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Abstract: In medical applications, medical image fusion methods are capable of fusing the medical
images from various morphologies to obtain a reliable medical diagnosis. A single modality image
cannot provide sufficient information for an exact diagnosis. Hence, an efficient multimodal medical
image fusion-based artificial intelligence model is proposed in this paper. Initially, the multimodal
medical images are obtained for an effective fusion process by using a modified discrete wavelet
transform (MDWT) thereby attaining an image with high visual clarity. Then, the fused images are
classified as malignant or benign using the proposed convolutional neural network-based hybrid
optimization dynamic algorithm (CNN-HOD). To enhance the weight function and classification
accuracy of the CNN, a hybrid optimization dynamic algorithm (HOD) is proposed. The HOD is the
integration of the sailfish optimizer algorithm and seagull optimization algorithm. Here, the seagull
optimizer algorithm replaces the migration operation toobtain the optimal location. The experimental
analysis is carried out and acquired with standard deviation (58%), average gradient (88%), and
fusion factor (73%) compared with the other approaches. The experimental results demonstrate that
the proposed approach performs better than other approaches and offers high-quality fused images
for an accurate diagnosis.

Keywords: multimodality image fusion; artificial intelligence; discrete wavelet transform; cnn;
optimization

1. Introduction

Image fusion represents the procedure of combining the image diversity obtained by
the different modalities. It is widely utilized in the diagnosis of the disease, surgery, and
treatment planning. The various classes such as bones, organs, or tissues are reflected in
several medical images with several modalities. The fusion process in medical application
is utilized for image correctness and detection as well as assessment of medical issues by
preserving and enlightening the relevant attributes [1]. In the medical field, acomputed
tomography (CT) image observes thick frameworks such as bones when compared to
magnetic resonance imaging (MRI) in the break examination. MR imaging provides
information linked to the soft tissues for reflecting the absorbed information, progression,
such as single-photon emission CT (SPECT), and positron emission tomography (PET).
PET offers highly sensitive images and SPECT represents the nuclear imaging method used
for exploring the flow of blood in organs as well as tissues [2]. The major application of
this fusion is for extracting the medical information from various sensors that is normally
not visible in the image form. Some biomedical sensors like ultrasound, PET, MRI, X-ray,
and CT provide clinical information usingthe reflection of the human body organs [3].
To obtain proper information regarding perfect detection, clinicians are usually required
to merge various kinds of medical images from an identical location to detect the causes
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of a patient’s issues. Image fusion methods offer an efficient scheme for resolving these
problems. Medical image fusion methods fuse the multi-modality medical images for
accurate as well as reliable medical detection [4].

Image fusion is classified into three levels, namely, feature-level, decision level and
pixel-level. Feature level fusion realizes the feature specifications and their dissimilarities
such as color, shape, texture, edge, etc. and integrates the dissimilarities that depend upon
the feature resemblance [5]. In feature level fusion, the features are removed distinctly
from every source image. Decision level fusion is utilized to combine the higher-level
outcomes from the various algorithms to obtain the final decision for the fusion procedures.
Every image is first fused independently and then provided to the fusion process. Decision
level fusion divides the pixels from the various source images, which depends upon the
extracted features, and gets the decision for the suitable class label for every pixel [6].
Pixel level fusion is utilized to conserve the spatial features of the source image pixels.
Hence, numerous pixel level fusion techniques have been offered recently. Pixel-level
fusion is classified into two types of methods depending on their modes, such as the
transform domain-based and the spatial domain-based image fusion methods. However,
the image fusion is developed through both the transform domain-based as well as the
spatial domain-based methods [7].

Spatial domain-based fusion methods utilize local features such as the standard devia-
tion, spatial frequency, and gradient of the source images. The normally utilized techniques
in the spatial domain methods contain intensity hue saturation (IHS) and principal com-
ponent analysis (PCA). The fused images achieved via these techniques generally suffer
from high spatial distortion and low SNR. In the transform domain schemes, the source
images are decomposed into expressive sub-bands to distinguish the salient attributes such
as edges and sharpness of the image. The standard transform domain fusion methods
depend upon multi-resolution analysis (MRA) [8–10]. In medical applications, medical
image fusion methods are capable of fusing the medical images from various morphologies
to obtain reliable medical diagnosis. The single modality image cannot provide sufficient
information for exact diagnosis. Hence, this paper proposes multimodality medical image
fusion based on a CNN with a hybrid optimization dynamic (HOD) algorithm in the
discrete wavelet transform. Initially, the multimodal medical images are transmitted into
the MDWT and optimization models are utilized to obtain the fused images. The fused
images are then classified into malignant or benign using a CNN-HOD classifier. The main
purpose of the HOD algorithm is to improve classification accuracy. The experimental
results reveal that the proposed method performs better than the existing multimodality
medical image fusion methods. The major contribution of the paper is as follows.

A modified discrete wavelet transform (MDWT) is utilized to decompose the images
into low- and high-frequency sub-bands.

The fused images are classified as malignant or benign using the proposed convolu-
tional neural network-based hybrid optimization dynamic algorithm (CNN-HOD).

The proposed approach is compared with various other image fusion-based techniques
to evaluate the performance of the system.

