX = 25 ◦C) and zYX,125 (for TX = 125 ◦C), which is given in
Equation (11).

zYX(TX) =
zYX,125 − zYX,25

125 ◦C− 25 ◦C
TX + zYX,25 −

zYX,125 − zYX,25

125 ◦C− 25 ◦C
25 ◦C (11)

2.2.3. Results of Switching Power Losses

The calculation of switching power losses in all four semiconductor devices is per-
formed using Equations (12)–(15). In the analysis, it is assumed that the junction temper-
ature of all switching devices is the same, the switching frequency is f S = 20 kHz, and
the blocking voltage Vb is equal to Vdc/2 = 370 V (while the blocking voltage for which
datasheet data is obtained is equal to Vdcref = 300 V). Total switching power losses in the
three-phase TNPC converter is the sum of switching losses of all devices multiplied by six
as in Equation (16).

PswT1(TT1) = fS
1

2π
Vdc/2
Vdcref

π∫
ϕ

{EonT1(iT1(ωt), TT1) + EoffT1(iT1(ωt), TT1)}dωt, (12)

PswT2(TT2) = fS
1

2π
Vdc/2
Vdcref

π+ϕ∫
π

{EonT2(iT2(ωt), TT2) + EoffT2(iT2(ωt), TT2)}dωt, (13)

PswD2(TD2) = fS
1

2π
Vdc/2
Vdcref

π∫
ϕ

{ErrD2(iD2(ωt), TD2)}dωt, (14)

PswD4(TD4) = fS
1

2π
Vdc/2
Vdcref

π+ϕ∫
π

{ErrD4(iD4(ωt), TD4)}dωt, (15)

Psw(T) = 6(PswT1(T) + PswT2(T) + PswD2(T) + PswD4(T)), (16)

The characteristic of switching power losses Equation (16), as a function of device tempera-
ture (with the assumption that all devices are exposed to the same temperature), is shown
in Figure 9a. As presented, the switching losses increase with the temperature increase
and are between 1.6 and 2.3 times higher than the conduction losses for IOrms = 20 A and
constitute 0.9 to 1.2 of conduction losses for IOrms = 50 A. Unlike conduction power losses,
switching losses (Equation (16)) always have a positive thermal coefficient, as shown in
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Figure 9b. The switching power losses are nearly linear functions of current compared to
quadratic functions for conduction losses.
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of temperature for the output current rms value IOrms = 20 and 50 A and (b) a function of the rms 
value of the output current for temperatures of 25 and 125 °C. 
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Figure 9. Switching power losses Psw of three-phase TNPC converter for the switching frequency
f S = 20 kHz, half of dc-link voltage Vdc/2 = 370 V and the phase-shift angle ϕ = π/2 given as (a) a
function of temperature for the output current rms value IOrms = 20 and 50 A and (b) a function of
the rms value of the output current for temperatures of 25 and 125 ◦C.

It is interesting that for small currents, switching losses converge to zero. This is
because the output current is assumed as sinusoidal in the presented analysis. In the real
converter, current ripples are present in the output current, increasing the switching losses
particularly close to zero current fundamental components. This phenomenon is presented
in the next section.

The distribution of switching losses among devices (Equations (12)–(15)) is presented
in Figure 10 for the rms value of the output current IOrms = 20 and IOrms = 50 A. This
distribution shows that the highest power losses occur in transistors T1 and T4, opposite to
the conduction losses where the highest losses occur in transistors T2 and T3.
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angle ϕ = π/2 and rms value of the output current equal to 20 and 50 A.
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2.3. DC-Link Capacitor Losses

In addition to power losses in semiconductor devices, this paper also attempts to
estimate the losses in both dc-link circuit capacitors Cdc1 and Cdc2, as in Figure 1. Capacitor
power losses PCdc are generated in two capacitors due to non-zero values of equivalent
series resistance RESR and are calculated from Equation (17).

