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Abstract: The emergence of the new generation video coding standard, Versatile Video Coding
(VVC), has brought along novel features rendering the new standard more efficient and flexible than
its predecessors. Aside from efficient compression of 8 k or higher camera-captured content, VVC
also supports a wide range of applications, including computer-generated content, high dynamic
range (HDR) content, multilayer and multi-view coding, video region extraction, as well as 360°
video. One of the newly introduced coding tools in VVC, offering extraction and independent
coding of rectangular sub-areas within a frame, is called Subpicture. In this work, we turn our
attention to frame partitioning using Subpictures in VVC, and more particularly, a content-aware
partitioning is considered. To achieve that, we make use of image segmentation algorithms and
properly modify them to operate on a per Coding Tree Unit (CTU) basis in order to render them
compliant with the standard’s restrictions. Additionally, since subpicture boundaries need to comply
with slice boundaries, we propose two methods for properly partitioning a frame using tiles/slices
aiming to avoid over-partitioning of a frame. The proposed algorithms are evaluated regarding both
compression efficiency and image segmentation effectiveness. Our evaluation results indicate that the
proposed partitioning schemes have a negligible impact on compression efficiency and video quality

Keywords: VVC; video coding; frame partitioning; subpictures; image segmentation; otsu threshold-
ing; region growing

1. Introduction

In recent years, the unceasing evolution of video resolution coupled with the profound
video sharing activity on the internet gave rise to the advent of new video coding standards
in order to contend with the need for higher compression rates. In this regard, VCEG (Video
Coding Experts Groups) and MPEG (Motion Pictures Experts Group) jointly developed a
new standard named Versatile Video Coding (VVC) [1,2] which was finalized in July of
2020 and was designed to achieve about 50% bit-rate reduction over its predecessor [3],
High Efficiency Video Coding (HEVC) [4], for the same visual quality, while also offering a
flexibility in terms of supporting an extensive number of applications. Apart from efficient
compression of camera-captured high-resolution content, 8 k or higher, VVC also adopts
features to efficiently support computer-generated content, high dynamic range (HDR)
content, multilayer and multi-view coding, video region extraction, as well as 360° video.
In order to achieve the aforementioned coding efficiency improvement, VVC incorporates
advancements over pre-existing coding tools, along with novel additions [5].

One of the newly introduced coding tools in VVC is subpictures, a high-level par-
titioning tool, conceptually the same as Motion Constrained Tile Set (MCTS) [6] feature
in HEVC but designed in a different way in order to favor coding efficiency. Both sub-
pictures and MCTS offer the capability of independent coding as well as extraction of
rectangular sub-areas within a frame. Following the pattern of tiles and slices, subpictures
divide a frame into independently encodable/decodable areas consisting of a set of blocks,
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while a subpicture can be defined as extractable, where the dependencies between current
subpicture and subpictures within the same frame or subpictures in previous frames are
broken, or non-extractable. The issue that naturally rises when a frame is partitioned
concerns encoding quality losses, since coding dependencies are broken in the boundaries
of independently encoded/decoded blocks. In order to reduce this inherent loss of quality,
it is important to take into consideration image characteristics when defining the frame
partitioning into subpictures, so that similar spatial information is gathered within the
same subpicture.

In this work, we focus our attention on frame segmentation into subpictures in VVC,
and more specifically, a content-dependent subpicture segmentation is considered. Our
target is to reduce the inherent loss of quality posed by subpictures without affecting either
their philosophy or their functionality (i.e., creating independently encodable/decodable
areas). In order to detect and group similar frame areas into the same subpicture, we make
use of image segmentation techniques and modify them properly for keeping up with
video coding standards’ restrictions. In this respect, Otsu thresholding [7] and region grow-
ing [8] image segmentation methods are utilized, due to their simplicity and effectiveness.
However, image segmentation algorithms operate on a pixel level, while in the first step of
the video coding process, the frame is divided into non-overlapping blocks of pixels called
Coding Tree Units (CTUs), upon which the whole coding process is carried out. In this
work, we propose two algorithms, Serial Region Growing and Concurrent Region Growing,
that are inspired by the abovementioned image segmentation algorithms but are designed
for frame partitioning in VVC.

Another restriction posed by the standard concerns the definition of subpictures,
where the subpicture boundaries need to comply with slice boundaries, while slices are
defined either as a subset of a tile or a collection of tiles. After detecting similar frame
areas, tiles and slices need to be appropriately defined so that over partitioning of the frame
is avoided. In order to tackle this issue, proper tile/slice frame partitioning algorithms,
namely Tile-oriented, Slice-oriented and Adjusted Slice-oriented algorithms, are proposed.
These methods aim to further reduce the coding overhead and quality loss introduced by
the inclusion of the subpicture structure by offering a more flexible tile/slice partitioning.
This is achieved by foregoing definitions of unnecessary tiles and utilizing the strength of
the rectangular slice structure.

According to experimental evaluation, the Serial Region Growing algorithm exhibited
a superior performance both in terms of segmentation fidelity (also validated by visual
results) and compression efficiency. The same stands for Slice partitioning adjustments,
where experimental results indicated an improvement in both quality and compression
efficiency over the trivial tile partitioning approach. Finally, comparison to the baseline VVC
encoder, where no frame partitioning takes place, revealed that the proposed partitioning
schemes have negligible impact on compression efficiency and video quality.

The rest of this paper is organized as follows. Section 2 discusses related work on Otsu
and region growing methods in image segmentation and video coding. In Section 3, a brief
description of image segmentation in VVC is provided, while in Section 4, Otsu and region
growing image segmentation methods are described. Section 5 presents the proposed
subpicture segmentation methods, along with the proposed tile/slice partitioning schemes
according to VVC video coding specification. In Section 6, metrics used for evaluating
image segmentation methods that could also be used in the concept of frame partitioning
in subpictures are discussed. Section 7 reports the experimental evaluation results. Finally,
Section 8 concludes the paper.

