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Abstract: The battle of currents between AC and DC reignited as a result of the development
in the field of power electronics. The efficiency of DC distribution systems is highly dependent
on the efficiency of distribution converter, which calls for optimized schemes for the efficiency
enhancement of distribution converters. Modular solid-state transformers (SSTs) play a vital role in
DC distribution networks and renewable energy systems (RES). This paper deals with efficiency-
based load distribution for solid-state transformers (SSTs) in DC distribution networks. The aim is to
achieve a set of minimum inputs that are consistent with the output while considering the constraints
and efficiency. As the main feature of modularity is associated with a three-stage structure of SSTs,
this modular structure is optimized using ant lion optimizer (ALO) and validated by applying it
to the EIA (Energy Information Agency) DC distribution network which contains SSTs. In the DC
distribution grid, modular SSTs provide the promising conversion of DC power from medium voltage
to lower DC range (400 V). The proposed algorithm is simulated in MATLAB and also compared
with two other metaheuristic algorithms. The obtained results prove that the proposed method
can significantly reduce the input requirements for producing the same output while satisfying the
specified constraints.

Keywords: solid-state transformer; direct current; renewable energy systems; ant lion optimizer

1. Introduction

The battle of currents between AC and DC dates back in the 19th century when the
pioneers of electricity battled over their medium of power, with Tesla supporting AC and
Edison supporting DC [1–3]. The first battle concluded in favor of Tesla, and AC began
its rule over DC as medium of power transfer [2,4]. The victory of AC at the first place
was predominantly due to the invention of transformers, which provided AC a mean of
voltage level transformation, thereby reducing losses. However, this supremacy of AC
was encountered by DC once again with the advancement of power electric converters,
when DC achieved its means for transformation through power electronics-based DC
transformers [5,6].
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DC stroke back in full swing and started taking over all parts of the power system,
i.e., generation (through solar and wind, as wind can be better optimized with DC); trans-
mission (HVDC transmission) and utilization (DC load LEDs, energy-saving DC-inverter
based air-conditioners, etc.) [7,8]. The distribution sector is still under research, and several
research efforts have been published so far in the relevant field. The authors of current
study have presented several studies encompassing the efficiency analyses of AC and DC
distribution systems on comparative grounds [9–14]. It has been concluded in the efficiency
analyses of DC distribution networks as well as in the comparative analyses between AC
and DC distribution networks that the efficiency of the DC distribution system highly
depends on the efficiency of the DC–DC distribution converter. An approach to achieve
optimized results is through the use of the modular architecture of DC–DC converters,
which is the basic aim of this paper.

Over the past few decades, the distribution grid has brought benefits of low-carbon
and energy savings due to the soaring adoption of distributed energy resources (DERs).
This modernization also requires new concepts, topologies, and control in some basic
components of the distribution grid. The transformer is an essential component of the
distribution network that performs functions of controlling, transferring, and handling
power [15]. In order to maintain power quality, various devices, such as STATCOMs, FACTs,
and others, are required. However, the latest developments in the smart grid demand a
device that is capable enough to distribute power while maintaining power quality. The
device is summed up as a solid-state transformer (SST) or an intelligent transformer [16].

Considering the efficiency of the traditional low-frequency transformer (LFT), it is
initiated from 97% and varies up to 98.5% for liquid-immersed LFTs. However, it is evident
from the present body of knowledge that SSTs have reached an efficiency of 98.25% in
LV distribution networks [3]. SSTs have significant potential to replace the LFTs, as they
provide other benefits such as smaller size and advanced control features. A comparison
between the size and weight of SSTs and LFTs confirms that the SST structure provides
remarkable volume savings, i.e., one-third of LFTs [17,18]. In contrast to traditional setups
that are manufactured from copper and iron windings, SSTs have silicon carbide (SiC)
windings which is a significant factor in reducing weight [19].

Different topologies for SSTs were explored in [17,18]; SSTs possess different classifica-
tions according to the stages, power levels, and applications. The authors [18,20] provided
a comparison of one-, two-, and three-step topologies. The one- and two-step topologies
have limitations of poor DC link fault tolerance and do not provide modularity. Figure 1
shows the three-stage SST topology, as this setup supports modularity in structure.

Figure 1. Three-stage SST topology.

Figure 2 illustrates the different compositions of solid-state transformers, such as
module level, converter level, and system-level integrations. A modular SST possesses
integrated power module (IPM) and provides different configurations, such as half bridge,
multi-level converter and modular multi-level converters.
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Figure 2. SST block with different modularity levels.