PCdc = 2(Idcrms)
2RESR = 2(kICdc IOrms)

2RESR (17)

where Idcrms is the rms value of the capacitor current idc. The waveform of the capacitor
current idc1 is shown in Figure 11.
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Figure 11. Output currents iOA, iOB and iOC waveforms together with the capacitor current iCdc1

(The switching frequency is intentionally reduced to improve the readability of the capacitor
current waveform).

The rms value of the capacitor current depends on phase-shift angle ϕ, modulation
index ma, the switching frequency f, and output current rms value IOrms. Because the first
three listed parameters are set as constant in the paper, it is possible to present the capacitor
current rms value only as a function of the output current rms value. The simulation model
performed in GeckoCIRCUITS shows that the capacitor current rms value equals 9.75 A
when the output current is IOrms = 20 A. Because the rms value of the capacitor current
depends linearly on the output current, the ratio of these currents is always constant and
equals kICdc = 9.75 A/20 A = 0.488.

In the analysed converter, the equivalent series resistance of capacitor batteries, mea-
sured for a frequency of 20 kHz, is equal to RESR = 35 mΩ; thus, total capacitor power
losses can be calculated from Equation (17) and given as a function of the output current,
as is shown in Figure 12.

It is evident from Figure 12 that the power losses in capacitors account for less than
10% of the conduction losses or switching losses generated in semiconductor devices, and
these losses should not be ignored in the power loss analysis of the TNPC converter.

2.4. Total Power Losses

The sum of conduction and switching power losses together with capacitor losses
are referred to as total power losses. Because the analysed converter operates as a grid-
side converter, the modulation index ma is nearly constant and equal to ma = 0.86, and
its influence on power losses is out of the scope of this paper. The switching frequency,
a major parameter significantly impacting switching losses, is also set to f S = 20 kHz.
Dc-link voltage is Vdc = 740 V, satisfying the requirement for maVdc/2 = Um, where Um
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is the magnitude of the phase voltage. The capacitor power losses are present for a set
temperature of 25 ◦C because it is assumed that capacitors are located at a relatively large
distance from the IGBT module, which is a significant heat source inside the converter.
Total power losses as a function of temperature and current are shown in Figure 13.
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Figure 13. Total power losses in the three-phase TNPC converter are given as (a) a function of
temperature T and (b) a function of the rms value of the output phase current IOrms.

The distribution of the sum of power losses (Pcon + Psw + PCdc) generated in converter
components is presented in Figure 14.
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2.5. Per kVA Power Loss Ratio

For a converter operating with a large share of reactive power, such as the active power
filter, the classical definition of converter efficiency cannot be applied. This is because the
converter is connected to one power port, and there are no input and output powers as
other converters transfer active power between power ports. In this paper, power losses
are referenced to the apparent power as Equation (18), where S1 is the apparent power for
fundamental frequency f m, and Vll is the line-to-line voltage rms value.

Rloss =
Ptot

S1
=

Ptot(IOrms)√
3Vll IOrms

, (18)

The definition of the power loss ratio is similar to the one used for capacitors used
for reactive power compensation. These losses are a function of the output current rms
value and are shown in Figure 15. The value of the current equal to 75 A corresponds to the
apparent power of 52 kVA.
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3. Experimental Validation of Power Loss Analysis

The laboratory model of a three-phase TNPC converter has been tested to validate the
presented power loss analysis. This laboratory model is a part of a four-wire active power
filter with the neutral wire connected to the medium point of the dc-link capacitors [31]. The
converter is based on a three-phase TNPC IGBT module 12MBI75VN120-50, the parameters
of which are used in the analysis shown in Section 2. For the validation of the power loss
analysis, the following two experimental tests have been carried out:
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• Test of the TNPC converter supplied from dc power supply operating with a three-
phase inductor at the converter output;

• Test of the grid-connected TNPC converter;

Both tests are performed with a nearly constant modulation index ma = 0.86 with a
significant reactive component of the output current.

