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Abstract: Simultaneous localization and mapping (SLAM) is a dual process responsible for the ability
of a robotic vehicle to build a map of its surroundings and estimate its position on that map. This
paper presents the novel concept of creating a 3D map based on the adaptive Monte-Carlo location
(AMCL) and the extended Kalman filter (EKF). This approach is intended for inspection or rescue
operations in a closed or isolated area where there is a risk to humans. The proposed solution uses
particle filters together with data from on-board sensors to estimate the local position of the robot.
Its global position is determined through the Rao–Blackwellized technique. The developed system
was implemented on a wheeled mobile robot equipped with a sensing system consisting of a laser
scanner (LIDAR) and an inertial measurement unit (IMU), and was tested in the real conditions of
an underground mine. One of the contributions of this work is to propose a low-complexity and
low-cost solution to real-time 3D-map creation. The conducted experimental trials confirmed that the
performance of the three-dimensional mapping was characterized by high accuracy and usefulness
for recognition and inspection tasks in an unknown industrial environment.

Keywords: SLAM; 3D mapping; mobile robot; underground inspection

1. Introduction

Mobile robotics have seen an increase in interest in the last few decades, especially
due to their ability to be deployed in a hazardous environment without endangering
humans. Currently, it is common to use mobile robotic vehicles to accomplish missions
such as environmental recognition, the inspection of urbanized and industrial terrains,
and search and rescue operations. In the military field, they are employed in tasks such as
reconnaissance missions, surveillance, intelligence gathering, hazardous-site exploration,
and more. The robot can explore an area of interest, teleoperated from a remote area
or autonomously. Knowing the obstacles in the vicinity of the robot is essential for the
successful completion of a mission in a working area, avoiding any collisions that could
make the robot unusable.

If the map is given a priori, the robot can self-localize by matching some features of
the environment observed at the given moment to features of the same type existing in the
known map. A feature suitable for self-localization is a static, salient object (or part of an
object) in the environment, which can be described with respect to some other co-ordinate
frame. On the other hand, the predefined map can be perceptually incompatible, i.e., it
may not properly reflect all features in the environment perceived with the given sensing
modality. Therefore, the robot should be able to build its own model of the environment.

In recent decades, many designs for mobile robotic vehicles created to explore a par-
tially or fully unknown environment have been developed and demonstrated in both
academia and industry [1–7]. The simultaneous localization and mapping (SLAM), cur-
rently one of the main research topics in robotics, appears to be the attractive solution to
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this problem [8–16]. The objective of SLAM is to concurrently build a map of investigated
environment and allow the moving vehicle to localize itself within this environment using
its on-board sensors.

At present, the most widely used SLAM frameworks are based on laser sensors,
because these kinds of sensors can detect the distances of the obstacles around the robot
with high accuracy. However, 2D-mapping methods based on laser scanners still have some
problems. The obstacles can only be detected when they are in the same height with the
sensors. Therefore, 3D-mapping methods based on multiple-laser sensors or 3D-distance
sensors have been developed because these methods can reflect the shapes of an area and
objects in the environment and allow the robot to plan its path with collision avoidance.

This paper focuses on a map creation for the recognition and inspection purposes of
an isolated industrial environment carried out by a mobile wheeled robotic vehicle. The
map is generated based on data sets obtained from a laser scanner (LIDAR) and an inertial
measurement unit (IMU) installed on its board. We propose a robust real-time mapping
concept based on probabilistic SLAM formulation, including both extended Kalman filters
and particle filters, to build a 3D map of the surrounding area. The effectiveness of the
developed solution has been confirmed by mapping experiments in the underground
environment of the mine for different operational conditions.

The remainder of this paper is organized as follows. In Section 2, a brief description of
the SLAM problem is provided. Details of the implementation of the proposed approach
are presented in Section 3. Section 4 provides the results of the experimental studies carried
out in an experimental underground mine. Finally, the conclusions and future works are
summarized in Section 5.

2. SLAM Mapping Overview

Mapping approaches are generally divided into a 2D and 3D representation of the
environment. Each type can be used for different tasks, e.g., navigation or workspace-state
representation purposes. A planar map is good enough for navigation tasks. However,
from the inspection point of view, a three-dimensional picture of the surroundings is
definitely more useful, but it impacts on the calculation loading of the SLAM process and
requires more advanced sensory systems.

