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Abstract: The health of aero-engines is pivotal to the safe operation of aircraft. With increasing service
time, the internal components of the engine will be damaged by threats from different sources, so it is
necessary to regularly detect the damage inside the engine. At present, most of the detection methods
of major airlines rely on the internal images of the engine obtained by manual use of a borescope to
detect damage or traditional machine learning methods, which consume high levels of human and
computational resources but have low efficiency. Artificial intelligence in various fields can achieve
better performance than traditional methods, but to achieve the industrialization standard of Green
AI, we need further research. Accordingly, we introduce a multi-layer contrastive learning method to
a lightweight target detection model design, which is applied to real aero-engine borescope images of
complex components to accomplish real-time damage detection. We intensively conduct comparative
experiments to evaluate the effectiveness of our method. The verification results demonstrate that
the method can help our model perform excellently compared with other available baseline models.

Keywords: damage detection; contrastive learning; aero-engine surface damage

1. Introduction

Aviation safety is crucial to ensuring people’s livelihood, economic development, and
military security. As a result of the long period service of an aircraft, it can experience vari-
ous types of damage to the engine, such as blade damage caused by friction, discoloration
caused by high-temperature burning, etc. The engine’s complex and compact component
structure poses a significant challenge to damage detection.

As the most intuitive carrier of surface information, images are widely used in damage
detection and localization. Major airlines usually use a borescope to collect internal images
of the engine, then locate and diagnose the damage through manual observation. However,
with the rapid development of the aviation industry in recent years and the increasingly
urgent need for low emissions, methods that rely on manual detection and traditional
machine learning cannot meet the growing demand for detection. At the same time, related
technologies based on object detection have been continuously innovated. Object detection
constitutes the technical basis for computer vision tasks, such as instance segmentation [1],
image captioning [2], and object tracking [3]. Good results have been achieved in many
fields, such as face verification [4], pedestrian detection [5], and license plate detection [6].

Therefore, we propose a lightweight damage detection method based on computer
vision to complete the task of detecting the damage of aero-engine complex components
according to the images collected by the borescope. Compared with the baseline model in
the field of damage detection, the proposed method has lower computing power consump-
tion. Our work reduces the burden on technicians and increases the probability of damage
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detection and also eliminates the hidden dangers of aircraft to a greater extent, which can
be significant.

In summary, the specific work in this paper is as follows:

• We manually classify and label the damaged area of the internal damage images of
the engine to form a dataset suitable for supervised learning, focus on the problems of
limited borescope image samples and difficult damage labeling, and adopt a relatively
new image augmentation method to pre-process images.

• We proposed a multi-layer contrastive learning method to pre-train the “backbone
+ neck” network of the damage detection model. Positive and negative samples are
constructed based on the multi-layer sample features output by the target detection
network, and then the pre-training process is completed through self-supervised
learning. Finally, we use supervised learning to achieve the downstream task of target
detection and fine-tune the parameters of the damage detection network. The method
we propose reduces the damage detection algorithm’s dependence on the number of
labeled samples and improves the damage detection accuracy of the model.

• We conduct extensive experiments with the baseline model to evaluate the ability of
damage detection and to verify that the use of the multi-layer contrastive learning
to pre-train the “backbone + neck” network can effectively improve the accuracy of
damage detection.

2. Related Work
2.1. Target Detection

Object detection generally includes two sub-tasks: one is to obtain the position of the
target in the image, and the other is to obtain the category of the target. Girshick et al. [7]
proposed the Recurrent Convolutional Neural Network (RCNN) network, which intro-
duced the convolutional neural network into the target detection task, and obtained a very
large performance improvement on the general dataset VOC at that time. He et al. pro-
posed Spatial Pyramid Pooling network (SPPNet) [8], which used SPP operation to bypass
the step of adjusting the image size, and improved the detection speed by nearly 20 times
on the basis of RCNN. Girshick et al. [9] proposed the Fast RCNN, which integrated the
characteristics of SPPNet and RCNN and further optimized it. The detection accuracy and
speed were again considerably improved, but it was still unable to reach real-time detection.
In the same year, Ren et al. [10] proposed the Faster RCNN detection network, which uses
the RPN network to generate high-quality region proposals, which greatly improved the
detection speed and initially achieved the effect of real-time detection. The above work
divided the detection process into two stages: first obtaining the detection area, then using
the convolutional network to return the target position.