2. Related Work

Due its simplicity and robustness, the Otsu thresholding method has become a widely
used method in image segmentation. In the Otsu method, an appropriate threshold that
maximizes between-class variance is searched and based on that threshold value, the image
is segmented into foreground and background. The traditional Otsu method utilizes a one-
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dimensional (1D) histogram, meaning that spatial correlation of pixels is not considered,
leading to poor performance in low signal-to-noise ratio images. In order to tackle this,
in [9], a two-dimensional (2D) Otsu implementation was introduced, utilizing both the
value of each gray pixel and the mean value of neighboring pixel values. Although
the 2D Otsu method achieved a better anti-noise performance, it also introduced higher
computational complexity, while using the conventional partition scheme led to a relatively
poor anti-noise performance [10]. In this regard, an extensive amount of works in the
literature have focused on improving the 2D Otsu method. In [11] an improved image
segmentation scheme based on the Otsu method was introduced. In the proposed method,
the optimal threshold value is calculated by limiting the threshold selection range and
searching the minimum variance ratio. In [12], 2D histogram projection along with a
fast scheme, based on the wavelet transform, for searching the extrema of the projected
histogram, was proposed. In [13], a modified 2D Otsu mapped the 2D histogram pixels
onto different trapezoid regions in order to narrow the threshold range. In [14], the median
and average filters were used in order to smooth the image, which was used in the next step
to build the 2D histogram, while the optimal threshold value was selected by performing
two 1D searches on the 2D histogram. In [15], the probabilities of diagonal quadrants were
calculated separately in the 2D histogram in order to reduce computational complexity.

Concerning the region-growing image segmentation technique, [16] introduced three
criteria based on color homogeneity. The first criterion concerned the similarity of a pixel
with its neighboring pixels, the second criterion regarded similarity of a pixel on a local
and regional basis, while the third criterion considered pixel similarity when compared to
the average value of the studied region. After performing region growing, the proposed
method continued by merging similar regions. In [8], an image segmentation method
based on seeded region growing and merging was proposed. In seeded region growing,
the seed pixels are chosen based on the similarity and the Euclidean distance to their
neighboring pixels, while in the merging step, small regions and regions that satisfy a
homogeneity function are grouped together. In [17], an automatic seed selection algorithm
was proposed for color image segmentation. To determine the initial seed points, the
similarity of a pixel to its neighboring pixels was considered, while a threshold was utilized
for defining the best pixel candidates using the Otsu method. Additionally, the relative
distance between a candidate pixel and its eight neighbors was calculated and a threshold
value was used again to choose the best candidate seed pixels. In the next step of the
proposed method region, growing and region-merging is performed. In [18], an automatic
image segmentation method was introduced, where for performing region growing, an
improved isotropic color-edge detector was utilized to obtain the color edges and used the
centroids between adjacent edge regions as initial seeds. In [19], a method that effectively
predicts the direction of the region-growing process by utilizing similarity and discontinuity
measures was proposed.

Image segmentation also serves as a preprocessing step and is extensively used in
video coding. In [20], the Otsu method was utilized in order to determine the complexity of
each largest coding unit (LCU) and reduce the number of depth levels checked during the
coding unit (CU) mode decision. In [21], an optimal threshold value was determined, using
the 2-D Otsu method [22], [23], to accelerate the block size decision in intra-prediction for
H.264. The proposed method calculates an appropriate threshold value that is then used in
order to divide an image into blocks of size 4x4 or 16x16 pixels. In [24], a modified version
of Otsu thresholding was introduced to reduce the complexity of CU and prediction unit
(PU) mode decision processes in 3D-HEVC. In the proposed scheme, two thresholds were
determined that were further refined to divide the original depth map in a foreground, a
background and a middle ground, and a fast mode decision was carried out based on CTU
region classification.
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Although image segmentation is broadly used in video coding, none of the existing
works consider the problem of content aware subpicture partitioning in VVC. In this work,
we propose two subpicture partitioning algorithms, which are based on well-known image
segmentation methods, but are appropriately designed for frame partitioning in video
coding. Closest to the proposed work is [17], as we also use the concept of automatic
seed selection and Otsu thresholding regarding homogeneity. However, the algorithm
presented in [17] could not be used as is in the context of video coding, as it works on
pixel basis, whereas frame partitioning in all recent video standards is applied on a block
of pixels basis. Additionally, our contribution extends to efficiently applying tile/slice
partitioning, respecting the restrictions posed by the VVC standard, as described in the
following sections.

3. Frame Partitioning in VVC

Like most of its predecessors, VVC adopts a block-based hybrid architecture, where
inter-prediction and intra-prediction are combined with transform and entropy coding.
As a first step in the encoding process, a frame is partitioned into non-overlapping blocks
called Coding Tree Units (CTUs); then, the basic processing units upon the whole coding
process is conducted. In VVC, the maximum size of a CTU is increased to 128× 128 pixels,
as opposed to HEVC, where a maximum CTU size of 64× 64 pixels is supported. In the high
level of the coding process, a set of CTUs can be grouped together to form independently
encodable/decodable areas within a frame. In VVC, four high-level picture partitioning
schemes are incorporated, namely slices, tiles, wavefront parallel processing (WPP) and
subpictures. Slices, tiles and WPP are partitioning concepts that are also present in HEVC.
In VVC, however, these concepts are adopted with some modifications. Subpictures, on
the other hand, refers to a newly introduced frame partitioning scheme that, while it is
conceptually the same as motion-constrained tile set (MCTS) in HEVC, has a different
design, which offers a better coding efficiency capability.

3.1. Tiles in VVC

In VVC, the concept of tiles is kept almost intact. As in HEVC, a picture can be divided
into a grid of tile rows and tile columns, whereby a tile forms an independently encod-
able/decodable rectangular picture sub-area. Coding dependencies, regarding intra/inter
prediction and entropy coding, are broken in tile boundaries in order to support indepen-
dent coding. However, VVC adopts simpler tile partition signaling using a unified syntax
that allows signaling of both uniform and non-uniform tile partitions.

3.2. Slices in VVC

The design of slices in VVC is entirely different than its predecessors. In HEVC and
AVC (Advanced Video Coding) [25], a slice consists of a set of CTUs or macroblocks,
respectively, in a raster-scan order residing within a frame or a tile. In VVC however, the
raster-scan ordering of CTUs within a slice is removed, and two new modes are adopted
instead, namely rectangular slice mode and raster-scan slice mode. In rectangular slice
mode, a slice covers a rectangular region within a frame consisting either of a number of
consecutive complete tile rows, forming a subset of tile, or a number of complete tiles. In
raster-scan mode, instead of consecutive CTUs, a slice contains a number of complete tiles
in raster-scan order. Examples of the tow slice modes are illustrated in Figures 1 and 2.
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Figure 1. Example of raster-scan slice partitioning (12 tiles, 3 raster-scan slices).