2. Review of Biomedical Imaging Process

Yadav et al. [11] proposed the hybrid discrete wavelet transform and principal compo-
nent analysis (PCA) techniques (DWT-PCA) for the process of medical image fusion using
image modalities such as MRI, PET, SPECT, and CT. Poor image quality and inconsistent
performances with minimum efficiency was considered as the significant drawback of
this approach. Subbiah et al. [12] proposed the enhanced monarch butterfly optimization
algorithm and discrete shearlet transform with restricted Boltzmann machine (EMBO-DST
with RBM) approach for multimodal medical image fusion. The medical image fusion was
achieved using four sets of benchmark database images (represented as D1, D2, D3, and D4),
consisting of the MRI, PET, SPECT, and CT images. This technique faced a few difficulties
during the implementation process and failed to perform under real-time applications.
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Wang et al. [13] proposed a convolutional neural network for fusing the pixel activity
information of input source images to understand the creation of weight maps. Eight vari-
ous image fusion methods were utilized, fusing images such as MRI, CT, T1, T2, PET, and
SPECT. The major drawback of this method was that it was difficult to fuse infrared-visible
and multi-focus image fusion. Parvathy et al. [14] proposed the discrete gravitational search
algorithm (DGSA) with a deep neural network to improve the classification accuracy. The
proposed method utilizes four datasets (I, II, III, and IV) that include the modalities such as
CT, SPECT, and MRI. The performance of the proposed method was evaluated using mea-
sures such as sensitivity, accuracy, precision, specificity, fusion factor, and spatial frequency.
The major difficulty of this method was implementing it in real-time applications.

Tan et al. [15] proposed a pulse coupled neural network in a non-subsampled shearlet
transform approach to improve the fusion quality of medical images. Above 100 pairs of
multimodal medical images were obtained from the Whole Brain Atlas dataset in which
the modalities consist of MRI, PET, and SPECT. Li et al. The authors of [16] proposed
a Laplacian re-decomposition method (LRD) to enhance the multimodal medical image
fusion quality. This method utilized 20 pairs of multimodal medical images collected
from Harvard University medical library. Arif et al. [17] proposed a novel method for
fusion of multimodal medical images that depends on curvelet transform as well as a
genetic algorithm (GA). The dataset was achieved at CMH Hospital Rawalpindi from
modalities such as CT, MRI, PET, MRA, and SPECT. The major drawback of this method
was determining the decomposition level. Kaur et al. [18] decompose an image using
non-subsampled contourlet transform with multi-objective exception as well as differential
evolution for the multimodality medical image fusion. The major drawback of this method
was fusing the remote sensing images.

Hu et al. [19] proposed anew fusion method that integrates separable dictionary
optimization with a Gabor filter in the non-subsampled contourlet transform (NSCT)
domain. The proposed method was tested on 127 groups of brain anatomical images
from the Whole Brain Atlas medical image database with modalities such as MRI and
CT images. The major drawback of this method was the greater time consumption. Xia
et al. [20] proposed a parameter-adaptive pulse-coupled neural network (PAPCNN) method
to obtain a better fusion effect. The proposed method utilized 70 pairs of source images
collected from the Whole Brain Atlas of Harvard Medical School [13] and the Cancer
Imaging Archive (TCIA). The medical images were fused using modalities such as CT, MRI,
T1, T2, PET, and SPECT. Table 1 depicts a summary of related works on multimodality
medical image fusion.

Shehanaz et al. [21] suggested optimum weighted average fusion (OWAF) with a
particle swarm algorithm (PSO) to enhance the performance of multimodal mapping. The
multi-modality imaging pairs, namely, MR-CT, MR-SPECT, and MR-PET, were used for
the evaluation of the OWAF method. The simulation setup was carried out using a public
image dataset that contains normal and diseased brain images (http://www.med.harvard.
edu/AANLIB/, accessed on 18 January 2022). The result showed that the OWAF-PSO
method achieved greater fusion qualities, but it took more computational time to perform
the task.

To enhance the quality of fusion images, Dinh et al. [22] introduced a sum of local energy
function with a Prewitt compass operator (SLE-PCO) along with an equilibrium optimizer
algorithm (EOA). In this, SLE-PCO increases the contrast of the image and EOA prevents
the loss of significant data. The performance of this approach was validated using MRI-PET
medical images taken from the website http://www.med.harvard.edu/AANLIB/ (accessed
on 18 January 2022). This approach efficiently improves low contrast medical images and
conserves detailed layers of data, but the drawback was high computational complexity.

http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
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Table 1. Summary of related works regarding multimodal medical image fusion.

Authors Fusion Schemes Modality Datasets Metrics Cons

Yadav et al. [11] Hybrid DWT-PCA MRI, PET,
SPECT, CT

Online
repository datasets

EN, SD, RMSE,
and PSNR

Low image quality,
performance was
not consistent so

low efficiency

Subbiah et al. [12] EMBO-DST with
RBM model

MRI, PET,
SPECT, CT

Four sets of
database images

(represented as D1,
D2, D3, and D4)

SD, EQ, MI, FF, EN,
CF and SF

Implementation
was complex

Wang et al. [13] CNN
MRI, CT, MRI, T1,

T2, PET,
and SPECT

Online eight
fused images

TE, AB/F, MI,
and VIF

Difficult to fuse
infrared-visible
and multi-focus

image fusion.