However, some researchers have tried to utilize a one-stage network to complete all
steps to speed up detection and improve calculation efficiency. In 2015, Redmon et al. [11]
proposed the YOLO detection network, which can reach up to 155FPS, but has lower
detection accuracy. In recent years, many researchers have developed multiple versions
based on YOLO, which have achieved good detection accuracy while maintaining high
speed. Liu et al. [12] proposed an SSD network, which used different layers of the network
to detect targets of different sizes, greatly improving the detection accuracy. To a certain
extent, it alleviated the barriers of a one-stage target detection algorithm in small-sized
targets, reducing some computational costs and the negative environmental impact of the
AI approach.

2.2. Contrastive Learning

MoCo [13] is a momentum-based contrastive learning method proposed by Kaiming
He et al. It provides a simple and effective training method for image processing and has
achieved very good results in downstream image classification tasks. MoCo adopts the
instance discrimination task [14] as an auxiliary task to shorten the distance of the same
image in different situations. Chen et al. introduced the image augmentation method
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and added a nonlinear transformation between representation and contrastive loss into a
network structure, proposing a new simple framework for contrastive learning of visual
representations—SimCLR [15]. Due to the collapse problem of self-supervised training,
Grill et al. constructed a BYOL network [16] by increasing a predictor network and a stop-
gradient strategy. It redistributes the results and eigenvalues, pulls the distance between
positive and negative samples, and avoids training degradation. Xie et al. [17] proposed
a pixel dimension comparison algorithm based on full supervision. On the basis of the
cross-entropy loss, the pixel contrast loss is added. The cross-entropy loss is used for
the calculation of the pixel category loss, and the contrast loss improves the pixel feature
space by calculating the similarity of the pixels. It can decrease the distance between the
pixels belonging to the same category and increase the distance between pixels of different
categories while model coding.

2.3. Aircraft Engine Damage Detection

At present, the aero-engines internal damage detection methods based on computer
vision widely adopt related methods in the field of target detection. They take different
damages of components as targets and achieve good results in terms of detection accuracy
and speed. Abhishek et al. [18] used CNN to perform loss detection analysis on the
collected engine images. Svensen et al. [19] used deep neural networks to classify parts
from borescope images of large turbofan engines. Li [20] used the YOLO v3 [21] network for
damage detection of the compressor components in the engine. He used DenseNet [22] to
integrate some high-layer features into the backbone network, Darknet53, which enhanced
the ability of feature propagation, feature reuse, and feature fusion. These deep-learning-
based aero-engine damage detection methods still remain in the theoretical stage and have
not been put into practical application. At the same time, due to the complexity of the
industrial scene, it is difficult to obtain borescope images, and it takes much manpower
to label the damaged area. Thus, there are insufficient samples for supervised training.
The above reasons cause high resource consumption, low detection accuracy, and poor
generalization of the detection model.

In this paper, we combine target detection and a multi-layer contrastive learning
method for pre-training. With images obtained by the endoscopic techniques used as the
information source, our goal is to label the location, contour, and confidence of the damage
on the image in real-time and accurately in a more green way.

3. Methodology

In this section, we will introduce our proposed method in detail. Our method consists
of two parts, which include a pre-training architecture design based on self-supervised
learning and the design of a surface damage detection network for aero-engine internal
components based on the YOLOX model.