Modularity is an important feature that allows the same machine to be designed at
a small level for multiple settings on a small scale at the same standard. The present
body of knowledge proposes control strategies related to structural- and design-based
optimization. The intelligence- or heuristic-based strategies for modular structure of SSTs
are less explored throughout the literature. A basic control strategy was discussed for load
division, which involves a simpler way to distribute load according to a specific bucket
size scheme [21].

Economic load dispatch (ELD) or the optimal load distribution of generators has
been explored by various researchers working in the field of power system operation and
control. Many techniques, such as priority listing [22], LaGrange relaxation (LR), Linear
Programming (LP), and dynamic programming (DP), have been implemented in research
for ED problems [23–25]. However, all aforementioned techniques do not apply to non-
smooth load curves. Therefore, in order to overcome this issue, metaheuristic algorithms,
such as genetic algorithms (GAs), particle swarm optimization (PSO), artificial bee colony
(ABC), and simulated annealing, are implemented for the solution of ED problems [26–29].
These algorithms provide fair efficiency values. Metaheuristic algorithms are optimization-
based algorithms and categorized as: population-based and single point-based algorithms.
Population-based algorithms prove valuable in searching several solutions at the same
time [30–32]. The economic dispatch problem with scheduling of generators and renewable
energy systems (RES) is addressed by various population-based techniques, such as ant
lion optimization (ALO) [33], whale optimization (WOA) [34], grey wolf optimization
(GWO), krill herd optimization [35], bat optimization algorithm (BOA) [36] and Salp swarm
algorithm (SSA) [37].

In this paper, a novel technique is proposed which utilizes the efficiency parameter of
SSTs along with load dispatch through the lambda iteration method. As the percentage
loading capability/efficiency is an important consideration while optimizing load distribu-
tion in the DC distribution network, the proposed ALO algorithm is compared with the
other two biologically inspired algorithms, which are GWO and WOA.

The rest of the paper is organized as follows. Sections 2 and 3 elaborate the problem
formulation, which consists of two sub-sections: an overview for the ALO and an efficiency-
based optimal load problem. The obtained results are discussed in Section 3. In the end,
Section 4 concludes the work.

2. Problem Formulation
2.1. Ant Lion Optimizer

ALO is inspired by the hunting behavior of antlions. An ant lion larva moves in a
circular path and digs out cone-shaped pits in the sand, consequently throwing the sand
out. After digging, the larva hides underneath the cone and waits for the insects to come
since the edges are sharp enough that insects easily fall to the bottom of the trap [38]. After
consuming their prey, antlions prepare traps for other insects. In the next sections, this
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meta-heuristic behavior is modeled mathematically, and the flowchart of this algorithm
given in Figure 3 explains the workings.

Figure 3. ALO flow chart.

2.1.1. Operators for ALO

ALO algorithm is derived from the interactions between antlions and the ants in the
trap. The mathematical modeling of such a behavior requires the ants to move over search
space as ants move stochastically and antlions hunt them. Naturally, ants move stochas-
tically while searching for food; therefore, a random walk is selected for ant movement,
stated as

Y(t) = [0, cumSm(2r((t1) − 1, cumSm(2r((t1) − 1) . . . cumSm(2r((tn) − 1)] (1)
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where “cumSm” calculates the cumulative sum and “n” presents the maximum number of
allowed iterations. r(t) is a stochastic function and is defined as

r(t) =
{

1 if rand > 0.5
0 if rand ≤ 0.5

(2)

where “t” defines the step of random walk (iteration in this study), and “rand” is a random
number generated with uniform distribution in the interval of (0, 1).

MAnt =


Ant 1, 1 Ant 1, 2 · · · Antn, 1
Ant 2, 1 Ant 2, 2 . . . Antn, 2

... . . . .
. . .

...
Ant n, 1 Ant n, 2 · · · Ant n, n

 (3)

This matrix Mant refers to the parameters of each solution and saves the location of
each ant. The ant objective function matrix is employed in the algorithm, which saves the
fitness function of each candidate.

MOA =


Fobj(Ant1, 1 Ant1, 2 · · · Antn, 1)
Fobj(Ant2, 1 Ant2, 2 . . . . Antn, 2)

... . . .
. . .

...
Fobj(Antn, 1 Ant1, 2 · · · Antn, n)

 (4)

Random Walks for Ants

Random walks are based on the cumulative sum equation. During each step of
optimization, antlions update their position with a random walk. Following normalization,
the equation is used to keep the random walk within the search space.

