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Abstract: In this paper, the influences of linewidth enhancement factor on the output characteristics
of a semiconductor ring laser (SRL) are numerically investigated. By constructing a master–slave in-
jection model, we discuss the influence of linewidth enhancement factor on the output characteristics
of SRL. In addition, the 0–1 chaos test is introduced to study the effects of linewidth enhancement
factor, feedback strength, feedback time delay and normalized injection current on the dynamic
characteristics of the master laser. Furthermore, a simulation study is carried out on the suppression
of time delay characteristics by the linewidth enhancement factor. The results show that selecting a
proper linewidth enhancement factor has a significant effect on the chaotic output of SRL, and a larger
linewidth enhancement factor is beneficial for the concealment of time delay signature. Such results
are beneficial for achieving the security chaos communication and physical random generators.

Keywords: semi-conductor ring laser; chaos; linewidth enhancement factor; time delay signatures

1. Introduction

Optical chaos generated by semiconductor lasers (SLs) has attracted much attention
because of its potential applications of chaos-based communications [1–4], ultrafast random
generation (RNG) [5–7], compressive sensing [8], neuro-inspired signal processing [9] and
chaotic radar/laser radar (LIDAR) [10,11]. Studies have shown that SLs could exhibit rich
dynamics under external perturbations [12–17], including, but not limited to, conventional
optical feedback, frequency selecting feedback, filtered optical feedback, opto-electronic
feedback and current modulation.

Conventional optical feedback is the most commonly used method for generating
chaos due to the simplest structure, but the external feedback structure introduces the
time delay signature (TDS) in the chaos signals, which can be extracted by mathematical
methods [18,19], such as the autocorrelation function (ACF), permutation entropy (PE)
and delayed mutual information (DMI). It has been proved that the TDS could threaten
the security of chaos communication and reduce the randomness of the random number
generator [6,20]; thus, the suppression/concealment of TDS in the chaotic system has been
the hot topic in recent years. Researchers have proved that the TDS could be removed from
different chaotic systems [21–26], for example, the master–slave injection system, mutual
injection system, cascade injection system and a single laser subject to different feedback
configurations. Among these schemes, a master–slave injection system could achieve both
TDS concealment and bandwidth enhancement.
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At the very beginning, researchers only considered the influence of system parameters,
including frequency detuning, coupled strength and bias current, on the concealment
of TDS in the above systems. In 2015, Li found that the internal parameter of the laser,
such as linewidth enhancement factor α, has a significant effect on TDS suppression in an
external feedback chaotic system and optical injection chaotic system [21]. In our previous
work, the effects of α and non-linearity gain on TDS concealment in a mutually coupled
chaotic system were studied [26]. However, the above reports are aimed at the distributed
feedback semiconductor laser, while studies on the influence of internal parameters on the
semiconductor ring laser (SRL) are still lacking. The SRL could output lights in two counter-
propagating directions, referring to the clockwise (CW) and counter-clockwise (CCW)
mode. The SRL could exhibit rich dynamics due to the variety feedback and injection path;
thus, it is widely used in chaos-based communication, random number generators and
optical memory.

In this paper, we study the effects of linewidth enhancement factor on the dynamics
and TDS concealment of the SRL in the master–slave system. The master SRL (MSRL),
subject to the self-feedback configuration, and the slave SRL (SSRL) receives the chaotic
signals from the MSRL. The 0–1 chaos test is introduced to quantify the chaotic dynamics
of MSRL, and ACF is hired to digitalize the TDS of MSRL and SSRL.

The paper is organized as follows. In Part 2, we discuss the theoretical model. Part 3
presents the numerical results in detail, and we finally draw our basic conclusions in Part 4.

2. Theoretical Model

The system structure studied in this paper is a typical master–slave injection system.
The master semiconductor ring laser (MSRL) is connected with a conventional external
optical feedback cavity, and it has two feedback modes, i.e., self-feedback mode and cross-
feedback mode. The rate equations of the system are described using the Lang–Kobayashi
equations [27], where the feedback term and injection term are introduced here. In this
article, we adopt the self-feedback model, that is, CW feedback back to CW and CCW
feedback back to CCW. There are also two injection methods, (1) CW injection to CW, CCW
injection to CCW; (2) CW injection to CCW, CCW injection to CW. In this article, we choose
the first case. These equations are shown as [28]

dEcw/ccw
M
dt

= κ(1 + iα)[gNM − 1]Ecw/ccw
M − k(1∓ δk)eiφEccw/cw

M + ηEcw/ccw
M (t− τf )eiθ (1)

dEcw/ccw
S
dt = κ(1 + iα)[gNS − 1]Ecw/ccw

S − k(1∓ δk)eiφEccw/cw
S

+kinjE
cw/ccw
M (t− τinj) exp(−iωMτinj − i2π∆ f t)