3.1. YOLOX Target Detection Network

The YOLO series model has iterated five versions since the first version was released
by Jeseph in 2015. Under the premise of ensuring low energy consumption of the model,
YOLOX takes the YOLO v3 model as the basic framework and adds the technologies
Decoupled Head, Anchor Free, and SimOTA to solve the problems of the original network.
The structure of the YOLOX target detection model, shown in Figure 1, can be divided into
three parts: the backbone network (CSPDarknet53), the neck network (feature pyramid),
and the detection head.
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Figure 1. The structure of the YOLOX target detection model.

3.1.1. Backbone Network

The backbone network follows the CSPDarknet53 network, which improved upon
the Darknet53 network in YOLO v4 [23]. The network is a fully convolutional network
(FCN) that does not contain fully connected layers, mainly composed of convolution blocks
and CSP modules. On the network, to avoid using the pooling layer to lose many detailed
features, only downsampling is used to shrink the image. The low-layer features are very
important for the localization of the target.

The convolution block consists of a convolution layer, a batch normalization (BN)
layer, and an activation layer. The BN layer can force the data to be redistributed in the
region where the activation function is sensitive, which helps the network to run faster and
converge to the global optimal point. When the convolutional structure is stacked into deep
layers, residual learning [24] is introduced here to eliminate the gradient problem. The
activation function used by the activation layer is the SiLU function, and the formula is:

f (x) = x ∗ sigmoid(βx) (1)

where x is the input feature map and β is the hyperparameter. Because it is continuous and
differentiable, it enables the model to be trained easily.

The CSP module divides the input features into two branches for forward propagation.
Performing convolution operations in each branch to halve the number of channels, then
only performing Bottleneck * N operation on one of the branches, and concatenating the
output structure of the two branches so that the input and output of Bottleneck are the
same size, allows the model to learn more features.

3.1.2. Neck Network

The neck network follows the structure of the feature pyramid network (FPN) [25],
which feeds back the top-feature-layer that contains rich semantic information by layer
after forward propagation and concatenates to the bottom feature layer that contains rich
location information. Different layers lead to detecting branches for detecting objects of
different sizes. Based on the FPN structure, PAFPN introduces the path aggregation (PA)
idea from the PANet [26]. On the basis of the top-to-bottom feature path possessed by
FPN, PAFPN further aggregates the high-layer semantic information and the bottom-layer
spatial location information. A bottom-to-top enhancement path is added, shortening the
information path and strengthening the capability of the feature pyramid.

3.1.3. Detection Head

The YOLOX model adopts the anchor free method, that is, multiple anchor frames of
different scales are not preset for each grid point, and each grid point is only responsible
for the prediction of one frame. Because the PAFPN structure supplements the spatial
information of the feature and the focal loss predicts the target center area, the anchor free
method exceeds the anchor based method in detection accuracy and greatly reduces the
amount of parameters during training. It also speeds up the inferring of model results.
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3.2. Pre-Trained Model Based on Self-Supervised Learning

In this section, we propose a multi-layer contrastive learning method for unsupervised
visual representation learning based on momentum contrast (MoCo) to train the CSPDark-
Net53 + PAFPN as an encoder without labels by mining the supervision information of
the damaged image samples themselves. We construct the auxiliary task of “checking
dictionary” to improve the coding similarity between anchor samples and positive samples,
reduce the coding similarity with negative samples, and finally enable the encoder to
complete the encoding at the abstract semantic feature space.

The structure of the training method framework is shown in Figure 2.

Figure 2. The encoder uses five cascaded CSP modules to downsample the features and then uses
an SPP module to increase the receptive field of the network. The feature map is subjected to three
maximum pooling of different sizes through this module. The feature pyramid fuses the output
features of the backbone network, aggregates the information of different layers, and then outputs
the anchor sample (sample image to be trained) features through linear transformation. The anchor
sample features are compared with the positive and negative samples found in the dictionary, and
the feature extraction network is updated to complete the pre-training.

3.2.1. Momentum-Based Contrastive Learning

Contrastive learning can be thought of as training an encoder for dictionary lookup.
The core idea of MoCo is to maintain a dictionary as a queue of data samples.