(a) (b)

Figure 2. Example of rectangular slice partitioning. (a) 12 tiles (4 columns, 3 rows) and 9 slices;
(b) 6 tiles (3 columns, 3 rows) and 7 slices.

3.3. Subpictures in VVC

In VVC, a new frame partitioning tool, named subpictures, is introduced. A subpicture
covers a rectangular frame sub-region consisting of one or more rectangular slices, as
shown in Figure 3. Additionally, a subpicture can be specified as extractable—whereby no
dependencies exist between current subpicture and subpictures within the same frame or
subpictures in previous frames—or non-extractable. In both cases, whether in-loop filtering
across each subpicture’s boundaries will be applied or not can be defined by the encoder.

As already mentioned, the basic structural unit of a subpicture is the rectangular slice,
where a rectangular slice can either contain a number of tiles or a number of consecutive
CTUs within a tile. In that sense, the combination of subpictures and tiles can be achieved
through rectangular slices. Since within a tile, a number of rectangular slices can be
defined, it is possible to have multiple subpictures within a tile, while the exact opposite
is also possible, where a subpicture can contain a number of tiles that collectively form a
rectangular slice. As can be seen in Figure 3, the boundaries of a subpicture do not always
coincide with tile boundaries. While it is inevitable for some of the vertical subpicture
boundaries to align with vertical tile boundaries, since a number of tile rows can form
a rectangular slice, the top or bottom horizontal boundaries of subpictures may never
coincide with horizontal tile boundaries.

Extractable subpictures are conceptually similar to MCTSs in HEVC. Like MCTSs,
subpictures support independent encoding/decoding and extraction of a certain area
within a frame, a useful functionality for applications such as viewport-dependent 360°
video and region of interest (ROI). However, subpictures and MCTSs do not share the
same design. An important difference between MCTSs and subpictures lies in the fact
that motion vectors (MVs) in subpictures can point outside of subpicture boundaries,
whether a subpicture is extractable or not, thereby favoring coding efficiency. In case of
extractable subpictures, sample padding is applied to subpicture boundaries in the decoder.
Additionally, the extraction of a number of subpictures does not require rewriting of the
slice headers, as is the case with HEVC MCTSs. Since a frame can contain at least one slice
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which carries a significant amount of data, removing slice headers rewriting relieves the
underlying burden in application systems.

Figure 3. Example of subpicture partitioning (4 × 2 tiles, 12 slices/subpictures).

4. Image Segmentation

Image segmentation is one of the most important techniques used to extract relevant
information from an image, dividing the image into multiple segments representing the
sub-areas or the objects of which an image consists [26]. In a sense, an image segmentation
process is applied in order to simplify an image, so it is easier to evaluate or detect a region
of interest (ROI). Most of the existing algorithms for image segmentation [27] are based on
two fundamental properties of intensity, which are discontinuity and similarity [26]. As
far as discontinuity is concerned, segmentation of an image is carried out based on abrupt
changes in intensity. An example that falls into this category is edge detection. Regarding
the second approach, based on similarity, an image is segmented into sub-areas that can
be characterized as similar based on certain criteria. Methods that fall into this category
are, for example, region split and merge, region growing as well as thresholding [28–30].
Thresholding is a simple, yet the most intuitive and effective, segmentation method used for
partitioning an image into a foreground and a background. Gray levels regarding an object
within an image are utterly different from gray levels. In this regard, thresholding utilizes
those gray levels in order to categorize image pixels into two groups, distinguishing the
foreground from the background [31,32]. Thresholding methods that have been proposed in
the literature can be divided in two categories, namely global and local. Global thresholding
techniques apply a single threshold to the entire image, while local techniques apply
separate threshold values to different image areas [33]. A traditional global thresholding
technique, yet the most successful, which is broadly used in applications such as pattern
recognition, document binarization and computer vision, is the Otsu method [34].

4.1. Otsu Method

In the Otsu method, a threshold that maximizes the so-called between-class-variance
metric is searched. The basic idea is to find a suitable threshold that divides the image
pixels into two categories based on pixels’ intensity. Apart from its optimality, due to the
method used for determining the threshold, Otsu is also characterized by its simplicity.
The simplicity of this technique lies in the fact that it is entirely based on calculations
carried out on the histogram of the image. In order to calculate the best threshold for an
image that will segment the image into a foreground and a background, using the Otsu
method, a color image is first converted into a grayscale image and then the histogram
of the image is calculated. Now, assume that a threshold k is chosen, so that the image
pixels are categorized into two classes, C1 and C2 [26]. In class C1, one finds the pixels
with values in the range [0, k], while class C2 is comprised of pixels with values in the
range[k + 1, L− 1], where L denotes the distinct intensity values of that image. Using that
threshold, the probability of a pixel belonging to the first class is
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P1(k) =
k

∑
i=0

pi (1)

while the probability of a pixel belonging to the second class is

P2(k) =
L−1

∑
i=k+1

pi (2)

The mean values of pixel intensities regarding class C1 and C2 are

m1(k) =
∑k

i=0 ipi

P1(k)
(3)

m2(k) =
∑L−1

i=k+1 ipi

P2(k)
(4)

while the mean value of pixel intensities for the whole image is

mG(k) =
L−1

∑
i=0

ipi (5)

Substituting with previous results, the above can also be expressed as [35]

mG(k) = P1(k)m1(k) + P2(k)m2(k) (6)

and
P1(k) + P2(k) = 1 (7)

Additionally, the variances of classes C1 and C2 are

σ2
1 (k) =

∑k
i=0(i−m1(k))2 pi

P1(k)
(8)

σ2
2 (k) =

∑L−1
i=k+1(i−m2(k))2 pi

P2(k)
(9)

while the total variance is

σ2
G(k) =

L−1

∑
i=0

(i−mG(k))2 pi (10)

and the between class variance, which in the Otsu method is maximized, is expressed as

σ2
B(k) = P1(k)(m1(k)−mG(k))2 + P2(k)(m2(k)−mG(k))2 (11)

Class separability is also expressed as

n =
σ2

B(k)
σ2

G(k)
(12)

For each k value (k = 1, 2, . . . , L − 2), the aforementioned probabilities and mean
values are calculated, while the value of σ2

B(k) is also determined for each value of k. The
best threshold k∗ is then decided so that σ2

B(k
∗) is maximized.