Parvathy et al. [14] DNN with DGSA CT, SPECT,
and MRI

Four datasets (I, II,
III and IV)

Fusion factor and
spatial frequency

Failed to
execute in real-

time applications

Tan et al. [15] PCNN-NSST MRI, PET,
and SPECT

100 pairs of
multimodal

medical images
from the Whole

Brain Atlas dataset

Entropy (EN),
standard deviation
(SD), normalized

mutual
information (NMI),

Piella’s structure
similarity (SS), and
visual information

fidelity (VIF)

Fused image
quality was poor

Li et al. [16]
Laplacian

re-decomposition
method (LRD)

MRI, PET,
and SPECT

20 pairs of
multimodal

medical images
collected from

Harvard
University

medical library

Standard deviation
(STD), mutual

information (MI),
universal quality
index (UQI), and

tone-mapped
image quality
index (TMQI)

Difficult to propose
more rapid and

active methods of
medical image
enhancement

and fusion

Kaur et al. [18] NSCT MRI, CT

Multi-modality
biomedical images
dataset is obtained

from Ullah et al.
(2020) [5]

Fusion factor,
fusion symmetry,

mutual
information,

edge strength

Difficult to fuse the
remote

sensing images

Hu et al. [19]

Analytic separable
dictionary learning
(ASeDiL) method
in NSCT domain

CT and MRI

127 groups of brain
anatomical images

from the Whole
Brain Atlas

medical
image database

Piella–Heijmans’
similarity based

metric QE, spatial
frequency (SF),

universal image
quality index

(UIQI), and mu-
tual information

Time consumption
was more

Xia et al. [20]

Parameter-
adaptive

pulse-coupled
neural network

(PAPCNN) method

CT, MRI, T1, T2,
PET, and SPECT

Database from the
Whole Brain Atlas

of Harvard
Medical

School [13] and the
Cancer Imaging
Archive (TCIA)

Entropy (EN),
edge information

retention (QAB/F),
mutual

information (MI),
average gradient

(AG), space
frequency (SF),
and standard

deviation (SD)

Implementation
was complex
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Table 1. Cont.

Authors Fusion Schemes Modality Datasets Metrics Cons

Shehanaz et al. [21]

Optimum
weighted average

fusion (OWAF)
with particle

swarm
algorithm (PSO)

MR-CT,
MR-SPECT,

and MR-PET

Brain images
(http://www.med.

harvard.edu/
AANLIB/)
accessed on

18 January 2022

Standard deviation
(STD), mutual

information (MI),
universal quality

index (UQI),

Required more
computational

time to perform
the task

Dinh et al. [22] SLE-PCO
with EOA

MRI-PET
medical images

http://www.med.
harvard.edu/

AANLIB/
accessed on

18 January 2022

SD, EQ, MI, FF, EN,
CF, and SF

Computational
complexity
was high

Dinh et al. [23] FRKCO and MPA MRI-PET
medical images

http://www.med.
harvard.edu/

AANLIB/
accessed on

18 January 2022

Standard deviation
(STD), mutual

information (MI),
universal quality
index (UQI), and

tone-mapped
image quality
index (TMQI)

Information
entropy was low

Dinh et al. [23] demonstrated a three-scale decomposition (TSD) technique, a rule
base on local energy function using a Kirsch compass operator (FR-KCO) and a marine
predators algorithm (MPA) to enhance image details, preserve significant data, and increase
image quality, respectively. The MRI-PET medical images were utilized from http://www.
med.harvard.edu/AANLIB/ (accessed on 18 January 2022) to determine the performance
of the approach. This method achieved higher fusion performance while the limitation was
low information entropy.

3. Proposed Methodology

The block schematic of the proposed multimodality medical image fusion is depicted
in Figure 1. The information source is fused from a single source of various interval
times. In the first stage, the image is fused by deliberating the modified discrete wavelet
transform. The input images are CT, MRI, PET, and SPECT images. These images are
obtained from online or near the scan centers. To achieve the maximum image fusion level,
the coefficient of the transform uses the modified wavelet transform. In the next phase,
the fused coefficients of MDWT are given as an input to the convolutional neural network
(CNN) classifier. The accuracy of the classifier is enhanced by using the hybrid optimization
dynamic (HOD) algorithm. The fused image is classified into malignant or benign by the
CNN with the HOD. The HOD is utilized to enhance the classification accuracy and also
utilized in optimizing the weights of the CNN.

Figure 1. Block schematic of the proposed multimodal medical image fusion.

http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
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3.1. Shearlet Transform

The shearlet transform (ST) occurred as the dominant system through multiscale
geometric analysis (MGA) provided with the elegant mathematical form. It is locally multi-
directional, well-localized, shift-invariant, multiscale, and ideally sparse. The combined
dilation for the affine system is expressed as

νj, l(y) = |DETAM|
j
2 ν
(

sK J jy− n
)

: j, k,∈ N2 (1)

The anisotropic matrix AM controls the shearlet scale and the shear matrix s controls
the direction. The shift parameters, direction, and scale are denoted by l, k, and j. The
invertible matrices are s and AM; it is expressed as

AM =

∣∣∣∣∣ e 0

0 e
j
2

∣∣∣∣∣ and s =
∣∣∣∣ 1 S

0 1

∣∣∣∣ (2)

The below equation expresses the shearlet function and it is computed as

ν̂(0)(γ) = ν(0)(γ1, γ2) = ν̂1(γ1)ν̂2

(
γ2

γ1

)
(3)

The Fourier transform of ν is represented by ν̂.