Yn = Ri +
(Yi

t − Pi) ∗ (Qi − Ri
t)

(Qi
t − Pi)

(5)

In the above equation, Pi and Qi are the minimum and maximum number of random
walks in the ith variable. Rt

i and Pt
i indicate the maximum and minimum ith variables in the

tth iteration. Since random walks are solicited to all dimensions of ants, the above equation
applies to all iterations due to limitations of search space.

Trapping in Antlion Pits

Antlion traps affect the random walk of ants, to model this system mathematically
Equations (3) and (4) are proposed.

Qt
j = Antliont

j

∣∣∣Qt (6)

Rt
j = Antliont

j

∣∣∣Rt (7)

These equations provide information of random walk-in hypersphere defined by
vectors Qt and Rt around antlions.

Building Traps

A roulette wheel operator is employed to the algorithm for modeling the hunting
capability of antlions. In the ALO algorithm, the roulette wheel operator is utilized to select
antlions on the basis of their fitness functions. This process provides a scenario of better
chances for the selection of the fittest antlions [39].
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Sliding Ants towards Antlion

The antlions build traps according to their fitness, whereas the ants move randomly
over the search space. Antlions shoot the sand upward after sensing the presence of
prey, thus trapping the ants and not letting them escape. In order to model this behavior
of hunters, the radius of the ants’ random walks’ hyper-sphere is decreased adaptively.
Equations (6) and (7) are defined in this regard:

Qt =
Qt

I
(8)

Rt =
Rt

I
(9)

Catching Prey and Rebuilding Pit

The final stage calculates the objective function of the hunt. On the basis of the
objective functions, ants are selected, and their positions are updated. The updated position
is a position of the latest hunted ant, thereby enhancing the chances of preying on new ants.
A mathematical model is provided in the given equation:

Antliont
j = Antt

i if f
(
Antt

i
)
> f
(

Antliont
j

)
(10)

Elitism

Evolutionary algorithms make use of elitism to maintain the best solution at each
stage. In each iteration, every best antlion is saved and considered elite. A random walk
around a selected antlion by a roulette wheel and elite candidate is depicted as

Antt
i =

WA
t + WE

t

2
(11)

WA
t is a random walk around the antlion selected by the roulette wheel, and WE

t is
the random walk around the elite at the tth iteration.

2.2. Objective Function

The objective function is formulated to optimally distribute the load on modular SSTs
considering load and SST constraints. The ALO algorithm is employed to find out the
minimum optimal amount of input on each SST. This objective function finds the lowest
input power for modular transformer configurations. For SST, input/output curves are
utilized for constructing a generalized second-order equation.

Pjn = c + bPoj + aP2
oj (12)

Pjn is the input of SST and Poj is the output of each SST. In the above equation, a, b
and c are derived using the curve-fitting technique. These equations can be generalized as

Pj−total = ∑n
j=1 Pjn = c + bPoj + aP2

oj (13)

Load balance constraints and SST minimum and maximum constraints are utilized for
the formulation of the objective function. Supply and demand balance constraint is

n

∑
j=1

Poj − PD = 0 (14)

where PD is the load demand, and the output of SST should be equal to the consumption of
the load side demand in the DC distribution network.
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SSTs also observe some minimum and maximum output power limitations, such as
distributed generators, which can be stated as

Pmin
SST,j ≤ PSST,j ≤ Pmax

SST,j (15)

To find out the solution of this constrained optimization, the lambda iteration method
is utilized, where λ is used for constrained optimization

L = Pjn−total + λ
(

PD − ∑n
j=1 Poj

)
(16)

For optimal values of SST, the efficiency of SSTs is also considered an important factor
and employed as

Pjn−total =
∑n

j=1 Poj

ηSST,j
(17)

ηSST,j is an efficiency of SST and j is the number of SSTs.
For finding the values of ηSST, efficiency and loading capability curves are used for

extracting the generalized equations for SSTs.

ηSST,j = α + βLoj + γL2
oj (18)

α, β and γ are coefficients for efficiency and loading graph. Loj is the loading capability
of the graph at each point.

For the procedure outlined above, the objective function values are updated in each
iteration with a better solution. This iterative process continue until the termination
criterion is satisfied.

The primary focus is to achieve a systematic reduction of input on the modular
structure of SSTs using the ALO algorithm. This will provide an optimal distribution
of load demand. The application of the ALO algorithm for modular SSTs has not been
explored yet, and this is motivation to implement ALO for optimal load distribution of
SSTs in the DC distribution system.

