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Abstract: The reconnaissance of high-value targets is prerequisite for effective operations. The recent
appreciation of deep reinforcement learning (DRL) arises from its success in navigation problems, but
due to the competitiveness and complexity of the military field, the applications of DRL in the mili-
tary field are still unsatisfactory. In this paper, an end-to-end DRL-based intelligent reconnaissance
mission planning is proposed for dual unmanned aerial vehicle (dual UAV) cooperative reconnais-
sance missions under high-threat and dense situations. Comprehensive consideration is given to
specific mission properties and parameter requirements through the whole modelling. Firstly, the
reconnaissance mission is described as a Markov decision process (MDP), and the mission planning
model based on DRL is established. Secondly, the environment and UAV motion parameters are
standardized to input the neural network, aiming to deduce the difficulty of algorithm convergence.
According to the concrete requirements of non-reconnaissance by radars, dual-UAV cooperation
and wandering reconnaissance in the mission, four reward functions with weights are designed to
enhance agent understanding to the mission. To avoid sparse reward, the clip function is used to
control the reward value range. Finally, considering the continuous action space of reconnaissance
mission planning, the widely applicable proximal policy optimization (PPO) algorithm is used in this
paper. The simulation is carried out by combining offline training and online planning. By changing
the location and number of ground detection areas, from 1 to 4, the model with PPO can maintain
20% of reconnaissance proportion and a 90% mission complete rate and help the reconnaissance
UAV to complete efficient path planning. It can adapt to unknown continuous high-dimensional
environmental changes, is generalizable, and reflects strong intelligent planning performance.

Keywords: intelligent mission planning; sequential decision-making problem; reconnaissance
mission; deep reinforcement learning; unmanned aerial vehicle

1. Introduction

The combat preparedness operational planning system, from top to bottom, is divided
into strategic, theater and tactical levels, of which tactical-level combat planning is called
mission planning. The mission planning is an important connection between the training
of troops and actual operations [1]. A focus on air operational planning can realize the
engineering of combat thoughts and processes using logical thinking and information
techniques. Operational planning is generally based on the task as the center of the
classification process, including target analysis, task allocation, weapon allocation, tactical
maneuver planning, route planning, weapon planning and navigation planning as well as
other processes. One very important category in navigation planning is reconnaissance tasks.
The reconnaissance tasks require the cooperation of multiple aircraft to identify and locate
high-value targets (HVT). The HVT reconnaissance mission plays an important connecting
role in air intelligent mission planning, which needs to quickly reach the target airspace
through the area of dense threat and wander to collect information. Therefore, combined
with the satellite data, the mission can provide more accurate target information to the rear
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command station so as to promote the completion of strike planning. Theoretically, the
mission planning is an optimization problem with multi-constraint conditions. The solution
gradually evolved from the simplex method [2], a 0–1 programming model [3] and the
graph theory model to the intelligent methods. The dependence on mathematical models
is gradually reduced, and the intelligent optimization algorithm is used for searching and
solving by referring to biological characteristics [4–6].

In recent years, the unmanned air vehicle (UAV) is increasingly used in civilian and
military operations, due to its low cost, small size, ease of operation, flexibility and other
characteristics [7,8]. The mission planning of its autonomous decision-making system in
complex and dynamic environments has received widespread attention from academia and
industry, while the capabilities on autonomous decision-making, intelligent navigation,
detection and communication are emphasized [9]. However, given the particularity of
applications in military processes, UAV mission planning often requires consideration of
environmental threats in order to actively generate trajectories and navigation controls [10].

Multi-UAV collaborative track planning reflects different design characteristics for
specific tasks. Among them, as an important type of navigation mission, reconnaissance
missions against HVTs are the premise of implementing precision strikes. The reconnais-
sance mission supplements the preliminary information obtained by the satellite probe
and ensures the completion of the follow-up strike mission. In this paper [11], based on
distributed predictive control architecture and considering the collision avoidance con-
straints, the local trajectory in the limited time domain is obtained according to the task
requirements for the multi-UAV collaborative tracking of ground moving targets. In view
of coordinated strikes, [12] emphasizes the time and space constraints of simultaneous
arrival and proposes a track planning method based on multi-objective optimization. Con-
sidering the communication conditions of unmanned aerial vehicles, in order to meet the
full coverage of the multi-aircraft observation area, [13] establishes multi-aircraft track
planning in the obstacle avoidance environment based on the Pythagorean hodographs
curve. Depending on the different mission requirements, [14] uses the synthetic structure
to improve the discrete particle swarm algorithm to achieve collaborative search route
planning for UAV swarms.

