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Abstract: N7-methylguanosine (m7G) is one of the most important epigenetic modifications found
in rRNA, mRNA, and tRNA, and performs a promising role in gene expression regulation. Owing
to its significance, well-equipped traditional laboratory-based techniques have been performed for
the identification of N7-methylguanosine (m7G). Consequently, these approaches were found to be
time-consuming and cost-ineffective. To move on from these traditional approaches to predict N7-
methylguanosine sites with high precision, the concept of artificial intelligence has been adopted. In
this study, an intelligent computational model called N7-methylguanosine-Long short-term memory
(m7G-LSTM) is introduced for the prediction of N7-methylguanosine sites. One-hot encoding and
word2vec feature schemes are used to express the biological sequences while the LSTM and CNN
algorithms have been employed for classification. The proposed “m7G-LSTM” model obtained an
accuracy value of 95.95%, a specificity value of 95.94%, a sensitivity value of 95.97%, and Matthew’s
correlation coefficient (MCC) value of 0.919. The proposed predictive m7G-LSTM model has sig-
nificantly achieved better outcomes than previous models in terms of all evaluation parameters.
The proposed m7G-LSTM computational system aims to support the drug industry and help re-
searchers in the fields of bioinformatics to enhance innovation for the prediction of the behavior of
N7-methylguanosine sites.

Keywords: deep learning; pattern recognition; LSTM; RNA; natural language processing

1. Introduction

To date, about 150 various types of RNA alteration/modification have been recognized.
These changes in RNA perform important functions in regulating the expression of genes at
different levels. For example, it was previously confirmed that changes in RNA can affect
RNA transport, processing, mRNA translation, and stability [1,2]. The most abundant RNA
modifications are the N7-methylguanosine (m7G), which happens in the 5’ cap position
of mRNA molecules and transfer RNA (tRNA) loop eukaryotic S ribosomal RNA (rRNA);
these modifications are preserved amid the three different kingdoms. This modification
plays a precarious role in the regulation of RNA function, post-transcription modifications,
and metabolism [3]. Within the context of aging, Zago et al. have discussed the emerging
importance of microRNAs as biomarkers for Parkinson’s disease [4]. Unfortunately, data
on the functional mechanisms are very limited. Recently, it has been revealed that m7G
sites can be efficiently identified by modern sequencing techniques [5–7]. Using deep
sequencing technology, Marchand et al. investigated AlkAniline-Seq for identifying m7G
in RNA at single-nucleotide resolution in yeast, human, and bacterial mitochondrial and
cytoplasmic rRNAs and tRNAs [5]. Furthermore, differently modifying internal m7G sites
to certain basic sites, Zhang et al. effectively established a MeRIP-seq approach to predict
m7G sites at single-base resolution. The single-base resolution approach used in m7G-seq
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data revealed the profile of m7G in human mRNA and tRNA, to enhance the knowledge of
m7G distribution in human cells [6].

However, the transcriptome-wide dissemination and vibrant regulation of m7G within
internal mRNA areas are still unknown. According to Zhao et al., the internal mRNA m7G
methyltransferase METTL1, and not WDR4, is a key responder to post-ischemic insults,
resulting in a global reduction in m7G methylation inside mRNA [8]. In addition, Liu et al.
introduced m7GPredictor for predicting internal m7G modification sites using sequence
properties [9]. In this model, the authors used various numerical descriptor methods and
a random forest was used for the selection of optimal feature sets. Likewise, Bi et al.,
developed a computational model for the identification of m7G sites [10]. In this model,
they have used different types of sequence encoding schemes in combination with the
XGBoost algorithm. Further, Shoombuatong et al. proposed a new predictor known as
THRONE for discrimination of human RNA N7-methylguanosine sites [11]. The THRONE
was designed in three steps using an ensemble learning predictor. Likewise, the m7G-DPP
web predictor was introduced by Zou and Yin by using physicochemical properties of
RNA for the prediction of m7G sites [12]. Here, Pearson correlation coefficient, dynamic
time warping, and distance correlation were utilized for extracting numerical features.
Next, the LASSO algorithm was employed to select highly discriminative features [12].
Likewise, Zhang et al. introduced a predictor, namely BERT-m7G, by utilizing in stak-
ing ensemble approach for the identification of RNA m7G sites [13]. In this model, a
BERT-based multilingual model was utilized to represent the information RNA sequences.
Similarly, to specifically detect the internal mRNA m7G mutation, Malbec et al. devel-
oped the m7G individual nucleotide-resolution cross-linking and immunoprecipitation
with sequencing (miCLIP-seq) approach [7]. Finally, this group of researchers determined
that m7G modifications are enriched in AG-rich contexts, which are highly preserved in
different mouse tissues and human cell lines. However, the advanced sequencing tech-
niques revealed significant findings in this area, although these methods are still costly for
transcriptome-wide detection. In this context, computational analysis m7G site predictors
have been introduced, namely m7GFinder [14], iRNA-m7G [15], and m7G-IFL [16]. In these
predictors, Yang et al. introduced a computational m7GFinder tool that can predict m7G
sites in H. sapiens RNA using a sequence-based approach. The optimal feature subset was
determined using mRMR, F-score, and Relief; and a support vector machine (SVM) was
used as a classifier. Similarly, in sequential, the iRNA-m7G model was performed by Chen
et al. for the identification of m7-methylguanosine sites by fusing multiple feature spaces.
In this model, sequential- and structural-based features were integrated in order to form
a hybrid space. Three types of features were combined using the feature fusion method,
including secondary structure components, pseudo-nucleotide composition, and nucleotide
property and frequency, to extract important RNA sequence features. Experiments have
shown that the feature fusion technique outperforms the use of a single type of feature in
detecting m7G sites [15]. Similarly, Ning et al. presented a predictor for the identification
of m7G, namely m7G-DLSTM based on an LSTM model and natural language processing
(NLP), nucleotide chemical property, and binary code feature extraction methods [17]. Most
recently, an m7G-IFL computational model for identifying m7G sites was developed by
Dai et al. [18]. This model uses an RNA sequence-encoding iterative feature representation
approach to discover probabilistic distribution information from various sequential models
and improve feature representation skills in a supervised iterative manner. The m7G-
IFL predictor used various feature extraction techniques such as ring-function-hydrogen
properties (RFH), physical-chemical-properties (PCP), and binary k-mer frequency (BKF).
Then, extreme gradient boosting (XGBoost) was applied as a classifier. Furthermore, it was
discovered that the proposed iterative feature method can improve feature representation
capability during the iterative phase through feature analysis [16].

