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Abstract: A novel approach to the physical memristor’s behavior of the KNOWM is presented in
this work. The KNOWM’s memristor’s intrinsic feature encourages its use as a nonlinear resistor in
chaotic circuits. Furthermore, this memristor has been shown to act like a static nonlinear resistor
under certain situations. Consequently, for the first time, the KNOWM memristor is used as a static
nonlinear resistor in the well-known chaotic Shinriki oscillator. In order to examine the circuit’s
dynamical behavior, a host of nonlinear simulation tools, such as phase portraits, bifurcation and
continuation diagrams, as well as a maximal Lyapunov exponent diagram, are used. Interesting
phenomena related to chaos theory are observed. More specifically, the entrance to chaotic behavior
through the antimonotonicity phenomenon is observed. Furthermore, the hysteresis phenomenon, as
well as the existence of coexisting attractors in regards to the initial conditions and the parameters of
the system, are investigated. Moreover, the period-doubling route to chaos and crisis phenomena are
observed too.
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1. Introduction

Leon Chua in 1971 postulated the fourth fundamental electrical component, which he
called the memristor [1]. A memristor is a nonlinear circuit element linking the charge and
the magnetic flux [2]. In contrast to a linear resistor, the memristor has a dynamic relation-
ship between current and voltage, including a memory of past voltages or currents [3].

Some years later, Chua and Kang generalized the concept to memristive systems [4]. These
systems are unconventional in the sense that while they behave like resistive devices, they can
be endowed with a rather exotic variety of dynamic characteristics. Experimentally, the ideal
memristor is yet to be demonstrated [5,6]. However, in 2008, a team from the Hewlett-Packard
(HP) labs fabricated the first electronic passive memristor [7]. What is more, after this first
attempt, also other research teams started to produce various types of memristors and make
them commercially available, such as KNOWM Inc. (Santa Fe, NM, USA).

The memristor has the potential to augment or enhance several areas of integrated
circuit design and computing. Extensive works in the literature regarding applications of
the memristor have been produced since the HP announcement but only few developments
are particularly noteworthy. One highly pervasive area where memristors may be applied
is that of non-volatile random access memory (NVRAM) [8]. The memristor seems to have
significant potential in this area, as the device exhibits memory, but it does not require
continuous power draw and consumes little physical area. Furthermore, the memristor can
be used for digital memory applications, where one bit of information can be stored using
a single memristor. This can be achieved forcing the memristor to its extreme resistance

Electronics 2022, 11, 1920. https://doi.org/10.3390/electronics11121920 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11121920
https://doi.org/10.3390/electronics11121920
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8763-7255
https://doi.org/10.3390/electronics11121920
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11121920?type=check_update&version=2


Electronics 2022, 11, 1920 2 of 18

values (RON and ROFF), which correspond to either a 1 or a 0 [8]. Additionally, the mem-
ristors can be used as associative memories [9]. These memories map an input pattern to
an output one according to the similarities of the input pattern to the pattern stored in the
memory. Moreover, the memristor can be possibly used for nano-scale low power memory
and distributed state storage, as a further extension of NVRAM capabilities. While the
memristor can be used at its extreme resistance values in order to provide digital memory, it
can also be made to behave in an analog manner. One potential application of this behavior
is that of a dynamically adjustable electric load [10]. What is more, some other applications
of memristors are in programmable logic [11], signal processing [12], super-resolution imag-
ing [13], physical neural networks [14], control systems [15], reconfigurable computing [16],
brain–computer interfaces [17] and RFID (radio-frequency identification) [18]. Additionally,
memristive devices are used for stateful logic implication, allowing a replacement for
CMOS (complementary metal-oxide-semiconductor) based logic computation [19]. Several
early works have been reported in this direction [20,21]. However, because there are no
effective memristors commercially available, only emulators [22,23] as well as ReRAM
(resistive random-access memory) memristive models [24–26] are used.

Furthermore, the nonlinear characteristic behavior of the memristor has given to the
research community the idea that it could be exploited in implementing novel chaotic cir-
cuits and systems with complex dynamics. In this direction, over the last three years, a few
implementations of chaotic circuits with physical memristors have been proposed [24,27,28].