4.2. Region-Growing Method

Another simple, yet fast and effective image segmentation technique is region growing.
In the region-growing method, a connected image region is extracted based on certain
criteria, such as pixel intensity. The conventional approach of the region growing technique
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requires the manual selection of a set of initial seed points, which can be composed either
of a single pixel or a group of connected pixels, and the extraction of neighboring pixels
based on a similarity condition. Following this process, the method starts from an initial
point and adds pixels to the selected region until the condition is no longer met. When the
process of growing a certain region stops, another pixel that is not yet included in any other
region is selected, and the process continues until all pixels are assigned to a region. The
main advantage of this image segmentation technique is the formation of connected image
regions. The basic algorithm of the region growing method based on 8-connectivity can be
described as follows [26].

Let f(x, y) denote an input image, S(x, y) denote a seed array containing ones at the
locations of seed points and zeroes elsewhere, and Q denote a predicate to be applied at
each location (x, y). Arrays f and S are assumed to be of the same size.

1. Find all connected components in S(x, y). Reduce each connected component to one
pixel and mark these pixels as one. All other pixels in S will be marked as zero.

2. Form an image fQ where, at each point (x,y), fQ(x, y) = 1 if a certain condition is
satisfied, Q, at those coordinates, and fQ(x, y) = 0 otherwise.

3. Let g be the resulted image of appending each seed point in S all the points that have
a value of one in fQ and are 8-connected to that seed point.

4. Assign each connected component in g to a different region by labeling them (e.g., inte-
gers or letters). This is the obtained segmented image after performing region growing.

Many variations of the conventional region-growing algorithm have been developed
regarding both seed selection and homogeneity criteria. These variations include automatic
seed selection and integration of Otsu thresholding.

5. Proposed Image Segmentation Methods

In the proposed content-aware subpicture segmentation methods, a frame of a video
sequence is treated as a grayscale image, and segmentation techniques inspired by image
segmentation are utilized in order to partition a frame into a number of spatially uniform
areas that represent the desired number of subpictures. More precisely, in the first step
of each of the proposed segmentation algorithms, Otsu thresholding is applied in order
to separate the image into foreground and background areas, resulting in a binary image
where 0 values represent pixels belonging in the background, while values of 255 represent
pixels belonging in the foreground. In the next step, region growing is utilized to define the
desired number of subpictures. However, since the conventional region-growing method
operates on a pixel level, proposed region-growing methods are appropriately modified in
order to operate on a CTU-level and be rendered compatible with the VVC video coding
standard. In that sense, a CTU map is created, where for each CTU, the mean value of the
resulted Otsu thresholding pixel values is calculated, normalized (in the range between
zero and one) and used as input to the two proposed region growing methods, namely
Serial Region Growing and Concurrent Region Growing.

5.1. Serial Region Growing

In the first method, presented in Algorithm 1, the target number of foreground and
background areas are initialized and region growing with automatic seed selection is
subsequently performed, starting with defining the foreground areas. In the first step, the
most homogeneous CTU in the foreground is searched, serving as the initial seed point, and
during Region Growing, homogeneous sub-picture areas are grouped together, where each
initial seed area grows in the upper, lower, left or right direction. In order to grow a region
in a direction, the value of each CTU from the aforementioned CTU map that will be added
to the current area must be larger than a threshold. Note that this threshold is tunable. As
fine frame partitioning leads to a disproportionate decrease in video compression efficiency,
a restriction is posed by the algorithm concerning the minimum size of a region. Therefore,
only areas that are larger than or equal to a predefined size are kept, while smaller areas
are discarded. It is important to mention that an area grows until the threshold criterion is
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no longer met in any direction before proceeding to the next area. After defining the target
foreground areas, the above-mentioned process is repeated for background areas, where
the most homogeneous CTUs in the background are utilized as seed points for region
growth. During the next stage of the algorithm, the defined foreground and background
areas are expanded in order to cover the whole frame area. It is possible that fewer than
the target areas are detected. In the final stage of the algorithm, splitting of the largest areas
of the frame takes place at the point where the difference of average CTU map values is
maximized until the desired number of subpictures is reached.

Algorithm 1 Serial Region Growing

1: procedure SERIALREGIONGROWING()
2: N f ← numberO f ForegroundAreas
3: Nb← numberO f BackgroundAreas
4: numO f Areas← 0
5: while numO f Areas < N f do
6: f indMostHomogeneousForegroundCTU
7: if notavailable then
8: break
9: else

10: expandRectangleAtMostUni f ormDirectionI f AreaMeanValue > T
11: numO f Areas ++
12: end if
13: end while
14: while numO f Areas < N f + Nb do
15: f indmosthomogeneousbackgroundCTU
16: if notavailable then
17: break
18: else
19: expandRectangleAtMostUni f ormDirectionI f AreaMeanValue > 1− T
20: numO f Areas ++
21: end if
22: end while
23: while numO f Areas ≤ N f + Nb do
24: splitLargestAreaIntoAreasa1anda2Where|avg(a1)− avg(a2)|IsMaximized
25: numO f Areas ++
26: end while
27: end procedure

5.2. Concurrent Region Growing

In the second method, presented in Algorithm 2, the CTU map values are sorted
in descending order, from the most homogeneous CTUs to the foreground to the most
homogeneous in the background, and a number of initial seed points equal to the number
of target number of subpictures, are automatically determined based on the descending
order. A restriction concerning the minimum distance between the selected seed points is
considered in order to avoid the formation of very small regions as justified in Section 5.1.
In that sense, whenever a seed candidate is selected, the minimum distance restriction must
be met. If not, the algorithm proceeds with the next CTU seed candidate. After defining
the seed points, region growing is applied to each of the defined areas, where rectangular
regions are expanded either in the top, bottom, left or right direction. One step of region
growing is performed for each area in each iteration, meaning that an area does not need
to be fully expanded before proceeding to the next. The criterion by which a rectangular
area is expanded, as well as in which direction it will be expanded, is variance. For all
available choices, the variance of each new rectangular area is calculated and the direction
that yields the minimum variance is chosen. The algorithm terminates when no more
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expansion options are to be considered, meaning that either frame borders are reached, or
the current area collides with another rectangular area.