In a real-time and dynamic environment, path planning based on optimization algo-
rithms consumes lots of computing time to estimate environment variables. Then, real-time
requirements are difficult to achieve. The search-based intelligent optimization algorithm
solves the global optimal or suboptimal solution of the complex objective function through
iterative optimization. However, its essence is still random search, and each solution can
only be re-searched in a static known environment (objective function and constraints)
that is quite complex in time and space, and it is difficult to generalize to a dynamically
changing unknown environment. Therefore, its application has certain limitations when
dealing with battlefield threats and rapid planning.

With the emergence of deep reinforcement learning (DRL) technology, learning-based
approaches have received high attention and widespread application. The neural network
learns or fits the relationship between input and output, so that the UAV can overcome
the constraints of traditional planning or control methods without considering nonlinear
dynamic models. Furthermore, under non-deterministic polynomial hard (NP-hard) prob-
lems, results with minimal fitting errors or optimal decision results can be obtained with
very low complexity. Additionally, after storing the mapping relationship in the form of
parameters, the efficient reconnaissance task can be completed in changing environments.

Due to the improvement of computation capability, the emergence of big data tech-
nology and the development of artificial intelligence algorithms, learning-based methods
have developed rapidly. Among them, deep learning achieves high-dimensional map-
ping, reinforcement learning achieves sequential decision-making and DRL has made
remarkable achievements in the application of multi-robot control [15,16], autonomous
driving [17], game playing [18] and navigation support [19]. How DRL solves the problem
of navigation under different planning task styles has received widespread attention. The
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authors in [20] proposed a UAV situation assessment model with real-time target and
UAV location information based on deep Q-network (DQN). When considering discrete
actions, Ref. [21] presented a DRL framework to accomplish some partially observable
detect tasks based on deep deterministic policy gradient (DDPG), and Ref. [22] proposed
the layered recurrent Q-network (layered-RQN) algorithm; this algorithm decomposes the
obstacle avoidance navigation problem of the UAV, and the authors used the distributed
DRL framework to gradually learn to solve the problem in highly dynamic airspace. When
considering the suppression of enemy air defense mission planning, Ref. [23] established a
general intelligent planning architecture based on the proximal policy optimization (PPO)
algorithm, but it was not considered a dynamic situation; the experiments only involved
direct strikes without situation changes during flight. Unfortunately, the UAV mission
planning designed in these studies has weakened the obstacles and purpose requirements
in the navigation mission planning, so there is no guarantee of the generalizability of the DRL
agent or the robustness of navigation control, especially for target reconnaissance and jamming.

The above research papers include a large amount of optimized-based and learning-
based methods of UAV navigation and provide a solid research foundation for UAV target
reconnaissance and jamming mission planning. Taking the HVT reconnaissance task
as an example, this paper proposes an efficient reconnaissance intelligent task planning
method based on deep reinforcement learning in end-to-end mode. In reconnaissance
mission planning, in order to effectively drive the operation, the electronic suppression
jammers and the stealth reconnaissance UAV are dispatched. The two aircraft reach the
target airspace cooperatively. The target information is obtained by reconnaissance. The
battlefield threat situation is updated to guide the follow-up strike force and improve the
operation loop. The contribution of this study includes three points as follows:

1. First, the task planning problem of dual-UAV coordinated reconnaissance is described,
and the action space and environment space are analyzed to meet MDP.

2. Second, the principle of the DRL algorithm is introduced. According to the require-
ments of UAV reconnaissance for HVT missions, the clip reward function is set to
reduce the influence of sparse reward, improving the algorithm convergence.

3. Finally, based on the PPO algorithm, a dual-UAV collaborative reconnaissance with
multi-radar detection threaten environment mission platform is established. The
experiments evaluate the reconnaissance capability and decision-making essence and
analyze the superiority and potential value of this method.

2. Problem Formulation

When suppressing the enemy’s air defense mission during high-threat electronic
warfare scenarios, the coordination of dual-UAV reconnaissance and jamming is essential,
in order to improve the intelligence accuracy and promote the subsequent missions. During
reconnaissance missions, the reconnaissance UAV and the jammer need to cooperate and
cross the enemy radar detection area protected by HVTs, safely and rapidly. Considering
the dependence of the DRL algorithm on mode, we set up a simulation environment for
cooperative ground HVT detection. As shown in Figure 1, unmanned aircraft need to
quickly approach the target while avoiding the surrounding radar detection. During the
maneuvering process, a mathematical description consistent with MDP is established. The
description can be effectively solved by DRL methods.
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Figure 1. Schematic of a dual-UAV cooperative reconnaissance mission.