In mini-batch training, the magnitude needs to be strictly controlled each time the
parameters of the dictionary encoder are updated. First, we randomly select a batch of
pictures for two image augmentations and then use two encoders to obtain the sum, use
the sum to obtain the similarity of the positive samples, use the sum dictionary queue to
obtain the similarity of the negative samples, and finally calculate the contrast loss value.
At the same time, we place the current mini-batch into the dictionary queue and remove
the earlier mini-batch from the dictionary queue, which can ensure that the encoding in the
dictionary is relatively consistent with the prediction dataset in the near future. When the
parameters are updated by backpropagation, only the parameters of the target detection
model (anchor sample encoder) are updated. Due to the structure of the dictionary encoder
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being the same as that of the anchor sample encoder, the parameters are fused in proportion
to control the encoding; thus, consistency with the dictionary is guaranteed.

3.2.2. Pre-Training Framework Based on Multi-Layer Contrastive Learning

We obtained the augmented anchor image of the image to be trained by random
flipping, cropping, fusion noise, and other image augmentation methods, and then formed
a batch of this image and other images randomly selected in the dataset for random image
augmentation again, getting the image set

{
x+, x−0 , . . . , x−k

}
. The backbone CSPDarkNet53

of the damage detection network proposed in this paper is used as an encoder to encode
images, and the structure of PAFPN is used to output three-layer feature maps P0, P1, and
P2, layer by layer upward. Feature maps of different sizes correspond to grid divisions of
different sizes, which can adaptively balance spatial information and semantic information
between detecting targets of different complexity. We add a linear layer to each feature
map to transform it into one-dimensional vectors of length 128 as q0, q1, q2. We then use
Momentum CSPDarkNet53 to encode the image set

{
x+, x−0 , . . . , x−k

}
in the same way to

obtain three-layer one-dimensional vectors of length 128 as k0, k1, k2, and add k0, k1, k2 to
the dictionary.

In order to improve the encoder’s cognition of damage features under grid divisions of
different sizes, we construct multiple pairs of negative samples between the three layers of
features output by the feature pyramid so that each feature layer curved out by the current
grid size can better represent the damages. After the two encoders encode the same image,
the output is the three-layer features. We define the features belonging to the same image
extracted by layer in the same depth of encoder and decoder are positive to each other,
and features belonging to the layers in different depth or different images are negative to
each other.

Taking Figure 3 as an example, after the anchor sample encoder and dictionary encoder
encode the same picture, the positive sample is constructed according to (q0, k0), (q1, k1),
and (q2, k2). For the task of damage detection, the comparative learning between positive
examples and negative examples is introduced to train an encoder that can recognize images
from an advanced semantic perspective. Therefore, in order to keep the deeper semantic
features of images as much as possible, we increase the proportion of features extracted by
the deep network and adopt three sets of negative samples constructed between different
layers, namely (q1, k0), (q2, k0), and (q2, k1). At the same time, the anchor sample vector
and other feature vectors in the dictionary that do not belong to the picture are all negative
samples. We then calculate the contrastive losses of different layers of query in turn and
accumulate these contrastive losses as the loss value of a single training. Finally, the
network updates the parameters of the encoder CSPDarkNet53 through backpropagation
and simultaneously fuses the encoder parameters with the momentum encoder parameters
and then assigns the parameters to the momentum encoder. The formula is:

ωk ← σωk + (1− σ)ωq (2)

where σ is the constant used to update the parameter weights each time. In order to keep
the dictionary consistent, the fluctuation of the model parameter update should be small,
so in this paper, σ = 0.999.
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Figure 3. Positive and negative sample construction method in the multi-layer.

3.2.3. Comparative Loss

We use the three-layer output features of the PAFPN network to perform the training
of contrastive learning, and, at the same time, merge the three-layer losses to obtain the
overall contrast loss. The formula is:

L = −
P

∑
i

log
exp(qi · k

+
i )/T

∑K
j=0 exp(qi · ki)/T

(3)

where P is the number of layers of the model. The damage detection model used in
this paper has three layers, P = 3; K is the number of image sets composed of positive
samples and negative samples, qi represents the query of the ith layer, k+

i represents the
corresponding positive sample, and kj represents the contrast sample.