∑
j≥0

∣∣∣ν̂1

(
2−2jη

∣∣∣2 = 1, |η| ≥ 18 (4)

For each j ≥ 0, ν2 is

2j−1

∑
l=−2j

∣∣∣ν̂2

(
2jη − l

)∣∣∣2 = 1, |η| ≤ 1 (5)

The above Equations (4) and (5) concluded as

∑
j≥0

2j−1

∑
l=−2j

∣∣∣ν̂0(η(AM )
−j
0 s−l

0

∣∣∣2 = ∑
j≥0

2j−1

∑
l=−2j

∣∣∣∣ν̂2

(
2k γ2

γ1

)∣∣∣∣ (6)

From the above equations, the discrete NSST is acquired.

3.2. Modified Discrete Wavelet Transform

The input images are decomposed by the modified discrete wavelet transform (DWT).
The 1D examination is modified by the multi-resolution examination, which is based on
two-dimensional wavelet transform. If φ(a) and η(a) represent the one-dimension scale
function and the wavelet function, correspondingly, the subsequent one 2-D scale function
as well as three 2-D wavelet functions consist of the foundation of 2-D wavelet transform.

φ(a, b) = φ(a)φ(b) (7)

ηU(a) = φ(a)η(b)
ηG(a) = η(a)φ(b)
ηE(a) = η(a)φ(b)

 (8)

The L-level decomposition of the image follows F(a, b), and the approximation as well
as the three detail transform coefficients are computed.

XMF(a, b) = 〈F(a, b), φM(a, b)〉 (9)
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EU
MF(a, b) =

〈
F(a, b), ηU

M(a, b)
〉

(10)

EG
MF(a, b) =

〈
F(a, b), ηG

M(a, b)
〉

(11)

EE
MF(a, b) =

〈
F(a, b), ηE

M(a, b)
〉

(12)

The procedure for using single level wavelet decomposition is as follows:

1. Obtain the original source image as well as the secret image and then obtain the red
(R) plane distinctly and establish the single level 2-DDaubechies DWT decomposition
on the input source image and the secret image.

2. Let us assume the embedding coefficient is represented as x, then the embedding
coefficient value is extended from 0 to 1, the coefficient of x, and there is a huge rise in
robustness and a small rise in transparency.

3. The approximation coefficient is established by utilizing the expression of the hori-
zontal coefficient, diagonal coefficient, and vertical coefficient. The approximation
coefficient of the inserted image = (1− x)∗ approximation coefficient of the input
image +x∗ approximation coefficient of the secret image. In addition, asimilar expres-
sion is utilized to compute the diagonal coefficient, horizontal coefficient, and vertical
coefficient of the inserted image.

4. Establish the single level 2-D Daubechies inverse DWT decomposition on the com-
puted horizontal, diagonal, approximation, and vertical coefficients to obtain the
horizontal, diagonal, approximation, and vertical coefficients of the R plane of the
integrated image.

5. The above declared scheme is completed for the blue (B) plane and green (G) plane
disjointedly and integrates the blue (B), green (G) and red (R) plane to achieve the
integrated image.

3.3. CNN-HOD-Based Image Fusion Process

Image fusion represents the procedure of combining the diverse images obtained
via the different modalities. During the image fusion process, the transform coefficients
obtained from MDWT are given to the CNN-HOD technique to classify the fused images
into malignant or benign. The HOD is utilized to enhance the classification accuracy and
also to optimize the weights of the CNN. A basic description based on the CNN and HOD
optimization algorithm is given in the following section.

3.3.1. Convolutional Neural Network (CNN)

The convolutional neural network (CNN) has had enormous growth in various fields
of application for solving problems concerning the classification of images [24]. CNN
architecture contains a convolutional layer, pooling layer, and SoftMax layer.

Convolutional Layer

The proposed convolutional neural network is comprised of three convolutional layers.
The first convolutional layer is utilized to remove numerous low-level features from the
input image, namely, edges, corners, and lines. The other two layers of the convolutional
network achieve high-level attributes. The attributes of every output map integrates
numerous input maps via the convolutions. Normally, the output is specified using the
subsequent formula:

am
k = f

(
∑

j∈Mk

am−1
j ∗ lm

jk ∗ vm
k

)
(13)

where m indicates the mth layer, ljk indicates the convolutional kernel, vk indicates the bias,
and Mk indicates the input maps sets. The detailed CNN’s implementation utilizes the
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sigmoid function, and additive bias is also employed in it. For instance, the unit value at
the location (a, b) in the map of kth feature and in the jth layer is indicated as

yab
jk = sigmoid

vjk +

Pj−1

∑
p=0

Qk−1

∑
q=0

zpq
jk y(a+p)(b+q)

(i−1)

 (14)

From the above equation, sigmoid (.) represents the sigmoid function, the feature map
bias is indicated as vjk, Pj and Qk represent the kernel height and width, and zpq

jk represents
the value of the kernel weight at the location (p, q) associated to the (j, k) layer. The CNN
parameters such as vjk and zpq

jk represent the kernel weight.

Pooling Layer

A pooling layer for the sub-sampling layer in a CNN is employed to decrease the
variance; it is used to evaluate the highest value over the image of the definite attribute.
The pooling layer plays a significant role in the peripheral blood cells classification and
recognition. First, the probability p is evaluated for every region k with respect to the below
Equation (15).

pj =
αj

∑l∈Rk
αl

(15)

The pooling region is represented as Rk in the region k of the feature map and the
index of every element is represented as j inside the region. The advantages of this type of
implementation are the pooling layer cannot produce the convergence speed of the CNN
and also increases the capability of generalization.