2.1. Map Description

Comparing the single maneuver distance of the aerial vehicle with the departure height
of aircraft, the far-field condition is matched. Thus, the simulation scene is appropriately
simplified to focus on the important reconnaissance mission target planning. For the
purpose of brevity and without loss of generality, as suggested in paper [22], we assume
that the UAV flies at a fixed altitude with the help of autopilots, where flight height H is a
positive constant.

As shown in Figure 2, when formulating real-time tracks, owing to the constraints of
aircraft mobility and dual-aircraft cooperation, the nearest distance to the radar detection
range dmin, the distance to the target dtarget and the relative distance dre between two UAVs
need to be dynamically considered.
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Although many inertial navigations equipped with auxiliary autopilots can provide
high-precision dynamic information [24], ultrasonic rangefinders cannot meet the require-
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ments of detection distance in the combat environment. Therefore, phased-array radar is
selected as the distance sensor.

The UAV distance observation matrix is consisted of observation vectors in different
directions provided by auxiliary sensors. As shown in Figure 3, t is represented by a
distance of 12 different directions, Dt = [dt

1, dt
2, . . . , dt

12]. The minimum value is obtained by
comparison. If the minimum value is less than the radar detection range, it indicates that
the UAV was found at this time. On the contrary, the minimum distance becomes larger if
the UAV is not found.
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According to references [21,22], the earth fixed coordinate can be used to describe
the relative and absolute positions of UAVs, which are expressed as the local coordinate
system shown in Figure 3. With UAVs flying at a fixed altitude, the absolute position
can be described by yaw angle θt, and the relative position can be described by angle
between UAV and target φt. Above all, the range observation vector, distance between
two aircraft, yaw angle and relative angle are integrated to represent the environment
space in the mission planning process, St = [Dt, θt, φt, dr] = [dt

1, dt
2, . . . , dt

12, θt, φt, dr],
where −π/4 ≤ θt, φt ≤ π/4.

2.2. Kinematics of UAV

In the course of flight, the control of a UAV generally adopts a three degrees of
freedom model. According to reference [25], there is strong coupling between UAV velocity
and distance and weak coupling between acceleration and distance. In practice, the new
generation of autopilots (such as Pixhawk) can autonomously fly according to the control
signal, so that the UAV can realize autonomous flight control by providing position and
speed. Therefore, for the sake of simplifying the mission planning research, we ignore the
control inner loop and mainly focus on the distance and velocity information of UAVs. The
kinematics equations are expressed as follows:

xt+1
r = xt

r + vr cos(∆θt+1
r ),

yt+1
r = yt

r + vr sin(∆θt+1
r ),

xt+1
j = xt

j + vj cos(∆θt+1
j ),

yt+1
j = yt

j + vj sin(∆θt+1
j ),

(1)

where pt
r = [xt

r, yt
r] and pt

j = [xt
j , yt

j ] represent the positions of the reconnaissance and
jammer in the coordinate system; vR and vJ denote the range of velocity as (50, 200]m/s;
yaw angle at this time is ∆θt+1

r and ∆θt+1
j describes the motion vector of aircraft. To avoid

sudden changes in aircraft navigation direction during training, the yaw angle is regulated
as ∆θ =

∣∣∆θt+1
r − ∆θt

r
∣∣ ≤ π/4.
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The objective function can be written as
min

τ

∑
0
‖pt+1

r + pt+1
j − (pt

r + pt
j)‖2

,

s.t. dmin ≥ dradar, dre > d,
po = [xo, yo], pRadar = [xRadar, yRadar], pT = [xtarget, ytarget],

(2)

where, d denotes the minimum distance avoiding the cooperative collision between
two UAVs; po, pRadar and pT represent the starting point, radar deployment location and
HVT position.

In summary, this paper establishes the state space and action space for the task
planning of cooperative jamming reconnaissance and confirms that it conforms to the
MDP problem. The process of solving the MDP problem through DRL is described as
follows. The UAV starts from a certain state. During the flight, it makes an action based
on the perception of the current environment, and it obtains an immediate reward. It
enters the environment at the next moment with the transition probability p(st+1|st) , and
it continues to select new actions until the game round ends. Hence, in an episode, the
formation of environment, action and reward depends on the transition probability to achieve
the maximum cumulative reward decision-making process as the goal. The problem is of
decision optimization.