4. Dataset

The experimental dataset in this paper comes from the internal damage images of
aero-engines obtained by a company using borescope technology in a real environment.
From the tens of thousands of raw data, we selected high-pixel images of representative
parts with obvious damages, and then classified and labeled these images by component.

4.1. Dataset Failure Category

As supervised learning is heavily dependent on the training set data, we screen the
damaged images of components, which occupied a large portion of the previous sorting
work. Eventually, datasets with three types of aero-engine internal damages for the swirler,
the large elbow pipe, and the air compressor/turbine blades were sorted out. An example
of the picture is shown in Figure 4.

Figure 4. Partial damage.

• Swirler: This component is located in the combustion chamber of the engine. The fuel,
once injected by the fuel nozzle, is fully mixed with high-speed and high-pressure
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air in the swirler. Under ignition, the fuel starts to burn and releases a large amount
of heat and pressure. Therefore, the swirler is subjected to a considerable thermal
load inside the engine. It includes carbon deposits, metal discoloration caused by
high-temperature, and deformation/cracks/loss of components caused by impact.
Such damages are fatal to the combustion chamber and seriously threaten the normal
operation of the combustion chamber.

• Large Elbow Pipe: This component is located outside the combustion chamber. It
has many vents to help exhaust the hot gas after combustion. It is in an extremely
high-temperature environment. As a result, its material has problems with cracking
and ablation from denaturation caused by high temperature.

• Air Compressor/Turbine Blades: The blades damage dataset was obtained by merging
the data of two components, due to the small number of damage images of the
compressor blades. For compressor blades, the main threat comes from inhaled foreign
matter and oil molecules in the air. Foreign matter will damage or deform the rotating
blades, and oil molecules will adhere to the blades, causing engine performance
degradation. Turbine blades are near the combustion chamber, which, due to the high-
temperature environment, can also cause damage, including ablation/deformation of
the blade, blade tip abrasion, and curling caused by friction with the turbine wall.

In this paper, we use Labelme to label the damages: outlining the damaged area one
dot by one dot, and specifying its classification.

We organize and label three datasets in the paper, which are shown in Tables 1–3.

Table 1. Damage statistics in swirler dataset.

Carbon Deposits Metal Discoloration Loss Ablation Cracks

Images 229 63 40 52 26
Label frame 322 93 45 74 40

Table 2. Damage statistics in large elbow pipe dataset.

Scratches Ablation Cracks

Images 89 23 113
Label frame 121 36 455

Table 3. Damage statistics in air compressor/turbine blades dataset.

Loss Tips Whitish Ablation Blade Crimping Abrasion

Images 117 83 27 56 37
Label frame 125 219 37 87 39

We also counted the damaged area sizes of images in the three datasets, as shown in
Figure 5.
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Figure 5. The damaged area of the eddy current device is relatively large, the larger part is less than
50,000, and the larger part is more evenly distributed. Most of the damaged areas of the large elbow
pipe dataset are less than 10,000, and all of them are below 20,000. Most of the damaged areas of the
blade datasets are less than 10,000, but the distribution is smoother than that of the large elbow pipe.

4.2. Image Augmentation

For supervised deep learning, enough samples are a prerequisite for training an
excellent model. Too few samples will commonly cause the model to fail to learn useful
features, or even lead to overfitting.

We adopt the following two image augmentation methods in this paper:

• Mosaic Augmentation: We randomly selected four images from the dataset and used
the classical image augmentation method to augment them. We then synthesized the
four augmented images into a new image.

• MixUp Augmentation: To augment one image, first, another image from the dataset
needed to be selected randomly, and then the two images and their corresponding
labels fusion coefficient needed to be fused according to the preset. It can help the
model establish a linear understanding of the sample without being disturbed by
noise. The formula is:

x′ = λxi + (1− λ)xj (4)

where λ ∈ [0, 1], xi and xj are the input image pixel matrix, and x′ is the output image.