SoftMax Layer

A SoftMax layer is employed in the multi-class classification problem. The function of
the hypothesis obtains the form:

gφ(a) =
1

1 + e−φT a
(16)

The major objective of this layer is to train φ to decreasethe cost function L(φ).

L(φ) = − 1
n

[
n

∑
j=1

m

∑
k=1

m
{

b(j) = k
}

log p(b(j) = k|a(j); φ)

]
(17)

The database is trained using
{
(a(1), b(1)), . . . , (a(n), b(n))

}
, bj ∈ {1, 2, . . . , l}. The

probability of the classification of blood cells a as group k in the softmax layer is:

p(b(j) = k|a(j);φ) =
eφT

k a(j)

∑l
m=1 eφT

ma(j) (18)

The supervised learning approach is utilized for the network training to learn. The
internal demonstration replicates the likeness between the training samples. The image
attributes are visualized by averaging the patches of the images, which are interrelated by
the neurons with a stochastic response in an upper layer. In the classification section, there
are two layers, namely, the dense layer and dropout layer. The dense layer is also termed as
the fully connected layer, which consists of various neurons or units, whereas the last dense
layer consists of several neurons, similar to the number of kinds. After the completion of
every dense layer, the activation layer is additionally added. The activation function is
employed for the last dense layer output, which is entirely dissimilar to that employed
for another dense layer in which the sigmoid or SoftMax function is normally used. A
SoftMax layer is used in the multi-class classification process to allocate the probabilities of



Electronics 2022, 11, 2124 9 of 18

the decimal to every kind, and the target kind may have the probability of a high value.
The SoftMax of the jth output unit is numerically evaluated by the following equation.

b̂j =
eaj

∑M
j eaj

f or j = 1, 2, 3, . . . , M (19)

From the above equation, aj indicates the output of the jth dimension. The number
of dimensions is represented by M, which is equal to the category numbers, and the
probability linked with the jth category is indicated as b̂j. After the prediction is made, the
sample is allocated to the kind which has the probability of a high value as follows:

b̂j = max
j∈[1,M]

b̂j (20)

The sigmoid function is employed in the tasks of binary classification. It receives the
values of any range of numbers and returns the value that falls in the interval of [0, 1]. This
sigmoid function is expressed by the following equation:

Sigmoid(x) =
1

1 + e−a (21)

Dropout layers are the regularization methods implemented only in the network
training to forestall it from the problem of overfitting by dropping the subset of the entered
neurons and their links momentarily from the last dense layer. The dense layers are
normally pursued by the dropout layer, apart from the last dense layer, which generates
the kind-particular probabilities. Here, a ResNet model is used as a pre-trained model for
the classification of the CNN. The accuracy of the classifier is improved by using the hybrid
optimization dynamic algorithm.

3.4. Hybrid Optimization Dynamic (HOD) Algorithm

The HOD combines the sailfish optimizer algorithm and the seagull optimization
algorithm. The HOD algorithm (see Figure 2) is formed by using both the algorithms. In
the sailfish optimizer algorithm, the elitism operation is replaced by the migration operation
in the seagull optimization algorithm because the elitism contains the copy of the unaltered
fittest solution for the next generation. However, in the seagull optimization algorithm,
the migration operation is utilized for finding the fittest solution [25]. In the process of
migration, the seagulls are moved as groups. The beginning locations of the seagulls are
dissimilar to avoid collisions with each other. In a particular group, the seagulls move in
the direction of the optimal seagull.

3.4.1. Sailfish Optimizer Algorithm

The major motivation of the sailfish optimizer algorithm is described in this part. Hence,
the proposed algorithm as well as the numerical description is deliberated as follows.

Initialization

The sailfish optimizer algorithm represents the population-based metaheuristic algo-
rithm. In this method, the sailfish is assumed as the candidate solutions, and the location
of the sailfish is represented as variables in the search space. Therefore, the population
over the solution space is arbitrarily created. The selfish search in one, two, three, or hyper
dimensional spaces via their variable location vectors. In the e-dimensional search space,
the jth member at the lth search contains the present location S f j,l ∈ <(j = 1, 2, . . . , n). The
matrix sailfish is regarded for saving the location of the entire sailfish. Hence, the locations
represent the variants of the entire solution through the process of optimization.
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Figure 2. Flowchart of HOD algorithm.

S flocation =


S f1,1 S f1,2 · · · S f1,e
S f2,1 S f2,2 · · · S f2,e

...
...

...
...

S fn,1 S fn,2 · · · S fn,e

 (22)

where n represents the sailfish numbers, e represents the variable numbers, and S f j,k
represents the value of the kth dimension of the jth sailfish. Additionally, the fitness of
every sailfish is evaluated via the computation of the fitness function as follows:

Sail f ishFitnessValue = F(sail f ish) = F(S f1, S f2, . . . , S fn) (23)

Every sailfish is computed using the following matrix that describes the fitness value
for the entire solution:

S f f itness =


F(S f1,1 S f1,2 · · · S f1,e)
F(S f2,1 S f2,2 · · · S f2,e)

...
...

...
...

F(S fn,1 S fn,2 · · · S fn,e)

 =


FS f1

FS f1
...