(2)

dNcw/ccw
M/S
dt

= γN [µ− Ncw/ccw
M/S − gcw/ccw

M/S Ncw/ccw
M/S |Ecw/ccw|2 − gccw/cwNcw/ccw

M/S |Eccw/cw|2] (3)

gcw/ccw
M/S = 1− s|Ecw/ccw

M/S |2 − c|Ecw/cw
M/S |

2 (4)

where M and S stand for MSRL and SSRL, respectively, and E(t) is the electric field. N(t)
denotes the carrier density. The last term of Equation (1) is the optical feedback of MSRL;
the last term of Equation (2) is the injection term from MSRL to SSRL. κ = 100 ns−1 is
the field decay rate, α is the linewidth enhancement factor, g is the differential modal gain,
k = 0.44 ns−1 is the back scattering rate, δk = 0.2 is the asymmetry factor, φ = 1.5 is the
phase shift, ωM is the angular frequency of MSRL.γN = 0.2 ns−1 is the carrier decay rate, µ
is the re-normalized injection current, s = 0.005 is the self-saturation coefficient, c = 0.01
is the cross-saturation coefficient. The feedback parameters contain η, τf and θ, which
denote feedback strength, feedback delay and constant feedback phase, respectively. The
injection parameters include kinj, τinj and ∆ f , which stand for injection strength, injection
delay and frequency detuning between MSRL and SSRL.

As mentioned above, the TDS could be extracted through ACF, which is defined as [18]
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C(s) =
< [x(t)− < x(t) >][xs(t)− < x(t) >] >

< [x(t)− < x(t) >]2 >
(5)

where x(t) represents time series, s is the shift, < · > stands for the average, and the delayed
form of the original time series is xs(t) = x(t − s).

3. Numerical Results

In this work, we firstly focus on the influence of α on the dynamics of SRL; then, the
TDS concealment in the master–slave injection system is discussed. The rate equations
mentioned above were simulated using the famous fourth-order Runge–Kutta algorithm
(RK-4).

3.1. Dynamical Mappings of MSRL

Figure 1 shows the dynamics of MSRL with the varying parameters, including external
parameters, such as feedback strength η, bias current µ, feedback delay τf and internal
parameter, i.e., linewidth enhancement factor α. We hire the 0–1 chaos test to quantify the
dynamics of MSRL, while the chaotic region is highlighted in dark red, and the dark blue
represents the steady state. In Figure 1, the X-axis denotes µ, and the Y-axis stands for
η; Figure 1(a1–a4) are the CW outputs of MSRL, Figure 1(b1–b4) are the CCW outputs of
MSRL, Figure 1(a1,a2,b1,b2) show that the τf = 6ns, and Figure 1(a3,a4,b3,b4) show that
the τf = 3ns. In addition, Figure 1(a1,b1,a3,b3) indicate α = 2.5, and Figure 1(a2,b2,a4,b4)
stand for α = 5. It can be found from Figure 1 that with the increase in µ, bigger η is
required to ensure that MSRL works at the chaotic oscillation. When we choose the smaller
linewidth enhancement factor, i.e., α = 2.5, by comparing Figure 1(a3,b3) τf = 3ns
and Figure 1(a1,b1) τf = 6ns, we can find that strong feedback strength is helpful in
obtaining the chaos. When the linewidth enhancement factor has a large value, such as
α = 5, the chaotic region remains almost unchanged in a different feedback delay, i.e.,
Figure 1(a2,b2) τf = 3ns and Figure 1(a4,b4) τf = 6ns. That is to say, with the increase in α,
the effect of feedback delay on the output characteristics of MSRL is weakened. Meanwhile,
by comparing two different α, such as Figure 1(a1,a2), it can be found that the bigger
the linewidth enhancement factor α, the larger the region of chaos that can be obtained
in MSRL.
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Figure 1. The two-dimensional map of the 0–1 test for chaos of MSRL in the (µ, η ) plane. (a1,a2,a3,a4):
0–1 test of the CW outputs, (b1,b2,b3,b4): 0–1 test of the CCW outputs; (a1,b1,a2,b2): τf = 6 ns,
(a3,b3,a4,b4): τf = 3 ns; (a1,b1,a3,b3): α = 2.5, (a2,b2,a4,b4): α = 5.

Figure 2 shows the 0–1 chaos test of MSRL, while the X-axis and the Y-axis are the
injection current and feedback delay time, respectively. Figure 2(a1,b1,a2,b2) represent
the strong feedback η = 4 ns−1, and Figure 2(a3,b3,a4,b4) represent the weaker feedback
η = 2.5 ns−1. We set a small value of linewidth enhancement factor α = 2.5 in
Figure 2(a1,b1,a3,b3) and a bigger linewidth enhancement factor α = 5 in Figure 2
(a2,b2,a4,b4). In the cases of weakened feedback strength, the dark red focuses on the left
region of the two-dimensional maps, which means that with too big a value of the injection
current, the MSRL is not operating in the chaotic region. From Figure 2(a2,b2), we can find
that by choosing bigger η and α, the MSRL outputs chaos in the whole parameter space
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of (µ, τf ), that is to say, the effects of the injection current and feedback delay time on the
dynamics of MSRL can be weakened by increasing η and α.
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Figure 2. The two-dimensional map of the 0–1 test for chaos of MSRL in the (µ, τf ) plane. (a1,a2,a3,a4):
0–1 test of the CW outputs, (b1,b2,b3,b4): 0–1 test of the CCW outputs; (a1,b1,a2,b2): η = 4 ns−1,
(a3,b3,a4,b4): η = 2.5 ns−1; (a1,b1,a3,b3): α = 2.5, (a2,b2,a3,b4): α = 5.