There are many ways to describe the SLAM problem represented in the literature [17–24].
Currently, the most common way is to define SLAM as a probability density function,
which can be described by the following generic form [25–27]:

p(X0:t, m|Z1:t, U1:t) (1)

where:

X0:t = {X0, X1, . . . , Xt}—a sequence of the mobile vehicle’s poses (passed path) in a
sampling time interval <0, t>;
U1:t = {U1U2 . . . Ut}—a sequence of control signals;
Z1:t = {Z1Z2 . . . Zt}—a sequence of relative observations.

The observations Z1:t are made by sensors, which measure the distance to the closest
objects in all directions from the poses X1:t at the same time instant.

Such a form of expression (1), where wanted values are reconstructed for all previous
states, is called “Full SLAM”. The opposite approach, where only a recent position is
estimated, called “Online SLAM”, can be calculated by recursive integration [23]. It is
possible to apply Bayes and Markov rules to (1) and define the probability density function
as a recursive process of predictions and corrections of the robot’s localization in the map m,
which depends on motion (kinematic constrains and controls) and observation models [19]:

p(X0:t, m|Z1:t, U1:t) = α · p(Zt|X0:t, m, Z1:t−1, U1:t · p(X0:t, m|Z1:t−1, U1:t) (2)

where α is a normalization constant coefficient.
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The recursive SLAM definition (2) is very convenient, since estimators such as the
extended Kalman filter (EKF) [12,28] and particle filters [29–31] began to be applied to solve
the estimation problem. The Kalman filter has the ability to use data from different sources
and then efficiently fuse them into precise estimated values. It is one of its more valuable
features. On the other hand, the biggest disadvantage of the EKF is its dependency on
previous states that might cause huge average error decreases in the case of an unexpected
measurement disaster. The use of EKF for the SLAM problem was first proposed in the work
in reference [32], after which, many researchers further improved this method [12,33,34].

The particle filter [18,35,36] is a recursive filter using a Monte-Carlo algorithm to
estimate the pose and movement path of the moving object. They are good and fast in
global localization but are limited in their use of data from only one domain. Their wide
usage for SLAM came from the brilliant idea of the Rao–Blackwellization method, which
was introduced into regular map-building algorithms [37]. Although the particle filter
algorithm can be used as an effective method to solve the SLAM problem [9,13,18,21,38], the
main problem is that a large number of samples are required to approximate the posterior
probability density of the system. The more complex the environment that the robot meets,
the more samples that are needed to describe the posterior probability, and the higher the
complexity of the algorithm.

Regarding the map construction of SLAM, there are three commonly used maps [39],
i.e., feature-based maps, topological maps, and grid maps. The last one, also called an occu-
pancy map, is the most common way for robots to describe the model of the environment.
It divides the workspace into a series of grids, where each cell in the grid corresponds to
binary random variables that describe the occupancy probability [8,20,40–42]. Hence, the
map m is given by a product occupancy probability of each cell mi, which is associated
with a certain point in three-dimensional Cartesian space [23,34]:

p(m) = ∏i p
(
mxi ,yi ,zi

)
From the SLAM perspective, Equation (3) can be formulated as a probabilistic problem

of the recursive pose estimation from given observations. There are many different SLAM
techniques based on occupancy grids for map building in 2D or 3D space [10,22]. One
of possible representations of the 3D map as an occupancy grid is octrees, which instead
of the 2D quadtrees representation presented directly in references [8,42], uses an octree
hierarchical data structure, where each volume-named node has eight child connections
with inner nodes [25]. Currently, in the scientific literature, a rich number of occupancy
grids-based SLAM techniques can be found [18,20,26,43]. Nevertheless, in any case, the
best SLAM algorithm for a particular environment depends on hardware restrictions, the
size of the map to be built, and the optimization criterion of the processing time.

The algorithms depend heavily on the sensors with which the robot perceives its
surrounding. The selection and installation of sensors determine the specific form of
observation results, and also affect the difficulty of SLAM problems. In case of mobile
robots performing in indoor environments, exploration cameras or LIDARs are mostly
used. Some approaches use a fusion of laser and visual data [34]. As mentioned before,
LIDARs provide data that are more accurate, robust, less noisy, and sensitive to changes in
the lighting. For these reasons, it is a very reliable data acquisition mechanism for industrial
site mapping [44]. However, due to the limited number of dimensions, the laser data are
not sufficient to estimate the robot’s pose on uneven ground with six degrees of freedom
(DOF) [45]. Therefore, most algorithms need auxiliary data from other sensors, such as
an inertial measurement unit (IMU) or odometer. In recent years, along with the rapid
development of artificial intelligence (AI), learning methods are also used to solve the
SLAM problem [46–48].