3. Simulation and Results

A residential load model of a typical US building is considered as in [9,40,41]. Data
from EIA and DOE (Energy Efficiency Administration and Department of Energy) are
utilized. The load profile contains AC native, DC native, and independent loads (A, D,
and I type). In this problem, a set of 16 SSTs is utilized to form a modular architecture
instead of employing a single non-modular SST. Figure 4 represents the modular structure
for SSTs installed in the DC distribution system. Out of the 16 SSTs, 6 are from the market
in sets of three and the other 10 are from the literature [42–46]. From [21], the input/output
equations and loading/efficiency curves for optimal load distribution of modular SSTs
setup are utilized.

Figure 4. DC distribution system with modular structure zoomed in.
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The problem is formulated in such a way that initially, the input/output equations
from the graphs [21] are extracted using a curve-fitting tool in MATLAB. All these five
graphs in Figure 5 provide a general quadratic equation with variable values if (α, β and γ).

Figure 5. Output vs. input characteristics of SSTs.

Table 1 presents the SST equation parameters along with minimum and maximum
power handling capabilities. po is the output power of a single SST and pin is the input
power. The data for modular SST structure comprising 16 SSTs are tabulated in Table 1,
with corresponding SST configuration parameters with upper and lower operating limits.

Table 1. SST equation parameters.

SST Configuration Input/Output α β γ Pmin Pmax

SST1-set of 3 0.0017 1.0409 1.4481 14.28 100
SST2-set of 3 0.003 0.9845 1.5944 20 100
SST3-set of 3 0.0010 0.9268 2.8204 10 100
SST4-set of 3 0.0002 0.9991 0.9542 10 100
SST5-set of 4 0.003 1.0438 2.1322 16 110

Efficiency and loading capability graphs are obtained from [21] and then by using
MATLAB curve-fitting tools, quadratic equation constant parameters and the efficiency of
each SST at every loading point are obtained. Figure 6 illustrates this efficiency vs. loading
behavior at each loading condition.

Figure 6. Efficiency vs. loading capability characteristics of SSTs.

A load profile from [9] is utilized for the optimal distribution of the load among SSTs
in Figure 7. Moreover, a 24 h percentage loading profile is obtained by dividing each hour
load by its maximum value and is presented in Figure 8. Table 2 provides the loading
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vs. efficiency equation constants (a, b, c), which are used to find point-to-point data. This
efficiency profile will help us to prioritize the most efficient generators to fulfill the load
requirements.

Figure 7. Load profile of DC distribution network [9].

Figure 8. Load optimization using ALO without scheduling of SSTs.

Table 2. Efficiency vs. loading capability equation configuration parameters.

Loading/Efficiency a b c

SST1 −0.0012 0.0780 85.9195
SST2 −0.0015 0.2206 89.5267
SST3 −0.0044 0.5768 79.4532
SST4 −0.0015 0.2108 90.6773
SST5 −0.0015 0.2444 81.9398

A test case scenario is simulated to highlight the efficiency of the proposed algorithm.
ALO is implemented on modular solid-state structure with and without unit commitment.
In this case, unit commitment is scheduled on basis of the efficiency of SSTs.

Scenario I: All 16 SSTs are ON and working while a load is optimally distributed using
the ALO. In the test case I, all SSTs are utilized irrespective of their efficiency priorities dur-
ing the simulation and optimal load distribution is executed in MATLAB. Figure 8 presents
test case I, which is unscheduled SST incident and optimized with the ALO algorithm.
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Scenario II: All 16 SSTs are working when 100% load is demanded, otherwise there
will be SST scheduling according to the efficiency of SSTs. In this case, a unit commitment
strategy is employed on the basis of the efficiency priorities of SSTs. When a load is less
than maximum, only the most efficient SSTs are selected for operation. Figure 9 shows a
visual illustration of the improvements achieved by using the scheduling of SSTs along
with ALO, except the regions where all SSTs are ON, presenting the maximum demands in
load profiles. For comparison, Scenarios I and II are utilized to investigate the scheduling
effects on SSTs while using the ALO algorithm. This provides a visibly reduced amount of
1417.71539 W input, approximately 1.4 KW for the same amount of load.

Figure 9. Comparison of ALO for scheduled and unscheduled SST scheme.

Scenario III: The test cases presented above are compared with other metaheuristic
techniques, such as whale optimization and grey wolf optimization which is presented
in Figure 10. Moreover, the results of Scenarios I and II are compared with Scenario
III, where two different metaheuristic techniques (whale optimization algorithm (WOA)
and grey wolf (GWO) optimization) are employed. This comparison provides supe-
rior results produced by ALO for load distribution when scheduling is considered. As
shown in Figure 11, improvement achieved by ALO is 4.21 percent and followed by WOA
(i.e., 0.9 percent); lastly, GWO does not provide any significant results.