An example of one image after image augmentation shown in Figure 6. After process-
ing the images through the aforementioned two methods: the image samples are added;
the detection efficiency of small samples is improved; and the model can learn the subtle
differences in the linear samples, thereby expanding the cognitive scope of the model and
strengthening the model’s ability to analyze outside images of the training set. This can
improve the accuracy of the sample prediction and the generalization of the model.

Figure 6. An example of the image after Mosaic and MixUp image augmentation.

5. Experiments

In this section, we conducted a series of experiments. First, we sifted through the
images used to pretrain, train, and test the model. The dataset used for pre-training
included 18,313 raw images without labels captured in real scenes, and the dataset of
733 labeled images at a 7:3 ratio, allocated for the training set and test set. The data
distributions of the training set and test set are shown in Table 4. To evaluate detection
performance, we use average precision (AP) and recall as quantitative measures, and set
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intersection over union (IoU) to 0.5:0.95 (i.e., AP50) for detection for the top 100 regions of
arbitrary sizes. All the following experimental results are obtained from the test set.

Table 4. Dataset division of swirler, large elbow pipe, and air compressor/turbine blades.

Swirler Large Elbow Pipe Air Compressor/Turbine Blades

Training Set 186 147 176
Test Set 80 65 79

First, we designed and conducted two sets of contrast experiments. The first set of
experiments only used the output feature of the last layer of the CSPDarknet53 + PAFPN
for the MoCo method. The output feature tensor size was 20 × 20 × 1024. The pre-trained
model was then used as the backbone of the damage detection network to be fine-tuned
and trained on the three aero-engine damage datasets. The second set of experiments used
all three-layer output features from the CSPDarknet53 + PAFPN to perform pre-training
through the multi-layer contrastive learning method proposed in this paper. The pre-
trained model also performed tuning training on the three damage datasets. Finally, the
gap between the two methods was shown by the AP and recall values of two groups of
experiments on the swirler, the large elbow pipe, and the air compressor/turbine blade
datasets. The experimental comparison results are shown in Figures 7–9, and a visual
comparison example is shown in Figure 10.

Figure 7. Comparison of experimental results between the multi-layer MoCo method and the MoCo
method for the swirler dataset.

Figure 8. Comparison of experimental results between the multi-layer MoCo method and the MoCo
method for the large elbow pipe dataset.

Figure 9. Comparison of experimental results between the multi-layer MoCo method and the MoCo
method for the air compressor/turbine blades dataset.
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Figure 10. Visual comparison example between the multi-layer MoCo method and the MoCo method
for the swirler, large elbow pipe, and air compressor/turbine blades. Our detection method is able to
detect the damaged areas ignored by the other.

From the results, we see that the use of the multi-layer comparison learning method
(multi-layer MoCo) greatly improves the AP value and recall of a single category compared
with the MoCo method. Our proposed method benefits from the feature pyramid, which
achieves a higher precise representation of different damage, and each layer of its output
features is more targeted to provide relatively balanced semantic information and spatial
location information. It can also be seen from the table that the AP value of the categories
with the lowest detection accuracy using the MoCo pre-training method was greatly
improved after using multi-layer comparative learning.

The AP value of crack damage detection in the swirler dataset increased by 20.9%,
which indicates that the use of the multi-layer MoCo method can make the output of
different layers of the feature pyramid focus on the representation of damage of different
complexity, avoiding the problem of data imbalance. The expression of some categories is
biased, and finally, the detection accuracy of each category can be improved to a relatively
balanced position.

We tested the contribution of the features extracted from each layer in the multi-layer
contrastive learning to the model’s detection accuracy on the three datasets. Based on the
pre-trained model in the above experiments, we attached a detection head to the three
feature layers of 80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024 in the CSPDarknet53 +
PAFPN to detect the representational capacity of the output features from each layer to all
damage on the image. The experimental results obtained are shown in Table 5.