In this work, a different approach regarding the use of the KNOWM physical
memristor [29], whose material stack is based on a mobile metal ion conduction through
a chalcogenide material that has undergone a metal-catalyzed chemical reaction that
creates channels, which constrain the flow of metal ions, is followed. It is experimentally
observed that for low frequencies, the KNOWM memristor behaves approximately as
a static nonlinear resistor. This drawback of the KNOWM memristor could be a real
interesting feature, due to the fact that it could be used as a nonlinear resistor in
chaotic circuits. Therefore, by using the experimental data of the KNOWM memristor’s
nonlinear i-v characteristic curve, the mathematical description of the nonlinear resistor
is calculated. Next, the memristor as the proposed nonlinear resistor, is used in the
well-known Shinriki chaotic oscillator circuit. Finally, the numerical investigation
of the circuit’s dynamics is presented. This investigation is based on the simulation
results, which are produced by using numerical tools, such as phase portraits, maximal
Lyapunov exponents [30–33], bifurcation diagrams [34], and continuation diagrams [35].

The paper is organized as follows. In Section 2, the mathematical model of the
KNOWM memristor’s characteristic curve for low frequencies, as well as the proposed
chaotic circuit, are introduced. In Section 3, the numerical investigation of the circuit’s
dynamical behavior is presented. Finally, the conclusions and some thoughts for future
works are discussed in Section 4.

2. Mathematical Model of the Chaotic Circuit

In this section, the Shinriki’s chaotic circuit [36] is presented with some changes.
The KNOWM memristor replaces the nonlinear positive conductance and at the same
time, it is used as a nonlinear resistor (NR). The schematic of the circuit is presented
in Figure 1. The circuit consists of five linear resistors, two capacitors, one induc-
tor and one operational amplifier. Moreover, the operational amplifier operates as a
negative conductance. Additionally, the inductor L and the capacitor C2 consist of a
resonant circuit.
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Figure 1. Shinriki’s circuit with KNOWM memristor as a nonlinear resistor.

The KNOWM memristor used in the Shinriki circuit is one of the eight KNOWM memris-
tors, which are contained in the 16-pin ceramic DIP (Dual inline package) package. In order
to capture the characteristic iM − vM of the selected memristor, the Analog Discovery 2 USB
(Universal serial bus) oscilloscope is used by using the sinusoidal signal of amplitude 2.4 V
and frequency 10 Hz. The curve is depicted in Figure 2. From this curve, it is obtained that
the pinched hysteresis loop of the memristor’s i-v characteristic curve shrinks so much that it
could be considered a simple nonlinear curve.

Figure 2. Experimental iM − vM characteristic curve of the memristor.

Moreover, the mathematical formula of the memristor’s characteristic iM − vM curve
is calculated by fitting the experimental data with the least squares method. Therefore, the
following equation is produced:

iM = 0.0125 · e−0.00744vM · sinh(0.68 · vM) (1)
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with R2 = 0.9996, which is presented in Figure 3. So, for low frequencies, the KNOWM
memristor could be used as a nonlinear resistor, for which its iM − vM characteristic curve
is described by Equation (1).

Figure 3. Fitting curve with Equation (1) of the experimental iM − vM characteristic.

What is more, the resonant frequency of the circuit is given by

f0 =
1

2π
√

LC2
(2)

In order to find the mathematical description of the proposed circuit, Kirchhoff’s laws
are applied to the circuit of Figure 1. Therefore, the dimensionless equations that describe
the circuit are

ẋ = η[(α− β)x + i]

ẏ = −z− γy− i (3)

ż = y

where, i represents the iM − vM nonlinear characteristic curve of Equation (1). Additionally,
the circuit’s normalizing variables and parameters are

x =
v1

vre f
, y =

v2

vre f
, z =

ρiL
vre f

, i =
ρiM
vre f

, τ =
t√
LC2

ρ =

√
L

C2
, η =

C2

C1
, α =

ρ

R3
, β =

ρ

R4
, γ =

ρ

R5
(4)

Next, in order to study the dynamical behavior of the circuit, the parameters of the
system are set to the following values: L = 0.5 H, C2 = 506.66 µF, R1 = R2 = 5.6 kΩ, and
R3 = 0.109 kΩ. The power supply is ±10 V.
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3. Numerical Results

In this section, the dynamical behavior of the proposed, modified Shinriki circuit for
different values of the linear resistance R5 (parameter γ), the capacitance of the capacitor
(C1) and the initial conditions (x0, y0, z0) is investigated. Generally, the system presents
rich dynamics that include changes between regular and chaotic oscillations through the
mechanism of crisis and period doubling phenomena.