3. Deep Reinforcement Learning in Reconnaissance Mission Planning

In this section, the establishment of reinforcement learning framework for dual-UAV
cooperative reconnaissance HVT mission is introduced.

3.1. Basic Principle

Reinforcement learning is usually used to solve sequential decision-making problems.
A Markov decision process framework is usually established to describe the problem,
which is represented by tuples (S, A, P, R, γ), where S indicates a finite state, A shows a
finite action set, P is a state transition function, R represents reward return function and γ is
used to calculate the long-term cumulative reward as discount factors. Since the traditional
reinforcement learning is developed in tabular reinforcement learning, the discrete action
value function is described by the limited state and action. However, for the continuous
high-dimensional beam problem, there will be a ‘dimension disaster’ problem. Therefore,
the approximate value function and strategy search of function approximation theory are
proposed. With the advantage of a deep network, the DRL method is obtained, and the
algorithm performance is further improved [26–29]. In accordance with policy updating
and learning methods, DRL algorithms are generally divided into three categories: value
function based, direct policy search based and AC based.

The goal of deep reinforcement learning is to search for parameterized policy
pθ(s, a) = P[a|s, θ] according to the direction of maximizing expected reward
J(pθ) = Eτ∼pθ

[R(τ)], where the reward return is expressed as the expected value of dis-
count reward and shows as R(τ) = Eτ∼pθ

[∑∞
t=0 γtrt] in an episode τ = (s0, a0, s1, a1, · · · ),

where θ denotes a policy parameter. The obtained optimal strategy can be written as:

p∗θ = argmax
pθ

Eτ∼pθ
(

∞

∑
t=0

γtrt) (3)

The actor–critic reinforcement learning algorithm combines the first two methods, and
the algorithm framework is displayed in Figure 4. The strategy network is represented as
actor, and the value function network is the critic. The two network updates are guided
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by the value function error, so as to accelerate the learning speed. The policy is renovated
through the expected return gradient, which can be expressed as follows:

∇J(θ) = Eτ∼pθ
[

T

∑
t=0

R(τ)∇θ log pθ(a|s) ] (4)

where pθ(a|s) denotes the actor network and R(τ) plays the critic role. R(τ) can also be
achieved by state-behavior function Qθ(st, at), TD residual Gt = rt + Vθ(st+1)− Vθ(st),
Monte Carlo method, etc.
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3.2. Proximal Policy Optimization Introduction

In view of the requirement of continuous long-term flight planning for dual-aircraft
cooperative reconnaissance missions, the DRL algorithm based on continuous action control
is preferred. The PPO algorithm [30] is a stable, reliable and easy-to-implement actor–critic
algorithm that was widely used in the training of Open AI DOTA2 agent Open AI Five [31]
in 2019 and Jue Wu [32] in 2020.

The PPO algorithm approximately solves trust-region policy optimization (TRPO),
inherits the stability and reliability and reduces the amount of calculation in the meantime.

The algorithm makes a first-order approximation of the objective function to ensure
that the performance of the strategy increases monotonously in the optimization process
and optimizes the surrogate loss function. Meanwhile, the policy is optimized in the
direction of maximizing the expected return (minimizing the loss function) by limiting
the distance between the new strategy and the old strategy with the clip function. In
the process of the engineering implementation and debugging, the algorithm achieves a
balance between sampling efficiency, algorithm performance and complexity.

With the PPO algorithm, the advantage function is used to replace the expected return
in the critic part to measure the quality of the action and increase the stability of the
algorithm. Equation (4) is rewritten as follows:

∇J(θ) = Eτ∼pθ
[

T

∑
t=0

Aθ(s, a)∇θ log pθ(a|s) ] (5)

where Aθ(s, a) = r(s, a) + γVθ(s′) − Vθ(s) denotes the difference between the expected
return from action a and the previous one under environment s. Generalized advantage
estimation [33] has been used to calculate the advantage function and keep the variance
and deviation estimated through the value function.