After the sub-picture areas have been defined, since subpictures’ boundaries need to
comply with slice boundaries and slices are defined either as a subset of a tile or a collection
of tiles, tiles and slices need to be appropriately determined. An additional restriction
posed by the VVC standard is that all CTUs of a subpicture must belong to the same tile and
all CTUs in a tile must belong to the same subpicture. In this regard, tile/slice partitioning
methods are introduced and more specifically, a straightforward method is proposed, along
with two cost effective partitioning methods for avoiding over-partitioning of a frame,
namely Tile-oriented petitioning, Slice-oriented partitioning and Adjusted Slice-oriented
partitioning, respectively.

Algorithm 2 Concurrent Region Growing

1: procedure BLOCKVARIANCE(block, direction)
2: if direction = up then

return Variance (block.xstart - 1, block.xend, block.ystart, block.yend)
3: end if
4: if direction = down then

return Variance (block.xstart, block.xend + 1, block.ystart, block.yend)
5: end if
6: if direction = le f t then

return Variance (block.xstart, block.xend, block.ystart - 1, block.yend)
7: end if
8: if direction = right then

return Variance (block.xstart, block.xend, block.ystart, block.yend + 1)
9: end if

10: end procedure
11: procedure CTUBASEDREGIONGROWING
12: while NumberO f AvailableChoices > 0 do
13: arg minmblock,mdir BlockVariance(block, direction)
14: expandmblockInTheTirectionmdir
15: end while
16: end procedure

5.3. Tile-Oriented Partitioning

The most straightforward approach is to define tile lines based on the subpicture
borders. However, this would create unnecessary partitions, leading to both loss of quality
and bitrate increase. As such, adaptive ways of frame partitioning need be developed.

5.4. Slice-Oriented Partitioning

The first adaptation to the straightforward tile partitioning takes advantage of the
fact that many rectangular slices can exist in a tile, allowing for the employment of more
robust and efficient tile partitioning where fewer tiles are defined. Taking this fact into
consideration, the following is proposed concerning the tile grid. For each subpicture,
vertical border lines serve as vertical borders for tiles. Regarding the horizontal borders of
tiles, only horizontal borders of subpictures that cut vertical borders of tiles are considered.
In all other cases, the horizontal borders of subpictures serve as borders of slices within
a tile. An example of this method is provided in Figure 4, where a frame is divided into
four subpictures, where different colors represent different subpicture areas and solid lines
represent the subpicture borders. According to the proposed slice-oriented partitioning
method, each horizontal subpicture border serves as a slice border, instead of a horizontal
tile border (indicated by the dashed lines) that would be the outcome of the straightforward
tile partitioning.
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Figure 4. Example of proposed Slice-oriented partitioning (4 subpictures, 2 tiles, 6 slices).

5.5. Adjusted Slice-Oriented Partitioning

This tile partitioning method, which is an adaption of the previous method, focuses
on reducing the number of vertical lines drawn. This can be achieved by adjusting the
boundaries of the subpicture areas that have close vertical boundaries by employing a
threshold, T. If the CTU distance between two vertical boundaries is lower than or equal
to the threshold T, the boundaries are adjusted to be the same. Since this step serves as
a final fine-tuning stage, the initial subpictures generated by the Serial and Concurrent
Region Growing algorithms need to be kept almost intact. For this reason, in experiments,
threshold T is set to one. As shown in Figure 5, since the boundaries of the gray and the
blue subpictures have a distance of one, both the right and the left vertical borders of the
orange and the blue subpictures, respectively, are moved to the right by one CTU column,
reducing the number of vertical tile lines needed to define the subpicture areas.

Figure 5. Example of proposed Adjusted Slice-oriented partitioning (5 subpictures, 6 tiles, 6 slices).

5.6. Visual Examples of Proposed Segmentation Methods

In Figures 6–10, visual examples for the proposed image segmentation methods are
provided. Since the proposed algorithms differ in terms of initial seed point selection
and region growing methodology, different results are produced depending on the image
complexity and target number of subpictures.

In Figure 6 one may see the impact of the two proposed subpicture partitioning
algorithms for the test sequence BasketballDrive. As can be seen, this is an example with
a big proportion of the frame in the background. The background can be divided to two
distinct, rather homogeneous areas. In this case, the first proposed algorithm (Figure 6a–c),
which in general seems to favor homogeneous areas, detects these two (background) areas
as two subpictures. The rest of the subpictures are formed by splitting these subpictures in a
way that the new subpictures created includes areas with the highest possible homogeneity.
On the other hand, the second algorithm (Figure 6d–f), which starts by growing all areas
concurrently, has to split the frame into a specific number of subpictures from the beginning.
As a result, it can detect areas with players more efficiently.
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(a) 4 regions. (b) 5 regions. (c) 7 regions.

(d) 4 regions. (e) 5 regions. (f) 7 regions.
Figure 6. BasketballDrive video sequence: (a–c) Serial Region Growing, (d–f) Concurrent Region
Growing.

Concerning the Cactus video sequence, Figure 7, as can be observed, object areas
are homogeneous, while the background is more complex. Concerning the first method,
(Figure 7a–c), since the separation between objects is clearer, the algorithm is able to better
detect objects of interest, cactus and paper, while in the second method, (Figure 7d–f),
since homogeneous CTUs are detected within objects and the region growing of each area
happens concurrently, the object separation performance falls behind compared to the
first method.

(a) 4 regions. (b) 5 regions. (c) 7 regions.

(d) 4 regions. (e) 5 regions. (f) 7 regions.
Figure 7. Cactus video sequence: (a–c) Serial Region Growing, (d–f) Concurrent Region Growing.

In Figure 8, the image segmentation results for Kimono are depicted. This video
sequence is characterized by a large homogeneous background area, the trees behind the
geisha. Again, the first algorithm (Figure 8a–c), (in case of four subpictures) detects and
separates the background on the right and left side of the geisha, as well as the top of
her head, into different subpictures, while her face and body is assigned to a different
subpicture. However the second method (Figure 8d–f) fails to detect the object of interest,
and instead tries to cover the background areas.
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(a) 4 regions. (b) 5 regions. (c) 7 regions.

(d) 4 regions. (e) 5 regions. (f) 7 regions.
Figure 8. Kimono video sequence: (a–c) Serial Region Growing, (d–f) Concurrent Region Growing.

In Figure 9, visual examples are provided for ParkScene video sequence. As can be
observed, the ParkScene video sequence is also characterized by a complex background.
Again, the first method (Figure 9a–c), is able to detect and separate the homogeneous areas,
the floor and the trees, while in the second method, (Figure 9d–f), since the most homoge-
neous CTUs fall into those regions, the most homogeneous areas tend to be over-separated.