FS fn

 (24)
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where n represents the sailfish numbers, S f j,k represents the value of the kth dimension
of the jth sailfish, F computes the fitness function, and S f f itness stores the fitness value,
which returns the fitness value for every sailfish. The first row of the S flocation matrix
is transmitted to the fitness function, and the output represents the fitness value of the
respective sailfish in the S f f itness matrix.

The sardine group is another important incorporator in the sailfish optimizer algorithm.
It is presumed that the sardine group is swimming in the search space. Hence, the sardine
location and its fitness values are employed as follows.

Slocation =


S1,1 S1,2 . . . S1,e
S2,1 S2,2 . . . S2,e

...
...

...
...

Sm,1 Sm,2 . . . Sm,e

 (25)

where m represents the sardine numbers, Sj,k represents the value of the kth dimension of
jth sardine, and the Slocation matrix represents the location of the entire sardines.

S f itness =


F(S1,1 S1,2 · · · S1,e)
F(S2,1 S2,2 · · · S2,e)

...
...

...
...

F(Sm,1 Sm,2 · · · Sm,e)

 =


FS1
FS1

...
FSm

 (26)

where m represents the sardine numbers, Sj,k describes the value of the kth dimension of
jth sardine, F represents the objective function, and S f itness keeps the fitness value of every
sardine. It is prominent that the sailfish as well as the sardines are equivalent factors to
compute the solutions. In this method, the sailfish represents the major parameter which
is distributed in the search space and sardines cooperate to compute the optimal location
in this region. Actually, the sardine is eaten by the sailfish while searching the search
space, and the sailfish updates the location to compute the optimal solution achieved up to
that point.

Migration

The migration is otherwise called the exploration of seagull modeling. The seagull
simulates the seagull group moving towards one location. The seagull swarm movement is
scientifically modeled for the method of exploration. There are three rules followed here.

Collision Avoidance

Collision among the neighbors is neglected; the supplementary variable X is utilized
for the computation of the location of the new search agent.

→
Zr = X×

→
Qs(a) (27)

where Zr indicates the location of the search agent that does not collide with the other

search agent,
→
Qs indicates the present location of the search agent, a represents the present

iteration, and X indicates the movement performance of the search agent in the obtained
search space.

X = Fz − (a× (Fz/Mitr)
where : a = 0, 1, 2, . . . , Mitr

(28)

where Fz is established for controlling the frequency of utilizing variant X, which is linearly
reduced from Fz to 0. The Fz value is set to 2 for this work.
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Moving towards the Direction of the Optimum Seagull

Once the collision among the neighbors is completed, the search agents move in the
direction of the optimum neighbor. This activity is completed by satisfying other rules
described below.

→
Nr = Y×

(→
Qyr(a)−

→
Qr(a)

)
(29)

where
→
Nr indicates the locations of the search agent

→
Qr to the optimum fit search agent

→
Qyr.

The behavior of Y is arbitrative; that is, it is in charge for the appropriate balancing among
the exploitation as well as the exploration. The formula for Y is expressed as

Y = 2× X2 × se (30)

where se represents the arbitrary number in the interval of [0, 1].

Sustaining Close to the Shortest Distance to the Optimal Search Agent

The search agent updates their location, which is modeled as follows:

→
E r =

∣∣∣∣→Zr +
→
Nr

∣∣∣∣ (31)

where
→
E r indicates the distance among the search agent and the optimal fit search agent.

Attack-Interchange Scheme

The sailfish frequently attacks the prey when any of the neighbors are attacked. Some-
times, the sailfish encourages the success rate by the temporarily synchronized attack. The
sailfish chases as well as herds its prey. The herding manner of the sailfish changes its
location with respect to the position of the other hunters around the prey school, devoid of
direct synchronization among them. Consequently, the sailfish update their location inside
the sphere around the optimal solution. In the sailfish process, at the jth iteration, the novel
location of the sailfish Aj

new_S f is updated as follows:

Aj
new_S f = Aj

elite_S f − ηj ×

rand(0, 1)×

X j
newS f + X j

injuredS f

2

− X j
oldS f

 (32)

where Aj
elite_S f represents the location of the elite sailfish established up to now, Xinjured_S

represents the optimum location of the injured sardine established up to now, Xold_S f

represents the present location of the sailfish, rand(0, 1) represents the arbitrary number
among 0 and 1, and ηj represents the coefficient at the jth iteration, which is created
as follows:

ηj = 2× rand(0, 1)× Pd − Pd (33)

where Pd represents the prey density that describes the prey number at every iteration. Due
to the reduction in the prey number through the group hunting by sailfish, the factor Pd
represents the important factor for the sailfish location update around the prey school. The
adaptive expression for this factor is as follows:

Pd = 1−
(

MS f

MS f + MS

)
(34)

where MS f and MS represents the sailfish numbers and the sardine numbers in every
cycle of the algorithm. Additionally, because the primary sardine number is bigger than
the sailfish, MS f is described as MS × Pp, in which Pp indicates the percentage of the
sardine population which establishes the primary sailfish population. With respect to the
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average distance among the location of the present optimal sailfish and the present optimal
sardine, the location of the sailfish is updated in the iteration course. Using this scheme, the
auspicious region of the search space is saved. The sailfish obtain the various places around
the school by altering the value of η. With respect to Equation (33), the variation interval of
η is in the range of −1 and 1, but it is based on the prey number. Otherwise, by reducing
Pd, the amount of η is nearer to −1 or 1 according to rand(0, 1) in Equation (33). The factor
η is leaning towards 1 when rand(0, 1) > 0.5; it tends towards −1 when rand(0, 1) > 0.5,
and it is zero for rand(0, 1) = 0.5. The fluctuation of η and the location of the sailfish is
updated from each other and convergence around the prey schools.