Since PPO is an on-policy algorithm, for the purpose of improving the sample utiliza-
tion rate and controlling the training direction of the new strategy, the importance sampling
technology is added, and Equation (5) is changed into:

∇J(θ) = Eτ∼pθ
[
∇pθ(at|st)

pθk (at
∣∣st)

Aθk (s, a)] (6)
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where pθk and pθ represent policies that interact with the environment and are being trained,
respectively. The clip function is introduced to limit the update speed of the policy while
retaining the training stability. The obtained objective function is organized as:

JCLIP(θ) = ∑
(s,a)

min[
pθ(at|st)

pθk (at
∣∣st)

Aθk (s, a), clip(
pθ(at|st)

pθk (at
∣∣st)

, 1− ε, 1 + ε)Aθk (s, a)] (7)

where ε indicates hyper parameters. The pseudo code of the algorithm is shown in Algorithm 1.

Algorithm 1 Proximal Policy Optimization Algorithm (CLIP) [30].

1.for i ∈ {1, 2, . . . , N} do
2. Run policy pθ for T timesteps, collecting {st, rt, at}
3. Estimate advantages At
4. Given policy parameters θold ← θ

5. for j ∈ {1, 2, . . . , M} do
6. Sampled from the generated trajectory
7. Estimate policy loss function and value loss function
8. Optimized objective function JPPO(θ)
9. Update θ′ based on ∇JPPO(θ)
10. θnew ← θ′

11. end for
12.end for

3.3. Environment and Reward Settings

A UAV needs to be trained to adapt to the environment and achieve the optimal control
strategy for completing the mission. Environment representation and reward setting play
important roles in the convergence of the PPO algorithm.

3.3.1. State Representation

The completion of the jamming and reconnaissance mission in the constructed envi-
ronment can effectively reduce the costs of actual testing and the incidence of accidents.
However, due to the variability of the state space and the random route changes of the
aircraft in the early stage of learning, the PPO algorithm needs to be preprocessed in two
aspects before the state space inputs.

The first is to prevent the UAV from flying out of the boundary. During the learning
process, when action at is made, the distance to the target dtarget > ‖p0 − ptarget‖2 indicates
that it is far away from the task direction, jumping out of the loop and directly conducting
the next round of learning.

Next is the standardization of the map scope, UAV position coordinates and flight
parameters. Compared with the reconnaissance range of radar and target, the maneuvering
distance of UAV is relatively sparse in a short period of time. Therefore, before inputting
the DRL network, standardization should be carried out to accelerate the convergence. The
importance of normalization is particularly essential in sparse state spaces with different
unit scales. According to the definitions of the position coordinates in the previous chapter,
the normalized form is expressed as follows:

	p′r
t =

[
xt

r/Lmap, yt
r/Lmap

]
,	p′tj =

[
xt

j/Lmap, yt
j/Lmap

]
,

	
(

p′r
t − p′target

)
=
[
dxt

r,t/Lmap, dyt
r,t/Lmap

]
,

	
(

p′j
t − p′target

)
=
[
dxt

j,t/Lmap, dyt
j,t/Lmap

]
,

	v′R = vR/Vmax,	v′J = vJ/Vmax,

(8)

where 	 stands for the standardized processing function.
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Related research shows that deep learning has batch normalization technology [34].
Nevertheless, according to the test results in [21], the method of manually ensuring the input
state of DRL within the set range is more conducive to the convergence of the algorithm.

3.3.2. Reward Shaping

Shaping the reward function can guide the interaction between the agent and the
environment, evaluate the effectiveness of the action and make the correct judgement.
Hence, reasonable reward setting can effectively improve the convergence speed of the
algorithm. Faced with a cooperative reconnaissance and jamming mission, the mission is
divided into two stages. The first-half flight aims at avoiding radar detection and reaching
the target reconnaissance airspace on the shortest path. The target of the latter flight
is wandering in the target airspace based on the cooperation of the jammer and steal
reconnaissance UAV.

As stated by the specific task stratification, the reward is divided into the following four
parts, and to increase the convergence stability, the reward is limited to [−1, 1] by CLIP function.

1. Closing to target. The reward needs to be set to conduct the UAV to gradually
approach the target in the environment exploration. Under the security distance, the
closer the UAV is to target, the higher the rewards as rapproach. To speed up reaching the
target, assign a penalty function rp to urge the agent to avoid meaningless wandering:

rapproach = 10× clip(e−α(djt+drt), 0, 1) rp = −c (9)

where α, c are constants, and djt, ddt can be obtained with a rangefinder device. The
first-reword function is defined as rt

1.

rt
1 = rapproach + rp (10)

2. Avoiding radar detection. When approaching the target, UAVs need to avoid the
threat of radar detection so as to plan a reasonable flight trajectory. The closer the
distance to the radar, the greater the penalty:

rt
2 = −clip(e−βdmin , 0, 1) (11)

Considering the detection radius of radar, dmin = min(Dt) is obtained based on the
distance defined in Section 2.1.