(a) 4 regions. (b) 5 regions. (c) 7 regions.

(d) 4 regions. (e) 5 regions. (f) 7 regions.
Figure 9. Parkscene video sequence: (a–c) Serial Region Growing, (d–f) Concurrent Region Growing.

Lastly, in the BQTerrace video sequence, Figure 10, more sharp contrasts exist; there
are white and dark areas within the frame. Concerning, the first method, (Figure 10a–c),
a good partitioning is achieved by grouping together homogeneous areas, while in the
second method, (Figure 10d–f), the most homogeneous CTUs that serve as seed points are
very close, resulting in over-partitioning of homogeneous areas.

(a) 4 regions. (b) 5 regions. (c) 7 regions.

Figure 10. Cont.
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(d) 4 regions. (e) 5 regions. (f) 7 regions.
Figure 10. BQTerrace video sequence: (a–c) Serial Region Growing, (d–f) Concurrent Region Growing.

6. Evaluation Metrics

In order to evaluate the proposed segmentation methods, we used an unsupervised ob-
jective evaluation method. Unsupervised evaluation methods offer the potential to evaluate
segmentation algorithms in the absence of ground truth concerning the segmented images,
while also enabling the objective comparison of different segmentation algorithms [36].
Additionally, unsupervised evaluation is critical in real-time segmentation, while support-
ing also adaptive segmentation schemes where the algorithm parameters are self-adjusted
according to evaluation results. Concerning unsupervised evaluation, the criteria that need
to be met [37] are:

i The regions must be uniform and homogeneous with respect to some characteristic(s).
ii Adjacent regions must have significant differences with respect to the characteristic(s)

on which they are uniform.
iii Region interiors should be simple and without holes.
iv Boundaries should be simple, not ragged, and be spatially accurate.

With respect to the first criterion, the unsupervised method used for evaluation in this
paper, namely Zeboudj’s contrast [38], utilizes the internal contrast Ij, Equation (13), to
measure the degree to which a region is uniform. The internal contrast is defined as the
average max contrast in a specific region, noted as Ri, where max contrast is defined as the
largest luminance difference between a pixel, s, and its neighboring pixels, noted as W(s) in
the same region. In Equation (13), Ai denotes the surface of a region Ri.

Ii =
1
Ai

∑
s∈Ri

max{contrast(s, t), t ∈W(s) ∩ Ri} (13)

Concerning the second criterion, Zeboudj’s contrast evaluation method uses the
external contrast Ei (14), to measure the inter-region disparity, where Ei is defined as
the average max contrast for all border pixels in that region, where max contrast is the
largest difference in luminance between a pixel and its neighboring pixels in separate
regions. In (14), Fi denotes the border (of length li) of a region Ri.

Ei =
1
li

∑
s∈Fi

max{contrast(s, t), t ∈W(s) ∩ Ri} (14)

To evaluate the whole image, the intra-region as well as the inter-region metrics must
be combined for each individual region. The contrast of a region Ri (15) is:

C(Ri)


1− Ii

Ei
if 0 < Ii < Ei

Ei if Ii = 0
0 otherwise

(15)

In the next step, the global contrast (16) of the whole image is calculated.

Czeboudj =
1
A ∑

Ri

AiC(Ri) (16)

Since the proposed algorithms are CTU based, the following assumptions were made,
regarding Equations (13) and (14):
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• Ri : Region of CTUs
• s, t : CTUs
• W(s) : The set of CTUs neighboring to s
• Luminance : The average luminance of all pixels within a CTU.

Concerning criteria (iii) and (iv), they are satisfied, since the definition of subpictures
involves continuous regions, while their boundaries are inherently simple, not ragged and
spatially accurate. Finally, in the experiments, the outcome of the proposed algorithms is
evaluated in terms of PSNR and bitrate. Concerning measurement of PSNR, Mean Square
Error (MSE) between the pixels of the coded picture and the original uncompressed one is
calculated. The PSNR of the whole video is then calculated by averaging over PSNRs of
frames. It should be noted that PSNR calculation is embedded in Reference Software used
and no changes were made by authors in this field.

7. Experiments
Setup

In order to evaluate the proposed subpicture assignment schemes, we used the VVC
Test Model (VTM) 11.2 reference software [39] and the Common test conditions [40] for the
Low Delay P configuration with QP = 32. Experiments were conducted on a Linux Server
with 2 10-core Intel(R) Xeon(R) Silver 4210 CPUs running at 2.20 GHz.

The first set of experiments aimed to show the impact of each parameter of the
proposed algorithms. For this set of experiments, we encoded the first 100 frames of the
class B common test sequences [41] listed in Table 1. Concerning Serial Region Growing,
the algorithm used two tunable thresholds, one regarding background/foreground, and
the other, the minimum area a subpicture may occupy. After the first step of the Serial
Growing algorithm, each CTU is assigned a value ranging from 0 to 1. Values close to zero
are thought to be background values, while values close to one are considered foreground
values. The first threshold T is used to determine the closeness of these values to the
limit for each case. In Table 2, we summarize the experimental results for different values
of T, 5 subpictures, and minimum area 4× 4. In order to determine the impact of the
threshold regarding the size of the minimum area in Serial Region Growing, experiments
were also conducted for different values of the minimum area threshold, ranging from
1× 1 to 5× 5 for 5 subpictures and threshold T set to 0.5. Their results are presented
in Table 3. Finally, concerning the minimum distance parameter in Concurrent Region
Growing, experimental results are shown in Table 4 for different values of the minimum
distance parameter, ranging from 1 to 5.

Table 1. CTS video sequences.

Name Resolution Frames per Second Total Frames

BasketballDrive 1920× 1080 50 500
BQTerrace 1920× 1080 60 600

Cactus 1920× 1080 50 500
Kimono 1920× 1080 24 240

ParkScene 1920× 1080 24 240

Table 2. PSNR (dB) and bitrate (bps) for different values of T.

Partitioning

T = 0.25 T = 0.5 T = 0.75

PSNR
(dB)

Bitrate
(bps)

PSNR
(dB)

Bitrate
(bps)

PSNR
(dB)

Bitrate
(bps)

Tile Oriented 36.258 1819 36.261 1818 36.259 1819
Slice Oriented 36.262 1813 36.261 1807 36.260 1819

Adjusted Slice Oriented 36.263 1809 36.262 1804 36.262 1811



Electronics 2022, 11, 2070 16 of 23

Table 3. PSNR (dB) and bitrate (bps) for different values of minimum area.