Figure 10. Comparison of ALO, GWO, and WOA for input reduction.
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Figure 11. Efficiency improvement of ALO, GWO, and WOA with respect to unscheduled SSTs.

In contrast to the effectiveness, there are certain limitations to the use of these tech-
niques. For example, ALO cannot produce fruitful results if the load profile is constant.
Moreover, higher processing time is required to find a suitable search space

4. Conclusions and Future Recommendations

Various metaheuristic approaches play a paramount role in economic scheduling and
dispatch. The present body of knowledge contains various approaches for improving the
performance of power systems by economic load management. The trend is, however,
shifting from conventional techniques to metaheuristic approaches. The ALO method is
proposed to solve the optimal load distribution of modular SSTs. In this research, 16 SSTs
of five different types are used in the DC distribution network. An objective function is
formulated which considers the input/output behaviors of the SSTs and their minimum
and maximum power handling capability. Three test cases are employed: S-I—all SSTs ON;
S-II—only scheduled SSTs ON; and S-III—comparison with other metaheuristic methods.
ALO provides better results for SST scheduling based on efficiency as compared to the
other two methods (whale and grey wolf optimizer).

The most effective utilization of a scenario or available circumstances/resources is a
stitch in time, considering the current energy situation. Many studies are presented and
are under consideration dealing with the optimization of diverse scenarios, from all walks
of life [47–50]. The current study may form a base for comparative efficiency analysis of
AC and DC distribution systems with the DC system incorporating the suggested scheme
of modular architecture. The battle of currents between AC and DC is still waiting for a
definite verdict at distribution scale i–e as to whether DC is better than AC or not [51,52].
The proposed architecture possesses the tendency to lift the efficiency of DC at distribution
scale as compared to AC, thereby assisting the researchers to reach a definite verdict in
favor of DC. Therefore, a future study can be devised to incorporate the proposed scheme
and employ it in a DC distribution network to present an efficiency comparison against
AC distribution.

The escalating augmentation in the utilization of DC as medium of power transmis-
sion and distribution accompanied with sophisticated control has brought ease from the
sustainability perspective and, on the other hand, complexity from the technical design
perspective. The control of power coming from major renewable energy resources in smart
grids demands the placement of SSTs rather than LFTs, leading to better efficiency, control
and quality [53]. There is no doubt in the technical soundness of SSTs over LFTs; however,
cost is the barrier hindering the path of adoption of SSTs. SSTs may not be suitable for
conventional AC systems; however, SSTs do possess the tendency of providing better
economics considering the efficiency analysis [54]. Passive devices installed in the SST are
the major cost concern, speculations exist the mass production of SSTs may reduce the
cost. Yet again, efficiency is the factor that once wiped DC out the power system in the
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nineteenth century and it is the same factor based on which DC is striking back. Efficiency,
or, more specifically, the operational efficiencies of any device, are definitely linked to its
economics in terms of payback period, lifetime and sustainability when compared against
any other device [55]. The current study presents the analysis in terms of the technical
efficiency and paves the way for a future cost analysis. A futuristic analysis in this regard
can be a study that furnishes the comparative analyses on techno-economic grounds that
presents a compromise of technology over cost and vice versa.
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Abbreviations

DER Distributed energy resources
LFT Low frequency transformer
cumSm Cumulative sum
r(t) Stochastic function
t Step of random walk
Rand Random number generator
Mant Parameters of each solution
Pi Minimum of random walks in ith variable
Qi Maximum of random walks in ith variable
Rt

i Maximum ith variable in tth iteration.
Pt

i Minimum ith variable in tth iteration.
WA

t Random walk around the antlion selected by the roulette wheel
WE

t Random walk around elite at the tth iteration
Pjn Input of SST
Poj Output of each SST
(a, b & c ) Constants from Input/output quadratic equation
PD Load demand
Pmin

SST,j Minimum and maximum output power limitations
Pmax

SST,j Maximum output power limitations.
λ Lagrangian constant
Pjn−total Total input power of all SSTs
ηSST Efficiency of jth SST
(α, β & γ) Coefficients for efficiency and loading graph
Loj Loading capability of the graph
pin Input power of SST
Pmin Minimum power handling capability of SST.
Pmax Maximum power handling capability of SST.
HFT High frequency transformer
DER Distributed energy resources
LFT Low frequency transformer
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