3. Wandering reward. When the jammer approaches the target detectable airspace, the
searchable radius of the ground-to-air missile force is suppressed. Simultaneously,
the reconnaissance aircraft implements reconnaissance, depending on its own stealth
performance, under the premise of safety, the maximum distance to the target and
wandering. For the aircraft performing reconnaissance missions, the radar cross
section (RCS) ζ can be reduced by relying on their own stealth coatings to reduce the
probability of discovery; generally ζ0.25 indicates the RCS [21]:

rt
3 =


1− ‖p′tr − p′target‖2

i f ρmaxζ0.25 < ‖p′tr − p′target‖2
< ρmax,

−‖p′tr − p′target‖2
i f ‖p′tr − p′target‖2

< ρmaxζ0.25,
0 else,

(12)

where ρmaxζ0.25 represents the dynamic detection distance of the UAV by radar and
ρmax denotes the maximum radar range. Considering the non-idealization of the
actual stealth efficiency, ζ0.25 is set as an attenuation value to ensure the safety of the
detection unmanned air vehicle.
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4. Collision avoidance. During the cooperative of two UAVs, a safe distance is set to
establish avoidance penalty function:

rt
4 = −clip(

ds − ∆d
ds

, 0, 1) (13)

where ds, ∆d indicate the safe and the relative distance between dual UAVs.

The above rewords are integrated into Equation (14),

R = ω1rt
1 + ω2rt

2 + ω3rt
3 + ω4rt

4 (14)

where ω1, ω2, ω3, ω4 represent the weight value of the above four rewards. The flight
characteristics of the agent can be changed by adjusting the weight.

Dual UAVs are to reconnaissance what agents are to the DRL algorithm. Based on the
PPO algorithm, the autonomous reconnaissance mission planning framework is shown
as Figure 5. The framework implements an agent’s end-to-end decision-making, which
consists of offline training and online planning. The training part is divided into a pair of
actor networks and critic networks, where agents and the environment conduct interactive
training. After the reward converges, policy is stored in the multi-path storage. The
planning part integrates policy and the initial situation to make mission planning.
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Figure 5. The target reconnaissance mission planning framework. Figure 5. The target reconnaissance mission planning framework.

4. Experiment

This section describes the simulation environment and the initial hardware and soft-
ware configuration. Secondly, the primary parameters of the PPO algorithm are configured.
Finally, according to the evaluation indexes, we use the algorithm to test the reconnaissance
mission planning at different difficulty levels and with different DRL algorithms. The
corresponding results and analysis are presented in the end.

4.1. Experiment Establishment

The simulation sets the mission planning scenario in a square area with size
100 km × 100 km. The jammer and reconnaissance UAVs took off from coordinates (20,20)
and (23,23), respectively. The two UAVs passed through three radar detection areas to reach
the target protected by ground-to-missile, which is deployed in (80,80) and performed the
reconnaissance task when the relative distance to the target is less than 20 km. The radar
deployment coordinates are set to (35,40), (60,30) and (50,65), and the detection distance is
15 km. The essential detectable distance of the ground-to-air missile force is 20 km, which is
reduced to 10 km when interference is suppressed. According to the introduction in Section 3.3.1,
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the distance and coordinate in the environment are standardized in advance during the test to
improve the training effect of the neural network and stabilize the convergence of the algorithm.

Since the UAV equipped with radar completes the reconnaissance task, the scanning
area per unit time of the radar is related to its point scanning period. The time interval of the
two UAV action plans is defined as the action response period τ. According to the summary

in [21], the period needs to meet the condition τ >
3
√

4(ζ0.25ρmax)
2
τr/V2

max = 0.0737s where
Vmax is the speed of the aircraft and τr is the electrical scanning period of the radar.

The task planning for UAV cooperative reconnaissance jamming is the result of the
training of the agent relying on probability reasoning and reward guidance, and the
allowable execution time of each round is set to 500 s. During the planning process, when
the agent is close to and maintains a period of wandering posture, or is too close to the
radar detection range in the flight process, the task ends in advance. Otherwise, the plan
ends after the maximum steps are completed.

In order to investigate the ability of the agent to perform mission planning in the built
simulation environment, the test is carried out by changing the locations and numbers of
radars in the state. Four task scenarios are set in Section 4.5, and the generalization of the
algorithm is proved by comparing the evaluation indexes.