3. Hybrid Mapping Concept for Inspection Purposes

The map-building approach applied in this paper has its basis in a robot’s pose
estimation, which is presented in references [42,49], called the AMCL-EKF, which connects
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two separate paradigms—Kalman and particle filters. The pose is estimated by the extended
Kalman filter by using measurements data from LIDAR and IMU sensors and adaptive
Monte-Carlo localization (AMCL).

In the case of a planar motion, the local pose is described by a state vector X(2)

consisting of three components:

X(2) =
[
x y ψ

]T (3)

where x, y are Cartesian positions and ψ is a yaw angle.
However, from the inspection point of view, tridimensional maps showing environ-

ment features in their natural scale are more preferred. Due to the fact that 3D mapping
requires information about the global location of the robotic vehicle with six degrees of
freedom (DOF), it is necessary to recreate missing coordinates. It may be performed by
taking the needed coordinates from the local 3D pose that the EKF performs [49,50] (see
Figure 1). Then, the state vector X(3) can be written in the following form:

X(3) =
{

X(2) z ϕ θ
}T

(4)

where z is the Cartesian position and ϕ, θ are roll and pitch angles. The global localization
can be solved by a Rao–Blackwellized 2D SLAM algorithm [18].
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Figure 1. Schematic diagram of local 3D pose estimation by AMCL-EKF algorithm. Figure 1. Schematic diagram of local 3D pose estimation by AMCL-EKF algorithm.

As far as X(3) is delivered, it allows for the creation of a three-dimensional map. In
this way, the 2D SLAM algorithm is used continuously to efficiently build the 2D map, and
at the same time the 3D SLAM algorithm (the delivered precise X(3) and recent cloud of
points data allows to create the 3D map (see Figure 2)). This task can be performed both
online as a separate task or offline postprocess based on previously collected sensor data.

The efficiency and accuracy of the developed method, called “hybrid 3D SLAM”,
for locating the robot in unknown terrains, have been confirmed in several simulation
experiments presented in our previous works [19,50,51], where the 3D-mapping algorithm
was implemented in accordance with the Robot Operation System framework, and was
verified with using the V-REP simulation environment. The carried-out investigations
affirmed the legitimacy of the proposed approach to 3D-map building for inspection tasks.
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4. Environment Description and Experimental Results
4.1. Robotic Vehicle and Environment

The SLAM strategy presented in the previous section was implemented in the Dr
Robot Jaguar 4 × 4 mobile vehicle constructed by the Canadian company Dr Robot Inc.
(see Figure 3). The robot is equipped with the LIDAR (Velodyne VPL-16) and the IMU
(Pololu MinIMU-9) sensors.
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Figure 3. Mobile robotic vehicle used for tests.

The robot is a four-wheeled robotic platform designed for tough indoor and outdoor
operation, and has the following operational parameters: mass 20 kg, max speed 11 km/h,
and a ground clearance 88 mm. The Velodyne VLP-16 LIDAR uses an array of 16 infra-red
lasers paired to detect and measure distances to objects. The array provides 300,000 data
points per second in real-time. The IMU sensor Pololu MinIMU-9 is a compact board
that combines a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer for
measuring robot data parameters.

Investigations were conducted in a real industrial environment—the experimental
underground mine being a part of the AGH University of Science and Technology infras-
tructure. It was assumed that the robotic vehicle had to inspect the site in two operational
cases, i.e., before and after the mining disaster. This task required the robot to move on
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both smooth and rough surfaces that were sometimes blocked by degraded infrastructure.
Figure 4 shows two fragments of real operational scenarios.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 10 
 

 

  
(a) (b) 

Figure 4. Underground inspection scenarios: (a) smooth terrain before accident; (b) rough terrain 
after accident. 

4.2. Experiments 
Carried out trials were divided into two stages, i.e., creating the map of the mine area 

for normal working conditions and after shutdown due to an accident. In accordance with 
the methodology described in Section 3, the 2D maps were first built using the AMCL-
EKF technique, and then the 3D maps were estimated by applying the Rao–Blackwellized 
SLAM approach. 

The results of the map creation for the terrain before accident are presented in Figure 
5. Both 2D and 3D maps precisely recreate the real state of the mine’s corridors with all 
observable main features. The 2D map (Figure 5a) clearly shows free spaces and therefore 
can be fully used for navigation tasks, whereas the 3D map (Figure 5b) contains all 
features of the passed corridors and therefore is much more useful for a precise and safe 
inspection of the underground environment. It is especially important when some parts 
of the terrain have become inaccessible. 