Minimum Area

Partitioning

Tile Oriented Slice Oriented Adjusted Slice Oriented

PSNR
(dB)

Bitrate
(bps)

PSNR
(dB)

Bitrate
(bps)

PSNR
(dB)

Bitrate
(bps)

1× 1 36.266 1822 36.266 1822 36.266 1822
2× 2 36.261 1820 36.263 1814 36.263 1810
3× 3 36.260 1821 36.261 1818 36.262 1815
4× 4 36.261 1818 36.261 1807 36.262 1804
5× 5 36.261 1824 36.264 1818 36.265 1813

Table 4. PSNR (dB) and Bitrate (bps) for different values of minimum distance.

Minimum Distance

Partitioning

Tile Oriented Slice Oriented Adjusted Slice Oriented

PSNR
(dB)

Bitrate
(bps)

PSNR
(dB)

Bitrate
(bps)

PSNR
(dB)

Bitrate
(bps)

1 36.261 1807 36.261 1807 36.261 1807
2 36.255 1823 36.263 1804 36.263 1804
3 36.258 1818 36.259 1814 36.259 1814
4 36.256 1821 36.260 1814 36.260 1814
5 36.256 1822 36.260 1815 36.260 1815

With the next set of experiments we studied the comparative impact of the two
proposed algorithms regarding video coding performance. For these experiments, the
thresholds of each proposed algorithm were set as follows. For the Serial Region Growing
Algorithm, threshold T = 0.5 which is the mid allowable value, as T varies from 0 to 1
and minimum area size was set to 4× 4 CTUs, while for the Concurrent Region Growing,
the minimum distance between successive seed points was set to 3 CTUs. The values for
both minimum size area and minimum distance were chosen so as to lead to minimum
areas that are usually met in frame partitioning algorithms in video coding (i.e., nearly no
smaller than 10% of the total frame area).

Figures 11–13 plot the average bitrate performance, while Figures 14–16 plot the
average YUV-PSNR performance for all the video sequences presented in Table 1 for 4, 5
and 7 regions, respectively.

1792

1794

1796

1798

1800

1802

1804

1806

1808

1810

SerialRegionGrowing ConcurrentRegionGrowing

Tile-or iented partitioning

Slice-oriented partitioning

Adjusted Slice-oriented
partitioning

Figure 11. Average bitrate performance for 4 regions.
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1795

1800

1805

1810

1815

1820

SerialRegionGrowing ConcurrentRegionGrowing

Tile-or iented partitioning

Slice-oriented partitioning

Adjusted Slice-oriented
partitioning

Figure 12. Average bitrate performance for 5 regions.

1830

1835

1840

1845

1850

1855

1860

SerialRegionGrowing ConcurrentRegionGrowing

Tile-or iented partitioning

Slice-oriented partitioning

Adjusted Slice-oriented
partitioning

Figure 13. Average bitrate performance for 7 regions.
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36.262

36.263

36.264

36.265

36.266

36.267

36.268

36.269

SerialRegionGrowing ConcurrentRegionGrowing

YU
V-

PS
N

R 
(d

B) Tile-or iented partitioning

Slice-oriented partitioning

Adjusted Slice-oriented
partitioning

Figure 14. Average YUV-PSNR performance 4 regions.
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36.258

36.26

36.262

36.264

36.266

SerialRegionGrowing ConcurrentRegionGrowing

YU
V-

PS
N

R 
(d

B) Tile-or iented partitioning

Slice-oriented partitioning

Adjusted Slice-oriented
partitioning

Figure 15. Average YUV-PSNR performance 5 regions.
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36.248

36.25
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SerialRegionGrowing ConcurrentRegionGrowing

YU
V-

PS
N

R 
(d

B) Tile-or iented partitioning

Slice-oriented partitioning

Adjusted Slice-oriented
partitioning

Figure 16. Average YUV-PSNR performance for 7 regions.

Experimental results show, as indicated in Figures 11–16, Serial Region Growing
achieves slightly better compression efficiency. This result is in complete agreement with
the visual results presented in Section 5. As the Serial Region Growing Subpicture Parti-
tioning method manages to detect better objects in the foreground and has a more precise
partitioning regarding foreground and background, subpictures produced contain content
that can be compressed more efficiently. At the same time, the cost from the breaking of
dependencies among subpictures is smaller compared to that of having subpictures that
share similar content.

To further study the effects of the proposed segmentation algorithms, we have also
conducted experiments for the sequences of the Ultra Video Group (UVG) dataset [42]
presented in Table 5, using the same parameter configuration as above. As results indicate
in Figures 17 and 18, the same trend can be observed, where the Serial Region Growing algo-
rithm exhibits a relatively superior compression performance compared to the Concurrent
Region Growing algorithm.

Table 5. UVG video sequences.

Name Resolution Frames per Second Total Frames

Bosphorus 1920× 1080 120 600
Beauty 1920× 1080 120 600

YachtRide 1920× 1080 120 600
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Figure 17. Average bitrate performance for 4, 5 and 7 regions (UVG dataset).

38.395

38.4

38.405

38.41

38.415

38.42

38.425

38.43

4 Regions 5Regions 7Regions

YU
V-

PS
N

R 
(d

B)

SerialRegionGrowing

ConcurrentRegionGrowing

Figure 18. Average YUV-PSNR performance for 4, 5 and 7 regions (UVG dataset).

In order to verify the stability of the proposed algorithms, experiments with an extreme
number of areas were conducted. It should be noted that the case of 135 areas means that
each area contains only one CTU. The results presented in Table 6 indicate that the presented
algorithms are robust regarding their segmentation ability, as they manage to create an
unrealistic number of partitions without collapsing. It can also be noticed that for a large
number of areas, compression efficiency is better for the Concurrent Region Growing
algorithm. This is due to the fact that in order to achieve a segmentation with large number
of areas, the thresholds concerning minimum area for the Serial Region Growing algorithm
and minimum distance for the Concurrent Region Growing algorithm had to be minimized.
Therefore neighboring CTUs could be selected as seeds which could lead to very small
areas. As the Serial Region Growing algorithm begins with one seed, grows the area and
then proceeds to the seed of the next area, it tends to form big areas in the beginning and
very small areas (even areas with just one CTU) as the algorithm progresses. On the other
hand, for the Concurrent Region Growing algorithm, the probability of forming extremely
small areas tends to be smaller, since all seed points are selected simultaneously, and the
areas are expanded concurrently.
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Table 6. PSNR (dB) and Bitrate (bps) for extreme number of areas.