At the beginning of each episode, the UAVs and radar state information are reini-
tialized to ensure the generalization of the algorithm. During training, (1) the loss of
advantage function and value function are standardized to increase the stability of the
strategy training; (2) by adopting an adaptive learning rate and adaptive clip value, the
learning rate can be maintained in the early period of training to accelerate the convergence
speed and strategy update and gradually reduced at the later stage of training to maintain
a stable modernization.

The simulation environment is Python 3.6 and PyCharm, and the deep learning
library is implemented by Pytorch. The intelligent planning experiments of four different
scenarios are completed and compared with other classical deep reinforcement learning
AC algorithms. Other hyperparameters that execute simulation are set in Table 1.

Table 1. Hyperparameter settings.

Parameter Value

Neural Network torch.nn.init.orthogonal_()
Optimizer Adam

Num_episode 600
Learning Rate 0.0003

Clip 0.2
Minibatch Size 64

Num_seed 3
Step Per Round 500

Bunch Size 2048
α 4
β 2
c 0.01

ζ0.25 0.1

4.2. Evaluation Indicators

There are four indexes established to evaluate the simulation results:

• Mission Complete Rate (MCR): Refers to the percentage of episodes in which the
reconnaissance UAV finishes by successfully evading the search and completing a
reconnaissance mission. The value can be reported after offline training episodes
have been run. This indicator can evaluate the learning efficiency of the evaluation
environment and reward settings in the algorithm;

• Risk Times (RT): RT represents the total number of UAVs under radar detection. The
indicator value is calculated by statistically online-test planning the UAVs trajectory;
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• Proportion of Reconnaissance Completed (PRC): PRC is the maneuver response period
of the aircraft successfully approaching the target, revealing the agent’s understanding
of task completion;

• Flight Length (FL): The whole flight path length from the starting to the target airspace.

4.3. Experiment I: Convergence

For sake of the effectiveness of the training model for cooperative reconnaissance
mission planning, the average reward learning curves of different DRL algorithms are
calculated. The DRL algorithm advantage actor–critic (A2C) is based on AC type, and
TRPO [35] and TD3 [36] are compared. We set three different random seeds to train the
strategy network and value function network. As part of recording the time step and
cumulative reward of each episode, the average reward learning curve is calculated and
compared, as illustrated in Figure 6. The higher final average rewards with less training
duration are, the better the convergence of the method.
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As it can be observed from the above Figure 6a, PPO, TRPO and TD3 can reach their
convergence point after around 16,000 and 25,000 timesteps, while A2C cannot come to
a converge point. Further observation in Figure 6b explains that the rewards curve for
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TRPO and TD3 still fluctuates temporarily until the later stage of training, so the stability
of convergence performance is weaker than that of PPO. Compared with PPO, TRPO and
TD3 achieve lower average reward value. Therefore, Figure 6 indicates that the PPO model
used in this work has higher episode rewards, more stable training, smaller episode reward
variance and good robustness.

4.4. Experiment II: Effectiveness

In accordance with our deployment of a reconnaissance aircraft and a jammer, UAVs
pass through the enemy radar detection region and are close to the target airspace deployed
by the ground-to-air missile. After entering the target protected aera, the two UAVs wander
close to target for a period of time to complete the reconnaissance task while cooperating to
ensure safety. The established intelligent planning model is used to solve the problem, and
600 rounds of offline training are carried out to obtain the policy network model. Then, 100
online plannings are executed to test the intelligent planning ability, and the completion of
cooperative reconnaissance HVT mission is obtained, as shown in Figure 7.
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It can be observed from Figure 7 that when the reconnaissance UAV and the jammer
take off in turn and they pass through the radar detection area, the jammer can sacrifice
part of the distance constraint so as to quickly cross due to its suppressing interference
or enter airspace in time to cover the reconnaissance one out of dangerous space, when it
enters the radar detection airspace.

When reaching the target, the jammer implements suppression interference, providing
the time for the reconnaissance aircraft to complete the task. Meanwhile, the reconnaissance
fighter approaches the target under the premise of ensuring security. After the task is
completed, the two aircraft cooperatively fly away. In summary, the trained model has
achieved strong intelligent collaborative planning ability.