Such a situation is presented in Figure 6, where a photographic image of the corridor 
and destroyed infrastructure is shown. Due to the disaster, the main road was partially 
blocked, and the terrain became rough. 

 
(a) 

Figure 4. Underground inspection scenarios: (a) smooth terrain before accident; (b) rough terrain
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4.2. Experiments

Carried out trials were divided into two stages, i.e., creating the map of the mine area
for normal working conditions and after shutdown due to an accident. In accordance with
the methodology described in Section 3, the 2D maps were first built using the AMCL-
EKF technique, and then the 3D maps were estimated by applying the Rao–Blackwellized
SLAM approach.

The results of the map creation for the terrain before accident are presented in Figure 5.
Both 2D and 3D maps precisely recreate the real state of the mine’s corridors with all
observable main features. The 2D map (Figure 5a) clearly shows free spaces and therefore
can be fully used for navigation tasks, whereas the 3D map (Figure 5b) contains all features
of the passed corridors and therefore is much more useful for a precise and safe inspection
of the underground environment. It is especially important when some parts of the terrain
have become inaccessible.
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Figure 5. Maps obtained before accident: (a) created with the use of 2D SLAM technique; (b) created
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Such a situation is presented in Figure 6, where a photographic image of the corridor
and destroyed infrastructure is shown. Due to the disaster, the main road was partially
blocked, and the terrain became rough.
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Figure 6. Photographic image of the mine corridor after accident.

The results of the map creation are depicted in Figure 7. The depicted maps show the
examined area from the same perspective in which it was captured by the camera. The
comparison of the scenes from the photo and the generated maps shows a high compliance
of the presented mine’s environment. The general differences between 2D and 3D maps,
shown in Figure 7a,b, respectively, are similar to those described for the previous case. It
can be seen that the 3D map is accurate enough to assess the real state of the environment.

The performed investigations showed a good compliance of the obtained 2D map with
the geodetic map of the laboratory ground mine. The final product, which is a 3D-space
map, properly reflects the current of the working environment.
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Further works will be devoted to examining the applicability of the developed 
solution to create a 3D map in other types of real environments, such as underwater or 
aerial. 

Author Contributions: Conceptualization, T.B., J.G., M.G., and A.K.; methodology, M.G.; software, 
A.K.; validation, T.B. and A.K.; formal analysis, T.B., J.G., M.G., and A.K.; investigation, T.B., M.G., 
and A.K.; resources, M.G. and A.K.; data curation T.B. and A.K.; writing—original draft preparation, 
J.G. and M.G.; writing—review and editing, T.B., J.G., M.G., and A.K.; visualization, A.K.; 
supervision, J.G. and M.G.; project administration, M.G. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research received no external funding 

Figure 7. Maps obtained during underground inspection in the mine terrain after accident: (a) created
with the use of 2D SLAM technique; (b) created with the use of proposed hybrid 3D SLAM approach.

However, its quality and practical usability is limited by specific problems related to
the limitations connected with real working conditions. Although the AMCL provides a
global location based on reference points, the quality of the pose estimation process strongly
depends on errors concerned with the robot’s slippage or skidding. A problem with LIDAR
can be long spaces with a limited number of potential reference points, such as a tunnel
with single surrounding features.

5. Conclusions

The method for the concurrent construction of a 3D map of the industrial terrain
realized with use of a mobile wheeled robot is presented and discussed in the paper. Since
the three-dimensional map shows the complete picture of the explored terrain, it is more
convenient for use in environmental inspection tasks.

The main contribution of this work is to develop a real-time method for creating a 3D
map in both structured and unstructured industrial environments. We propose to solve
this problem by using LIDAR to preprocess the scanning and IMU to generate odometries.

After mapping the environment, we created a grid map based on the 2D SLAM,
the AMCL, and the EKF. The robot’s global position was determined by means of the
Rao–Blackwellized technique. This approach significantly reduced computational costs in
comparison with the Full 3D SLAM.

The efficiency, accuracy, and robustness of the developed hybrid 3D SLAM approach
for 3D-map creation was validated by a number of real experiments conducted in the
different scenarios of the underground mine. All obtained results confirmed the correctness
of the developed solution for the creation of the 3D map in the indoor environment. The
findings also demonstrated that the worked-out algorithm can be run in conditions similar
to real ones by using a mobile robotic vehicle equipped with modest hardware.

Further works will be devoted to examining the applicability of the developed solution
to create a 3D map in other types of real environments, such as underwater or aerial.
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