3.1. Power Losses of TNPC Converter Supplied from the DC Power Supply

The converter is supplied from two dc power supplies, each supplying variable voltage
Vdc/2. A three-phase inductor with a nominal inductance of LAC = 33 mH is chosen as a
load. The sum of the inductor resistance and the resistance of wires equals RLAC = 0.49 Ω
leading to the phase-shift angle ϕ = 87.6◦. Such a load has been chosen to carry out
experimental tests at Vdc/2 = 370 V with modulation index ma = 0.86, at which the output
current rms value equals a rated value IOrms = IOn = 20 A. The selected value of Vdc/2
equals the rated value of the tested active power filter. The switching frequency is 20 kHz.
The tests have been carried out with a WT5000 power analyser connected to the converter,
as shown in Figure 16. The photograph of the experimental setup is presented in Figure 17.
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Figure 16. Schematic of the experimental setup for power loss measurement in the three-phase 
TNPC converter supplied from dc power supplies and with three-phase inductors LAC at the con-
verter output. 

Figure 16. Schematic of the experimental setup for power loss measurement in the three-phase
TNPC converter supplied from dc power supplies and with three-phase inductors LAC at the
converter output.

The results of power loss measurements are collected in Table 7. During the test, five
input elements were used, two for the dc-side of the converter and three for the ac-side.
Power is measured at the input as Pin and the output as Pout, together with calculating the
power losses as their difference. Figure 18 shows the exemplary screen images from the
power analyser for the rms output current IOrms = 20 A.

Table 7. Results of power loss measurement of TNPC converter operating with 33 mH inductors.

vdc1, V vdc2, V idc1, A idc2, A Pin, W IOrms, A PO, W Ptot, W

202.90 201.09 0.580 0.638 241.83 11.056 156.69 85.15
254.04 251.52 0.703 0.774 366.96 13.852 245.68 121.28
305.07 302.10 0.827 0.913 518.79 16.649 354.74 164.07
356.04 352.55 0.956 1.056 700.15 19.451 485.50 214.65
370.24 370.59 1.003 1.109 768.90 20.338 534.20 234.70
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In Table 7, the measurement data for the dc-side are represented by two voltages,
vdc1 and vdc2, and currents idc1 and idc2. For the ac-side, due to the space limitation, only
one current IOrms is given, which is the average value of the three-phase currents. The
difference between these currents (Figure 18) results from using a three-phase three-limb
coupled inductor in which the lowest current occurs in the phase where the winding is
wound around the centre limb.

The measured power losses and theoretical total power losses, given for conditions
during the test, are shown in Figure 19 as a function of the output current.

The theoretical losses are presented for an assumed temperature T = 45 ◦C, the varying
blocking voltage, constant phase-shift angle ϕ = 87.6◦, and modulation index ma = 0.86.
The phase-shift angle is adopted from each phase active power measurement according to
Equation (19). The reason for the temperature T selection was that a forced cooling system
set this temperature as a steady-state thermal value.

ϕ = arctan
(
ωLAC

RAC

)
= arctan

 ωLAC

1
3

(
PA

I2
OArms

+ PB
I2
OBrms

+ PC
I2
OCrms

)
, (19)
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where PA, PB and PC are phase A, B and C output powers and IOArms, IOBrms and IOCrms
are corresponding rms values of phase currents. In Equation (19), it was assumed that in
each phase, the inductance of the inductor is the same and equal to LAC = 33 mH.

From Figure 19, it is evident that the measured losses are higher than the theoretical
ones. This is because, in the converter, additional power losses are generated in pcb wires
and connectors. The resistance of all wires and connections has been measured and is
estimated to be 4.5 mΩ for each converter phase. The characteristic of the theoretical total
power losses with additional losses is also shown in Figure 19. The correlation between
theoretical and measured losses is high. The presented measurements have been performed
for varying dc-link voltage, which did not correspond to the normal operation of the
converter. However, they reveal the correct dependence of losses on dc-link voltage.
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From Figure 19, it is evident that the measured losses are higher than the theoretical 
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Figure 19. Power losses in the three-phase TNPC converter supplying three-phase inductor
LAC = 33 mH, operating with a varying dc-link voltage and constant modulation index ma = 0.86.