3.2. TDS Suppression

Until now, we studied the influence of linewidth enhancement factor on the dynam-
ics of MSRL. In this subsection, we will focus on TDS concealment in the master–slave
injection system.

Figure 3 shows the timeseries and the corresponding spectrum and ACF of MSRL
for several but different α. The feedback parameters are set as the feedback strength
η = 4 ns−1, feedback delay time τf = 6 ns, and current µ = 2.5. Under the above
conditions, we can find that the MSRL outputs the chaotic fluctuations. In the right row, the
obvious peak around the delay time of MSRL, which is extracted by ACF, can be observed.
The ACF peak is seen very clearly when α = 3.5; as α increases to 5, the ACF peak is
slightly attenuated. Generally speaking, the ACF can be considered effectively suppressed,
while the value is less than 0.2. In Figure 3(c3), the chaos TDS is strongly weakened, while
α = 8. The reason is due to the coupling effect between the amplitude and the phase of
the electric fields. Interestingly, as α increases, the spectrum of MSRL expands. The TDS
value of MSRL is still bigger than 0.2 in Figure 3(c3). Then, we propose a master–slave
chaotic system to suppress the TDS in slave SRL (SSRL). Figure 4 represents the simulated
results of timeseries, spectrum and ACF of SSRL, while the system parameters are set as:
∆ f = 10 GHz, kinj = 35 ns−1. The ACF of SSRL is lower than MSRL; for example, in the
case of α = 3.5, the value of ACF is 0.67, while the ACF peak size of SSRL is 0.3. The
effect of TDS suppression on the injection system has an obviously good performance,
while the linewidth enhancement factor of MSRL and SSRL grows to 8, which can be seen
from Figure 3(c3) and Figure 4(c3). The ACF value of MSRL is 0.24, and TDS is totally
concealed in SSRL. The bandwidth of SSRL is also bigger than MSRL, which can be seen
from Figure 4(a2–c2).
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Figure 3. The timeseries (a1–c1), power spectrum (a2–c2) and ACF (a3–c3) of the MSRL, where
(a1–a3) α = 3.5, (b1–b3) α = 5, and (c1–c3) α = 8. The blue line denotes CW, and the red line
denotes CCW. The parameters are set as: η = 4 ns−1, τf = 6 ns, and µ = 2.5.
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Figure 4. The timeseries (a1–c1), power spectrum (a2–c2) and ACF (a3–c3) of the SSRL. The blue
line denotes CW, and the red line denotes CCW. The currents of MSRL and SSRL are µ = 2.5. The
parameters are set as: ∆ f = 10 GHz, kinj = 35 ns−1. First row: α = 3.5, second: α = 5, third:
α = 8.
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Figure 5 shows the curve of TDS peak size in the variation range of frequency detun-
ing between MSRL and SSRL, where the injection strength is fixed at kinj = 35 ns−1. In
Figure 5, the peak size is defined as the maximum value of ACF during the time window
[τf − 0.05τf , τf + 0.05τf ]. From Figure 5, we can find the red line runs on the top and is
followed by the black line, the blue line and the green line, which means higher α leads to
better TDS concealment in SSRL. In the case of smaller α, i.e., the red line (α = 2.5) and
the black line (α = 3.5) in Figure 5, the peak size becomes substantially larger with the
condition of small frequency detuning, i.e., −20 GHz < ∆ f < 20 GHz. The value of the
ACF peak size is less than 0.2 over the whole range of ∆ f , while the SRLs have large α, i.e.,
the green line (α = 8) in Figure 5, which means the large α widens the choice of ∆ f for the
purpose of hiding TDS.
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Next, we study further the influence of α on TDS concealment during the range of
kinj in Figure 6, while the ∆ f is fixed at ∆ f = 5 GHz. In Figure 6, we can find that the
trends for ACF peak size of SSRL in different α are the same as the results of Figure 5, and
larger α is favorable for suppressing the time delay signature of SSRL over a wide range
of injection strength. It is interesting to find that the MSRL and SSRL can achieve chaos
synchronization when the injection strength is large enough.
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4. Conclusions

In this paper, we numerically investigated TDS concealment in one master–slave
chaotic system constructed with two SRLs. By hiring the 0–1 chaos test and ACF, we
discussed the influence of α on the chaos characteristics of SRLs, including the nonlinear
dynamics and time delay signature. The results indicate that the larger α can not only
ensure the MSRL generates the chaos with high complexity, but it also has a favorable effect
on TDS concealment in SSRL. The simulation results also indicate that one can reduce the
dependence of chaos on feedback parameters by choosing the big value of α. The findings
pave the way for chaos-based applications, such as chaotic communication, chaotic radar
and random number generators.
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