Hunting as Well as Catching Prey

At the start of the group hunting, the entire slaughter of the sardines is hardly exam-
ined. In most of the cases, sardine scales are eradicated while the sardine bill hits the body
of the sardine. This causes the huge sardine number in the schools that contain pronounced
injuries on their bodies. At the start of the hunt, the sailfish contain more energy to capture
the prey and the sardines are no longer injured and tired. Hence, the sardines maintain a
high escape speed and contain a high capability to move. To imitate this procedure, every
sardine is gratified for updating the location regarding the present optimal location of the
sailfish as well as the power of the attack at every iteration. In the sailfish algorithm, at the
jth iteration, the new location of the sardine Aj

new_S is expressed as

Aj
new_S = s×

(
Aj

elite_S f − Aj
oddS

+ AP

)
(35)

where Aj
elite_S f represents the optimal location of the elite sailfish established up to now,

Aj
oddS

represents the present location of the sardine, s represents arbitrary numbers among
0 between 1, and AP describes the attack power of the sailfish number at every iteration,
which is created as follows:

AP = X× (1− (2× Ite× α)) (36)

where X and α represent the coefficients for reducing the value of the power attack straight
from X to 0. To see the consequences of utilizing Equations (35) and (36), they give a few of
the probable positions of sardines once slashing of the prey school is finished. Once the
sailfish attacks, sardines escape to various places suddenly; then, the sardines update their
location to modify the predator and a decrease in the risk is established with respect to s
and AP factors. Actually, the sailfish power attack intensity is reduced, which helps the
search agent convergence. By utilizing the parameter of AP, the sardine number updates
its location, and the variable numbers are computed as follows:

ε = MS × AP (37)

φ = ej × AP (38)

where ej represents the variable number at the jth iteration and MS represents the sardine
numbers in every cycle of the algorithm. With respect to the factor of AP, when the sailfish
tap intensity is low, then ε sardines by φ sardine variables are updated. However, when
the sailfish tap intensity is high, the locations of all the sardines are updated. Mostly, AP
and s factors help sailfish optimization to display the arbitrary behavior of the best local
stagnation in the entire iterations. The sailfish location is substituted by the recent location
of the hunted sardine to increase the chance of hunting new prey, and it is expressed
as follows:

Aj
S f = Aj

S i f F(Sj) < F(S f j) (39)
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where Aj
S represents the present location of the sardine at the jth iteration and Aj

S f repre-
sents the present location of the sailfish at the jth iteration. In each iteration, the location
of every sailfish is updated regarding the elite sailfish and injured sardines. The updating
of the location of the sardines is realized using chosen elite sailfish and sardines, which
depends upon the sailfish attack power. As the procedure of updating the location of
the sardines as well as the sailfish is completed, it is computed by the objective function.
The location of the elite sailfish and the injured sardines is updated in every cycle of the
algorithm. Then, the hunted sardines are eradicated from the population. These processes
are updated iteratively until the termination criterion is gratified.

4. Results and Discussions

The proposed approach is verified effectively using 270 pairs of source images. The
entire sample of source images was gathered from the Whole Brain Atlas of Harvard
Medical School. The examinations were conducted using a set of images that contains CT,
MRI, SPECT, MRI, and PET images. The database images are depicted in Figure 3. All
the source images contain an identical spatial resolution of 512 × 512 pixels by 256 gray
scale levels. The proposed HOD-CNN is computed in MATLAB 2018a with the system
requirements being a i7 processor and 8 GB RAM. For the investigation purposes, the
database was classified into 75:25 for testing as well as training purposes. Table 2 describes
the parameters of the proposed algorithm.

Table 2. Parameter settings.

Techniques Parameters Ranges

Convolutional neural network

Kernel size 7× 7
Learning rate 0.001

Batch size 32
Optimizer Adam

Dropout rate 0.5

Sailfish optimization algorithm

Initial population 30
Total iteration 100

Fluctuation range −1 and 1
Random number 0 and 1

Seagull optimization algorithm

Population size 100
Maximum iterations 200
Control parameter [2, 0]

Frequency control parameter 2

The parameters of various techniques used to tune the proposed method are repre-
sented in Table 2.

4.1. Performance Measures

The computation of image fusion quality is classified into subjective computation
and the objective computations. The performance measures are to choose the appropriate
indices to compute the effect of a human visual scheme on image quality perception.
The performance of the various approaches is computed based on measures such as
edge information retention (QAB/F), average gradient (AG), standard deviation (SD),
mutual information (MI), entropy (EN), spatial frequency (SF), and fusion factor (FF). Edge
information retention exemplifies the transfer amount of edge detail information in the
input images inserted into the fused image. Average gradient is utilized to characterize the
image sharpness; if the value of average gradient is large, then the image is clear. Standard
deviation describes the reflection of the dispersion degree of the pixel value and also the
mean value of the image. If the standard deviation value is greater, then the image quality
is better. Mutual information is utilized to compute the information of the fused image
present in the utilized image. Entropy exemplifies the amount of information accessible
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in the source image as well as the fused image. Spatial frequency represents the entire
action of the image in the space domain, and the size is proportional to the consequences of
the image fusion. Fusion factor represents the well-identified performance measures that
describe the strength of the fusion procedure.