3.2. Power Losses of Grid-Connected TNPC Converter

In this test, the TNPC converter has been connected to the three-phase 3 × 400 V
grid and operated as the active power filter. The dc-link voltage was kept constant at
Vdc/2 = 370 V. The converter was connected to the grid through the LCL filter with the
sum of inductances Lf = Lf1 + Lf2 = 750 + 150 µH = 900 µH and filter capacitance Cf = 4.4 µF.
During the measurement of power losses, the converter has been generating capacitive and
inductive reactive power. These power losses are compared with theoretical power losses
obtained by applying the method proposed in Section 2. For theoretical power losses, it is
assumed that the phase-shift angle ϕ = 90.0◦ and the modulation index ma = 0.86 for all
output current rms values IOrms ranging from =0 to 10 A. This assumption also neglects
the small capacitive current of the filter capacitor. In the analysis, the switching frequency
is considered equal to 20 kHz. The tests have been carried out with a power analyser
connected to the converter, as shown in Figure 20.
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Figure 20. Schematic of the experimental setup for power loss measurement in the three-phase TNPC
converter connected to the grid and operating as an active power filter.

The results of the power loss measurements are listed in Table 8, where power losses
for inductive output currents are given. The output voltage and current waveforms for
inductive reactive power generation at IOrms = 11.0 A are shown in Figure 21. The measure-
ment power losses of the three-phase TNPC converter are compared with the theoretical
power losses as given in Section 2 and are shown in Figure 22. Apart from generating
reactive power, the analysed converter also consumes active power in the form of power
losses. Nevertheless, the analysis assumes that the phase-shift angle ϕ = 90◦. The analysis
does not consider the slight change in modulation index ma with the output current change.
Thus, the modulation index is constant and equal to ma = 0.86. Due to a stable thermal
condition guaranteed by the cooling system, the temperature during the test was constant
and equal to T = 45 ◦C. This temperature was measured by an NTC resistor from the
IGBT module.

Table 8. Results of power loss measurement of the TNPC converter operating as the active power filter.

IOrms, A (Inductive) Ptot, W

11.00 120.2
9.90 110.7
8.80 100.4
7.71 90.3
6.61 80.3
5.53 70.2
4.45 60.4
3.40 49.7
2.40 38.7

As seen in Figure 22, the measured power losses are always higher than the theoretical
losses. This is particularly true for low rms values of the output current. The main reason
for such a difference in power losses is the switching frequency output current ripples. It
should be noted that during the first tests, when the converter was supplied from the dc
power supply, such output current ripples did not occur due to relatively large inductances
of the three-phase inductor, which were equal to LAC = 33 mH. Another reason for the
discrepancy between measurement data and theoretical results is the assumption that the
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device temperature is the same as the temperature of the module base. In a real module,
the device temperature is higher by several degrees Celsius.

Electronics 2022, 11, x FOR PEER REVIEW 21 of 26 
 

 

Table 8. Results of power loss measurement of the TNPC converter operating as the active power 
filter. 

IOrms, A (Inductive) Ptot, W 
11.00 120.2 
9.90 110.7 
8.80 100.4 
7.71 90.3 
6.61 80.3 
5.53 70.2 
4.45 60.4 
3.40 49.7 
2.40 38.7 

 
Figure 21. Exemplary waveforms of the three-phase TNPC converter output voltages and currents 
for rms value of the output current IOrms = 11.0 A and inductive reactive power generation. 

Rms value of the output current, IOrms, A

0 2.0 4.0 11.0

40

60

80

140

To
ta

l p
ow

er
 lo

ss
es

 o
f t

hr
ee

-p
ha

se
 N

PC
-T

 co
nv

er
te

r

20

100

6.0 8.0 10.0

120
Theoretical power losses Ptot

Ptot + 3·4.5 mΩ·IOrms2

Measured power losses

 
Figure 22. Power losses in the three-phase TNPC converter generating a reactive current. 

Figure 21. Exemplary waveforms of the three-phase TNPC converter output voltages and currents
for rms value of the output current IOrms = 11.0 A and inductive reactive power generation.