3.1. Dynamics Related to the Capacitor C1

In order to study the behavior of the system according to the capacitor C1, bifurcation
diagrams are produced. The value of the linear resistance is set to R5 = 0.1 kΩ. Figures 4–6
present the bifurcation diagrams of the variable x, with the capacitance C1, for three different
values of the linear resistance R4 equal to 5, 10 and 15 kΩ. Moreover, for the same values of
the linear resistance R4, the maximal Lyapunov exponent diagrams are presented in the
same figures, respectively. From these diagrams, it is observed that there are regions where
the system oscillates chaotically and regions where the system oscillates regularly. This
behavior is also verified from the maximal Lyapunov exponent diagrams. In more detail, it
is clear that when the Lyapunov exponent is positive, the existence of chaotic behavior is
observed, while when the Lyapunov exponent is not positive, the system has a periodic
behavior. Furthermore, as the value of the resistance R4 increases, the chaotic behavior
occurs in higher values of the capacitance C1.

(a)

(b)

Figure 4. (a) Bifurcation diagram of x versus C1 and (b) maximal Lyapunov exponent diagram, for
R4 = 5 kΩ.
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(a)

(b)

Figure 5. (a) Bifurcation diagram of x versus C1 and (b) maximal Lyapunov exponent diagram, for
R4 = 10 kΩ.

(a)

Figure 6. Cont.
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(b)

Figure 6. (a) Bifurcation diagram of x versus C1 and (b) maximal Lyapunov exponent diagram, for
R4 = 20 kΩ.

Furthermore, from Figure 5, the antimonotonicity phenomenon [37–40] can be re-
vealed. According to this phenomenon, the system enters into chaos with the well-known
period doubling route and exits from the chaos following the reverse period doubling
route. As a result, a shape of a chaotic bubble is formed in the bifurcation diagram. This
phenomenon is relevant because it describes a complex scenario of how a nonlinear sys-
tem creates or destroys unstable periodic orbits by parameter alterations. Thus, Figure 7
presents the bifurcation diagrams in regard to the parameter value C1, as the linear resis-
tance R4 increases from 5 kΩ to 11 kΩ. Moreover, in these diagrams, the bubble starts with
period-1, but as the linear resistance R4 increases, the period of the bubble increases too.
Finally, a chaotic bubble is formed.

(a)

Figure 7. Cont.
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(b)

(c)

(d)

Figure 7. Cont.
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(e)

(f)

Figure 7. Bifurcation diagram of system, for: (a) R4 = 5 kΩ, (b) R4 = 7 kΩ, (c) R4 = 8 kΩ, (d) R4 = 8.5 kΩ,
(e) R4 = 10 kΩ and (f) R4 = 11 kΩ.

3.2. Dynamics Related to the Initial Conditions

In this subsection, the dynamical behavior of the system is investigated in regard to the
initial conditions x0, y0, z0. More specifically, the parameters of the system are R4 = 20 kΩ,
R5 = 0.1 kΩ and C1 = 50.66 µF. So, in Figures 8–10, the bifurcation-like diagrams and the
maximal Lyapunov exponent diagrams, in regard to the initial conditions x0, y0 and z0, are
produced. From these diagrams, it is observed that the dynamical behavior of the system
changes in regard to the initial conditions x0, y0 and z0.
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(a)

(b)

Figure 8. (a) Bifurcation-like diagram and (b) maximal Lyapunov diagram of system in regard to x0,
for R4 = 20 kΩ, R5 = 0.1 kΩ and C1 = 50.66 µF.

(a)

Figure 9. Cont.



Electronics 2022, 11, 1920 11 of 18

(b)

Figure 9. (a) Bifurcation-like diagram and (b) maximal Lyapunov diagram of system in regard to y0,
for R4 = 20 kΩ, R5 = 0.1 kΩ and C1 = 50.66 µF.

(a)

(b)

Figure 10. (a) Bifurcation-like diagram and (b) maximal Lyapunov diagram of system in regard to z0,
for R4 = 20 kΩ, R5 = 0.1 kΩ and C1 = 50.66 µF.

More specifically, there are regions where the behavior is only chaotic (0.0 < x0 < 0.125)
and regions where the behavior is only regular (0.22 < x0 < 0.235). Additionally, except for
these two regions, the behavior of the system changes rapidly between chaotic and regular
behavior, as it is observed from the bifurcation-like diagrams, as well as from the maximal
Lyapunov exponents diagrams.

Next, in order to study more the effect of initial conditions in the dynamical behavior
of the system, the basin of attraction of the system, in the x0 − y0 plane is produced, and it
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is presented in Figure 11. From this figure, it is observed that for different initial conditions,
the system behaves either regularly (blue points) or chaotically (red points). The basins of
attraction diagram is constructed by separating the initial conditions to these, which have
positive and no positive maximal Lyapunov exponents.

Figure 11. Basin of attraction of the system, for R4 = 20 kΩ, R5 = 0.1 kΩ and C1 = 50.66 µF.