Number Of Areas
Serial Region Growing Concurrent Region Growing

PSNR (dB) Bitrate (bps) PSNR (dB) Bitrate (bps)

9 1904 36.243 1864 36.251
15 2065 36.230 1969 36.243
135 2519 36.219 2519 36.219

Moreover, concerning the slice/tile partitioning schemes, Figures 11–16, which refer to
the first set of experiments, indicate that the proposed methods lead to bitrate savings, with
Slice-oriented Partitioning and Adjusted Slice-oriented Partitioning producing fairly similar
results. This can be explained by the fact that both tile/slice partitioning methods aim to
reduce bitrate. Slice-oriented Partitioning achieves that by avoiding drawing redundant
lines, while Adjusted Slice-oriented Partitioning adjusts the subpicture borders so that a
more cost effective, in terms of coding efficiency, slice/tile partitioning can be adopted.
Adjusted Slice-oriented Partitioning further increases the compression rate compared to
Slice-oriented Partitioning, with a minor loss in terms of PSNR. It should be noted that the
initial subpicture partitioning may be such that all or some of the aforementioned schemes
lead to the same slice/tile grid. This is the case met in the second set of experiments;
therefore, in Figures 17 and 18 results are presented only for the region growing algorithms,
as all partitioning schemes exhibited the same performance.

Furthermore, Tables 7 and 8 summarize the difference between the proposed seg-
mentation and partitioning algorithms for 4, 5 and 7 regions on the one side and the VVC
encoder without any partitioning scheme (i.e., subpictures, tiles, slices) as baseline on
the other. As it can be seen, proposed methods have minor impact on video quality and
compression efficiency, with PSNR degradation ranging from 0.006 to 0.028 dB and Bitrate
increment from 2% to 5%, respectively.

Table 7. PSNR (dB) difference between proposed algorithm and baseline VVC encoder.

Segmentation Partitioning
∆PSNR (dB)

4 Reg. 5 Reg. 7 Reg.

Serial Region Growing
Tile-oriented −0.011 −0.013 −0.023
Slice-oriented −0.006 −0.011 −0.020

Adjusted Slice-oriented −0.006 −0.010 −0.020

Concurrent Region Growing
Tile-oriented −0.011 −0.016 −0.028
Slice-oriented −0.010 −0.016 −0.028

Adjusted Slice-oriented −0.010 −0.016 −0.028

Table 8. Bitrate difference between proposed algorithm and baseline VVC encoder.

Segmentation Partitioning
∆BR (%)

4 Reg. 5 Reg. 7 Reg.

Serial Region Growing
Tile-oriented 2 3 5
Slice-oriented 2 2 4

Adjusted Slice-oriented 2 2 4

Concurrent Region Growing
Tile-oriented 2 3 5
Slice-oriented 2 3 5

Adjusted Slice-oriented 2 3 5

One issue we have come across is that there is no ground truth for the standard test
sequences that the experiments are run on. Another issue to tackle is that the algorithms
operate on video data, and as such, they are CTU based and not pixel based, unlike standard
image segmentation algorithms. For the aforementioned reasons, unsupervised evaluation
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methods are used, and more particularly, the Zebdouj’s contrast metric is utilized in order
to evaluate the performance of the introduced segmentation algorithms. The advantage of
unsupervised methods is that the presence of a ground truth is not needed. Lastly, as both
Region Growing proposed algorithms operate on 15 × 9 map where each point represents
a CTU, and as such operates on a CTU level and not on a pixel level, we chose to calculate
Zeboudj’s contrast contrast on 15× 9 image where each point represents a CTU’s average
luma value instead of on the default 1920× 1080 image.

In Tables 9 and 10, the Zebdouj’s global contrast is presented for 4, 5 and 7 regions for
the CTS and UVG video datasets, respectively. As can easily be inferred by Equation (13) a
higher Zeboudj’s contrast value amounts to a better segmentation. Experimental results
for both video datasets indicate that the proposed Serial Region Growing Subpicture
Partitioning algorithm yields a better performance. The general indication for the suitability
of Serial Region Growing as a partitioning algorithm, derived by Zeboudj’s contrast metric,
is correlated with the visual data for the segmentations shown in Figures 6–10, where Serial
Region Growing achieves segmentation that seems to be better adapted to the image’s
contents. Finally, it should be noted that both proposed algorithms have a negligible impact
on encoding time, as their execution time is in the order of milliseconds, when one frame’s
encoding time in the baseline VVC encoder is in the order of tens of seconds.

Table 9. Zeboudj’s contrast for 4, 5, 7 regions (Serial Region Growing, Concurrent Region Growing),
CTS video sequences.

Number of Areas
Segmentation Algorithm

Serial Region Growing Concurrent Region Growing

4 0.107 0.040
5 0.135 0.037
7 0.160 0.032

Table 10. Zeboudj’s contrast for 4, 5, 7 regions (Serial Region Growing, Concurrent Region Growing),
UVG video sequences.

Number of Areas
Segmentation Algorithm

Serial Region Growing Concurrent Region Growing

4 0.242 0.177
5 0.172 0.091
7 0.156 0.082

8. Conclusions

In this paper, we proposed two image segmentation algorithms, Serial and Concurrent
Region Growing, suitable for video data in order to provide subpictures with independent
contents during video encoding. To the best of our knowledge, this is the first time that
image segmentation techniques have been used for content-aware subpicture partitioning
in VVC video encoding. Additionally, tile/slice partitioning adjustments were developed
with the aim of reducing the bitrate by foregoing definition of redundant slice and tiles.
The algorithms were then evaluated with Zebdouj’s contrast. Further evaluation of the
algorithms, as well as the tile/slice partitioning schemes, took place in terms of bitrate
and psnr. Overall, Serial Region Growing was shown to be the most suitable algorithm
for the most common cases, both in terms of segmentation accuracy and video coding
efficiency. However, in extreme cases, where a large number of subpictures is desired,
Concurrent Region Growing produces better results in terms of compression efficiency and
video quality. Last but not least, the tile/slice partitioning adjustments helped to alleviate
some of the bitrate increase introduced by employing subpicture partitioning during the
encoding scheme.
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