Electronics 2022, 11, x FOR PEER REVIEW 21 of 26 
 

 

Table 8. Results of power loss measurement of the TNPC converter operating as the active power 
filter. 

IOrms, A (Inductive) Ptot, W 
11.00 120.2 
9.90 110.7 
8.80 100.4 
7.71 90.3 
6.61 80.3 
5.53 70.2 
4.45 60.4 
3.40 49.7 
2.40 38.7 

 
Figure 21. Exemplary waveforms of the three-phase TNPC converter output voltages and currents 
for rms value of the output current IOrms = 11.0 A and inductive reactive power generation. 

Rms value of the output current, IOrms, A

0 2.0 4.0 11.0

40

60

80

140

To
ta

l p
ow

er
 lo

ss
es

 o
f t

hr
ee

-p
ha

se
 N

PC
-T

 co
nv

er
te

r

20

100

6.0 8.0 10.0

120
Theoretical power losses Ptot

Ptot + 3·4.5 mΩ·IOrms2

Measured power losses

 
Figure 22. Power losses in the three-phase TNPC converter generating a reactive current. Figure 22. Power losses in the three-phase TNPC converter generating a reactive current.

It should be noted that similar power loss characteristics can be obtained for the
generation of capacitive reactive power. In the case of using different design parameters
of the active power filter, i.e., with the different switching frequency, dc-link voltage, and
temperature, the proposed power loss analysis can also be applied.
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4. Conclusions

This paper presents a detailed analysis of power losses of a three-level T-type NPC
converter. The study is performed thoroughly; however, the focus is on the converter
operation as an active power filter. The accurate recognition of power losses allows the
converter designer to carry out the proper steps during the converter designing stages,
which, among others, are: setting the switching frequency, designing the cooling system,
and designing the gate drivers.

In the paper, the detailed power loss analysis is based on characteristics provided
by the IGBT module manufacturer. Obtained power losses are given as functions of the
rms value of the output current and temperature. However, they can be extended to other
parameters influencing them. Power losses are divided into conduction and switching
losses with a given distribution among all semiconductor devices of the T-NPC converter.
This division of power losses is essential for designers of IGBT modules and converters
because it is possible to find the semiconductor device with the highest power losses for
different operating conditions. In the analysed converter operating as the active power
filter, the most significant share of losses occurs in transistors T2 and T3. Together with
losses in diodes D2, they constitute nearly half of the total power losses. These even shares
of power losses are a very advantageous feature of the converter.

The measured power losses agree with the losses obtained from the analysis. In the
first test, the converter output current has been changed from 10 to 20 A. The difference
between the analytical results and measured power losses ranged from 5% to 9%. It is
believed that such a good correlation between the measured and analysed results is due to
the very small output current ripples in the test, which are neglected in the analysis.

In the second test of the TNPC converter operating as an active power filter, the power
losses from the analysis were consistent with the measurements, but better results were
obtained for operation at higher currents, close to 11 A. For lower currents, the compliance
is lower. This is believed to be due to the presence of current ripples for lower currents
power losses that are not the same as for sinusoidal currents.

The TNPC converter has been tested with the rms values of the current ranging from
0 to 20 A when it was supplied from the dc power supply and from 0 to 10 A when it was
connected to the grid. For higher currents, the discrepancy between power losses observed
during the experiments and theoretical ones can be explained by the existence of higher
component junction temperatures than the single temperature measured on the module
and the existence of output current ripples.

The future works on presented detailed power loss analysis can be extended with
the thermal model of the IGBT module. In such an extended model, the temperatures of
individual semiconductor devices are not the same and are higher than the temperature of
the module base plate.