Figure 3. Database image (i) CT and MRI, (ii) MRI and PET, and (iii) MRI and SPECT.

Figure 4 portrays the graphical analysis to determine the average running time for the
proposed approach and various other techniques, namely, NSCT, Kaur et al. (2021);particle
swarm optimization (PSO), Shehanaz et al. (2021); convolutional neural network (CNN), Li
et al. (2021); and adolescent identity search (AIS) algorithm, Jose et al. (2021). The graph
is plotted for the running time and various approaches. From the experimentation, the
evaluation results revealed that the proposed approach attains a minimum average running
time of about 0.53 s compared with other approaches.

Figure 4. Average running time analysis.
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4.2. Quantitative Analysis

The fused images for the three dataset images are shown in Figures 5–7. In this part, the
proposed approach is compared with the existing approaches such as NSST-PAPCNN [20],
EMBO-DST [12], DNN-DGSA [14], and PCNN-NSST [15] by regarding the parameters
such as edge information retention (QAB/F), average gradient (AG), standard deviation
(SD), mutual information (MI), entropy (EN), spatial frequency (SF), and fusion factor (FF).
Figure 4 describes the fusion results of CT and MRI. Figure 5 describes the fusion results of
CT and PET images. Figures 6 and 7 describe the fusion results of the CT and PET images
as well as the CT and SPECT images. From the comparative analysis, the results reveal that
the proposed approach attains better performances than with other approaches. Tables 3–5
describe the objective computation of various methods on medical image fusion for CT and
MRI, CT and PET images, and CT and SPECT images. The results (Table 6) show that the
proposed approach has better results when compared with other approaches.

Figure 5. Fusion results of CT and MRI.

Figure 6. Fusion results of CT and PET images.

Figure 7. Fusion results of CT and SPECT images.

Table 3. Objective computation of various methods on medical image fusion for CT and MRI.

Measures PCNN-NSST DNN-DGSA EMBO-DST NSST-PAPCNN Proposed

QAB/F 0.2082 0.2284 0.2653 0.3645 0.4672
AG 6.3128 6.6754 6.9816 7.6542 7.8914
SD 47.2761 48.1692 50.7616 51.6723 54.6870
MI 2.6892 2.7654 2.8974 3.1678 3.4152
EN 4.4264 4.5298 4.6784 4.8532 4.9952
SF 19.9757 20.7865 21.6738 23.8761 24.7622
FF 5.9824 6.0935 6.1382 6.5665 8.3281
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Table 4. Objective computation of various methods on medical image fusion for CT and PET images.

Measures PCNN-NSST DNN-DGSA EMBO-DST NSST-PAPCNN Proposed

QAB/F 0.3186 0.3484 0.3941 0.4457 0.5392
AG 6.1326 6.8331 7.9814 8.0642 8.4631
SD 46.1488 49.9126 51.8674 53.5648 55.4872
MI 2.9827 3.2673 3.8915 4.2186 4.6524
EN 4.5148 4.7528 4.9921 5.0885 5.1872
SF 22.8907 25.8733 28.9154 30.7372 32.8245
FF 6.1429 6.4634 6.8736 7.1984 7.3562

Table 5. Objective computation of various methods on medical image fusion for CT and SPECT images.

Measures PCNN-NSST DNN-DGSA EMBO-DST NSST-PAPCNN Proposed

QAB/F 0.4177 0.4575 0.5884 0.6429 0.7362
AG 7.7648 7.9731 8.1583 8.6758 8.8763
SD 50.8734 52.7615 54.8324 56.7522 58.6421
MI 4.2541 4.4659 4.9826 5.0942 5.1644
EN 4.4328 4.6715 4.8259 5.2781 5.4638
SF 27.5714 29.8765 30.9816 32.7625 34.8712
FF 6.9876 7.6978 7.8573 8.2538 8.7642

Table 6. Evaluation of fusion results.

Methods Average Gradient Fusion Factor Standard Deviation

DWT 6.5342 7.0346 50.4563
Shearlet 7.6859 7.2785 53.098

Contourlet 7.8219 7.8654 55.5231
MDWT 8.2731 8.0457 57.4563

Hybrid MDWT-Shearlet 8.9142 8.8012 59.7314

5. Conclusions

In this paper, fused multimodality medical image classification is proposed depending
upon a CNN with HOD. The major role of this method is optimal fusion using the hybrid
optimization dynamic algorithm. Initially, multimodal medical images are obtained for
the fusion process using modified discrete wavelet transform (MDWT). The fused image
is classified into malignant or benign using a convolutional neural network (CNN). The
HOD is utilized for enhancing the classification accuracy of the CNN algorithm. The
HOD contains the sailfish optimizer algorithm and seagull optimization algorithm. The
seagull optimizer algorithm replaces the migration operation to obtain the optimal location.
Experimental analysis is carried out and compared with the other approaches with respect
to performance measures such as edge information retention (QAB/F), average gradient
(AG), standard deviation (SD), mutual information (MI), entropy (EN), spatial frequency
(SF), and fusion factor (FF). The proposed approach is compared with other approaches on
the databases and it is revealed that the proposed approach produced improved results.
The experimental results show that the proposed approach performs better than other
approaches and offers high quality fused images for an accurate diagnosis. In the future,
the proposed approach has to be implemented in real-time applications and employed for
other kinds of multimodality medical image fusion such asmulti-focus image fusion and
infrared visible.
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