4.5. Experiment III: Generalization

In the reconnaissance mission, increasing radar detection threat area not only increases
the difficulty of UAV navigation decision-making but also puts forward a more severe test
of the algorithm generalization because of the synchronous amplification of the learning
sample environment.
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To demonstrate the ability of efficient reconnaissance in the simulation training envi-
ronment built by the PPO algorithm, we establish a comparative experiment. The location
and number of warning detection radar are changed from 1 to 4, and the offline planning
is accomplished for 100 episodes after the online training. The mission plannings under
different situations are shown in Figure 8.
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Figure 8. Intelligent mission planning under different situations.

As shown in Figure 8, the converged DRL methods are deployed with the increasing
number of radars. It can be observed from Figure 8 that the UAVs trained by the TD3
algorithm cannot simultaneously complete the multiple targets of avoiding radar threats
and the rapidly approaching target. The UAVs trained by TRPO have difficulty meeting
the requirement of the fast-approaching target. Compared with TRPO and TD3, the agent
based on PPO algorithm can better understand the mission setting. UAVs can quickly reach
the target, avoid radar detection and wander over the target for reconnaissance. The average
values of the evaluation index introduced in Section 4.2 are calculated and depicted in Figure 9.
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As illustrated in Figure 8, with the increasing number of radars, compared with the
TRPO and TD3 algorithms, the transformation curves of the indexes obtained by PPO
algorithm are relatively stable and ideal. In Figure 9, MCR and PRC curve changes were
observed. With the increase in radar detection points, the ratio of successful learning
from training convergence began to decrease, but the rate for PPO is higher than the other
algorithms. Under the deployment of 2–3 radars, the offline planning performance based on
PPO is more prominent, which can maintain the target airspace hovering under the condition
of 20% of the total maneuver times. Under TRPO and TD3, only about 5% can be guaranteed.
In summary, the two PPO evaluation indexes are always higher than TRPO and TD3.

In the process of flight, when the reconnaissance aircraft enters the radar detection
range without the cover of the jammer, it is identified as being in a dangerous state. The
number of maneuvering response cycles entering the threatening range is recorded, and
the percentage of the total number of maneuvers is calculated, namely, the RT index.
Compared with the TRPO and TD3 algorithms, when there are 3 radars, TD3 can maintain
a short flight path and complete the task at low risk. However, when the number of radars
increases to 4, the four indicators in Figure 9 decline significantly, and the UAV cannot
complete the mission. With the increase in radar detection points, the RT value of the PPO
algorithm always shows an upward trend, but the values with TRPO and TD3 fluctuate
greatly. Combined with the analysis in Figure 6b, it can be seen that in the process of TRPO
and TD3 offline training, even in the late learning stage, there will still be a mutation in the
reward value that cannot stabilize the convergence point.

Observing the change in the FL curve, the two UAVs trained on the PPO algorithm
can stabilize their flight distance with increasing radar numbers and reach the target
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airspace quickly. However, the training results for the TRPO algorithm show that with the
increasing complexity of the environment, the understanding of the task decreases and the
flight trajectory increases significantly.

Lastly, the simulation solution proved that the intelligent planning model established
based on PPO algorithm in this paper can better understand the task and has good conver-
gence, effectiveness and generalization.

5. Conclusions

This paper presents an end-to-end aerial reconnaissance mission intelligent planning
method. Firstly, the mission of dual-UAV cooperative HVT reconnaissance is selected as
the research object, and the mission planning is described as a sequential decision-making
problem. Then, the principle of deep reinforcement learning and the PPO algorithm are
introduced. The state space and action space of aircraft are designed, and the intelligent
planning model of jamming reconnaissance cooperative combat based on PPO algorithm
is established. In order to avoid the convergence difficulty caused by sparse reward, the
reward function and environment class development are designed based on clip function. In
the simulation part, the offline training and online planning mode are adopted to complete
the collaborative planning of the reconnaissance aircraft and the jammer. The convergence
of the algorithm is proved by the reward curve. The effectiveness is shown in that the dual
UAV can avoid radar search while quickly approaching the target with 3 radars deployed.
There are four indexes established to verify the generalization of the intelligent planning
model proposed in this paper. With the change in radar number, the proposed model can
maintain 90% of MCR and always ensure the shortest FL of the reconnaissance UAV. The
offline planning performance based on the PPO method can maintain the target airspace
hovering under the condition of 20% of the total maneuver times with 2–3 radars deployed.
It is concluded that the intelligent planning model proposed in this paper has certain
scalability and advancement.

In the future, we will focus on splitting tasks through phase targets and further think
about how multiple UAVs can accurately achieve specific tasks in the environment through
hierarchical division and multi-agent collaboration.
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