It should be noted that the detailed power loss analysis can also be applied to other
converter topologies. In such a case, the modification of some parameters is required that
relate to different conduction angles, switching angles and modulation functions.
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Nomenclature

aYX, bYX, cYX
Parameters of quadratic functions approximating switching energy
characteristics of device X for the Y type of loss

arrX, brrX, crrX, drrX
Parameters of cubic functions approximating reverse recovery energy
characteristics of diodes

anX, bnX
Parameters of linear approximation of exponent of power function
approximating the normalised output characteristic of device X

aX0, bX0 Parameters of linear approximation of device X threshold voltage VX0
aXn, bXn Parameters of linear approximation of device X nominal voltage VXn
EonX Turn-on switching energy of device X
EoffX Turn-off switching energy of device X
ErrX Reverse recovery energy in diode X
f m Fundamental frequency, f m = 50 Hz
f S Switching frequency
Idcrms Rms value of dc-link capacitor current
Im Output current amplitude
In Device nominal current, In = 75 A
idc1 (t), idc2 (t) Dc-link capacitor currents
iO (ωt) Output current inωt domain, iO (ωt) = Im sin (ωt − ϕ))
iOA, iOB, iOC Phase A, B or C output currents
IOrms Output current rms value
iX (t) Current of device X

kICdc
Constant coefficient revealing the relation between the rms values of
capacitor current and output current

kRGXY
Constant coefficient representing the effect of the gate resistance on Y type
of switching energy losses for device X

LAC Load inductance in test 1
ma Modulation index

nX
Exponent of a power function approximating normalised output
characteristic of device X

PCdc Power losses in both dc-link capacitors
Pcon Conduction power losses in a three-phase converter
PconX Conduction power losses in device X
Pin, PO Input (dc-link) and output (ac side) powers during test 1
Psw Switching power losses in a three-phase converter
PswX Switching power losses in device X
PtotX Total power losses in device X
Ptot Total power losses in the three-phase converter
pX (t) Instantaneous power of device X due to conduction
RESR Dc-link capacitor equivalent resistance
RLAC Resistance of the load inductor and wires during test 1
RG Gate resistance in transistor gate driver circuit
Rloss Per kVA power loss ratio
S1 Converter apparent power for fundamental harmonic
SM (ωt) Modulating signal, SM (ωt) = ma sin (ωt)
SX (t) Modulation function of device X
t Time
T Temperature of converter devices
TX Junction temperature of device X
Um Amplitude of the fundamental component of output phase voltage
Vb Blocking voltage during the switching, in TNPC converter Vb = Vdc/2
VCES Device maximum blocking voltages, VCES = 1200 V (T1, T2)
Vdc Dc-link voltage
vdc1, vdc2 Time varying dc-link capacitor voltages
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vX (t) Voltage across device X
VX0 Threshold voltage of device X
VX0,25, VX0,125 Threshold voltage of device X at temperatures 25 and 125 ◦C
VXn Nominal voltage of device X at nominal current In
VXn,25, VXn,125 Nominal voltage of device X at temperatures 25 and 125 ◦C
X Device symbol, X = {T1, T2, T3, T4, D1, D2, D3, D4}
Y Switching type symbol, Y = {on, off, rr}

zYX (T)
General parameters of approximating functions of switching energies
used for representing temperature dependence of coefficients

α1 Angle at which device starts conducting modulated current
α2 Angle at which device stops conducting modulated current
α3 Angle at which device starts switching the modulated current
α4 Angle at which device stops switching the modulated current
ω Angular frequency,ω = 2πf m

Appendix A Design Parameters of TNPC Converter

The values of the design parameters of the TNPC converter laboratory model are
listed in Table A1.

Table A1. Values of design parameters of the TNPC converter laboratory model.

Parameter Name Value

Vll Rated line-to-line voltage rms value 400 V
IOn Rated phase current rms values 10 A, 20 A
Vdc Dc-link rated voltage 740 V

Vdc1, Vdc2 Dc-link rated voltage across single dc capacitor 370 V
f m Fundamental frequency 50 Hz
f S Switching frequency 20 kHz
Lf1 Converter side filter inductance 0.75 mH
Lf2 Grid side filter inductance 0.15 mH
Lf The sum of filter inductances 0.90 mH
Cf Filter capacitance 4.4 µF

Cdc1, Cdc2 DC-link capacitor capacitance 1.88 mF
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