Table 5. Performance scores of different feature layers for damage detection in the MoCo method
and the multi-layer MoCo method.

Feature Tensor Size Dataset
AP Recall

MoCo Multi-Layer MoCo MoCo Multi-Layer MoCo

80 × 80 × 256
Swirler 0.066 0.144 0.119 0.157

Large Elbow Pipe 0.087 0.137 0.145 0.157
Air Compressor/Turbine Blades 0.217 0.288 0.269 0.324

40 × 40 × 512
Swirler 0.330 0.409 0.379 0.438

Large Elbow Pipe 0.237 0.307 0.322 0.345
Air Compressor/Turbine Blades 0.362 0.529 0.406 0.551

20 × 20 × 1024
Swirler 0.271 0.333 0.316 0.354

Large Elbow Pipe 0.403 0.468 0.448 0.495
Air Compressor/Turbine Blades 0.406 0.333 0.427 0.348
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It can be clearly seen from the table that the damage feature extraction ability of each
layer substantially increased, verifying that our proposed multi-layer contrastive learning
pre-training method can achieve better results on the aero-engine internal component
damage datasets. Compared with the baseline model, the detection accuracy of multi-
component and multi-category damage of aero-engines is greatly improved.

We wanted to verify that the computational resource consumption of the whole set of
damage detection methods proposed in this paper is much lower than that of other baseline
models in the industrial application of aero-engine surface damage detection. We used
Faster RCNN, DeepLab v3+ with our YOLOX model pre-trained by the multi-layer MoCo
method to conduct comparative experiments. We used 509 pieces of images to test the
computational performance of each model and finally obtain the result of three quantitative
metrics for computational performance of each model—FLOPs, number of parameters, and
FPS. FLOPs (floating point operations), also known as the amount of computation, which
are usually used to measure the amount of computing resources required by the model.
FPS (frames per second) is the number of frames processed per second when detecting
video files, which can be used to evaluate the detection speed of the damage detection
model in practical application scenarios. The comparative results of computational resource
consumption, model size, and inference speed of each model are shown in Table 6.

Table 6. Computational resource consumption, model size, and inference speed comparison.

Model Image Pixel FLOPs(G) Params(M) FPS

Faster RCNN 640 × 480 143.5 41.14 56
DeepLab v3+ 640 × 480 119.8 39.76 58.8

YOLOX pre-trained by Multi-Layer MoCo 640 × 480 26.64 8.94 90.9

It can be seen from Table 5 that the number of parameters and the FLOPs of the
YOLOX model pre-trained by the multi-layer MoCo method are far fewer than those of
the Faster RCNN model and DeepLab V3+. The YOLOX model makes extensive use of
the CSP module, so the size of the model can be scaled up or down by adjusting the
number of channels. For the purpose of saving energy, reducing emissions, and limiting
memory resources, we adopted the smallest model parameters, which are also convenient
for deployment on edge devices with insufficient computing resources. The most intuitive
benefits brought by the lower amount of computation are faster inference speed and higher
FPS, which fully meets the industrial requirements for real-time damage detection of video
streams shot inside aero-engines.

6. Conclusions

Based on the traditional MoCo method, we propose a multi-level contrastive learning
based on the structural characteristics of the feature pyramid in the damage detection
network. It is used in the pre-training target detection method to complete the damage
detection task of aero-engines so that the encoder can learn the representation of samples
at different scales, thereby optimizing and improving the representation ability of each
layer of the damage detection network. We finally achieve the goal of efficiently detecting
the internal damages of the aero-engine with low energy consumption, relieving the
pressure of manual detection, and better guaranteeing the safe operation of the aero-engines.
According to the experimental conclusion that the feature extraction ability of each layer
of the detection network substantially increases by multi-layer contrastive learning, we
reasonably believe that our proposed method can also have certain effects on other datasets.
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