3.3. Dynamics Related to the Parameter γ (Linear Resistance R5)

In this section, the numerical results from the simulations, regarding the value of the
parameter γ, are presented. The bifurcation diagrams in regard to the parameter γ, for
specific values of the linear resistance R4 and capacitance of the capacitor C1, are produced,
and they are presented in Figures 12a–14a. From these diagrams, it can be easily observed
that as the value of the linear resistance R4 is low, the chaotic behavior dominates in lower
values of the parameter γ, which means higher values of the linear resistance R5. On the
other hand, as the value of the parameter R4 increases, the chaotic behavior occurs in all
the range of the parameter γ. However, there are regions with regular behavior between
chaotic oscillations. Moreover, in Figure 13a, for γ = 0.2454, a sudden jump from the upper
part of the diagram to the lower part is observed. This phenomenon is known as hysteresis.
Furthermore, these observations are also verified from the maximal Lyapunov exponent
diagrams, which are presented in Figures 12b–14b.

(a)

Figure 12. Cont.
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(b)

Figure 12. (a) Bifurcation-like diagram and (b) maximal Lyapunov diagram of system in regard to γ,
for R4 = 5 kΩ.

(a)

(b)

Figure 13. (a) Bifurcation-like diagram and (b) maximal Lyapunov diagram of system in regard to γ,
for R4 = 10 kΩ.
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(a)

(b)

Figure 14. (a) Bifurcation-like diagram and (b) maximal Lyapunov diagram of system in regard to γ,
for R4 = 20 kΩ.

Next, the continuation diagrams with the parameter γ are constructed for the values
of the linear resistance R4 = 5 kΩ and R4 = 10 kΩ. The difference with the corresponding
bifurcation diagrams is that in the continuation diagrams, the final values of the variables x,
y and z, for a specific value of the parameter γ are used as the next initial conditions for the
next value of the parameter γ. The continuation (with red color) and bifurcation (with blue
color) diagrams, for R4 = 5 kΩ and R4 = 10 kΩ are presented in Figure 15. Comparing the
bifurcation with the continuation diagram, the phenomenon of coexisting attractors can be
revealed. Two coexisting attractors (chaotic and periodic), for γ = 0.24 and R4 = 10 kΩ are
presented in Figure 16 respectively.
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(a)

(b)

Figure 15. Continuation (red) and bifurcation (blue) diagram of parameter γ, for (a) R4 = 5 kΩ and
(b) R4 = 10 kΩ.

(a)

Figure 16. Cont.
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(b)

Figure 16. Phase space in x-y plane, for γ = 0.24 and for (a): x0 = 0.05, y0 = 0.01, z0 = 0.0 and
(b) x0 = −1.119915, y0 = −0.076945, z0 = −0.276554.

4. Conclusions

In this work, an autonomous chaotic circuit with a physical memristor was studied.
The idea was to study the dynamical behavior of the circuit by using a KNOWM memristor
as a nonlinear resistor. Plenty of numerical tools in order to study the circuit’s dynamical
behavior, such as the phase portraits, the bifurcation and continuation diagrams, as well as
the diagrams of maximal Lyapunov exponent, were used.

The autonomous system (3) presented rich dynamical behavior. More specifically,
chaotic and regular behavior were observed. Moreover, the system presented a route to
chaos through the mechanism of period doubling, as well as crisis phenomena. From the
bifurcation diagrams in regards to the capacitance C1, for different values of the linear
resistance R4, it is observed that as the resistance R4 increases, the chaotic behavior covers
a larger range of the values of the capacitance C1. Furthermore, with the increase in the
resistance R4, the antimonotonicity phenomenon occurs.

The second approach in this work was to study the system’s behavior according to the
change of initial conditions x0, y0 and z0. In more detail, the system’s behavior was chaotic
with the existence of periodic windows inside chaotic regions. Moreover, from the basins
of attraction diagram, a symmetric dynamical behavior in regards to the initial conditions
was observed.

Furthermore, the third approach in this work was to change the parameter γ, which
corresponds to the linear resistance R5, and the system’s behavior for different values of
R4 was studied. As well as, in the first approach, as the linear resistance R4 increases, the
chaotic behavior occurred in all the range of the parameter γ. Furthermore, the comparison
of continuation and bifurcation diagrams revealed the existence of coexisting attractors, as
well as the hysteresis phenomenon.

Therefore, this work presents the usefulness of the memristor as a nonlinear resistor
in chaotic circuits. More specifically, some possible applications of the proposed circuit
could be in chaotic encryption, as well as in the design of secure chaotic communication
systems. Finally, a further study of this work will be the experimental implementation of
the proposed circuit in order to verify its dynamical behavior.
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