Furthermore, enhanced efficiency of existing computational models is still needed in
the detection process. Thus, there is a dire need for the development of novel computational
methods for the accurate, fast, and precise detection of m7G modification. In our recent
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study, we tried to focus on deep learning-based prediction methodologies to develop an
accurate computational system called “m7G-LSTM” to predict N7-methylguanosine sites,
which could directly determine m7G sites based on sequence information. The proposed
m7G-LSTM system contains two stages i.e., distributed attributes representation and long
short-term memory (LSTM) model. In the attributes representation stage, the NLP-based
approach word2vec is applied to fragment the RNA instance into words (3-mers). Likewise,
in the second stage, the N7-methylguanosine site is identified by using the LSTM model.
The proposed prediction model m7G-LSTM has shown better performance and obtained
promising outcomes.

2. Methods and Materials
2.1. Benchmark Dataset

Here, we select and download a benchmark dataset from Chen et al. [15,16] to train the
proposed computational system. The benchmark dataset consists of 741 positive sequences,
which are m7G sites, and 741 negative sequences, which are non-m7G sites; both have
the same length (41 nucleotides). The benchmark dataset is mathematically expressed in
Equation (1).

S = S+ ∪ S− (1)

The benchmark dataset S consists of m7G sites and non-m7G sites, S+ with positive
m7G sites sequences, and S− with negative non-m7G sites sequences. To examine the
performance of the proposed model, cross-validation can be used. The dataset is split into
three sections: 20% for testing, 10% for validation, and 70% for training.

2.2. Encoding Scheme

The one-hot encoding approach is a simple but useful feature extraction technique,
frequently used in deep learning, but shows effective performance in bioinformatics [19]
and computer science [20]. It is employed to illustrate the nucleotide acid composition along
the RNA/DNA sequence. In previous studies [21–25], one-hot encoding was employed. In
this encoding technique ‘A’, ‘C’, ‘G’, and ‘U’ are represented by binary vectors of (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1), respectively. As a result, an n nucleotide RNA/DNA
sequence is encoded as a 4×n dimensional binary vector, which is used as input to the CNN
and LSTM models in this study. The vector has a length of n = 41 nucleotides. Figure 1
demonstrates the graphical representation of the one-hot encoding scheme.
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2.3. Distributed Attributes Formulation

The distributed attributes formulation scheme reduces the classification error of the
computational model by obtaining noiseless data. Genetic data are usually expressed as
biological sequences; hence, it may be thought of as a language through which information
moves between cells. Natural language processing (NLP) has been used for a variety of
biological problems in this area, such as EP2vec [26], alternative splicing site [27], G2Vec [28],
and iN6-Methyl (5-step) [29]. We approach this sequence analysis problem from a new
angle, manipulated by NLP. Indeed, there are several effective deep learning applications
in the NLP, i.e., word2vec, which embeds words into a vector space. The paragraph vector
is built on word2vec, and it embeds whole phrases into vectors that encode their semantic
content. In this regard, treating the sequence of RNA/DNA as a sentence rather than
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an image is more natural since DNA sequences are just one-dimensional data, whereas
images are frequently two-dimensional data. Consequently, we consider a DNA/RNA
sequence to be a sentence made up of k-mers (or words) [26]. Here, an NLP-based method,
i.e., word2vec, is applied to obtain decipherable demonstrations for RNA sequences. For
discontinuity, the RNA sequences are first fragmented into multiple words represented by
overlapping k-mers. Here, the value of k = 3 indicates a 3-mer. Commonly, genomes are
collected from the Genbank databank by using the following link: http://hgdownload.
soe.ucsc.edu. The genome is split into distant 21 chromosomes (C1, C2, C3, C4, C5, . . . ,
C20, and C21). Additionally, the chromosome is fragmented with sentences of 100 nt
residues. Lastly, the words are created by cutting each sentence into overlapping 3-mers.
The word2vec model is trained using the continuous bag-of-words (CBOW) technique. The
current word w(t) is predicted using the context words around it in a predetermined frame
in the CBOW technique. Table 1 shows the training parameters of the word2vec model.
Finally, each 3-mer word is expressed by a 100-dimensional vector, and each sequence of
length L is represented by an array of shapes (L − 2) × 100.

Table 1. Training parameters of word2vec.

List of Parameters Word2vec Model

Training Method CBOW
Corpus Human Genome

Context words 3-mer
Vector size 100

Window size 5
Minimum Count 5

Negative Sampling 5
Epochs 20

2.4. Convolutional Neural Networks (CNN)

A CNN is a deep learning algorithm frequently used in image processing, natural
language processing, and bioinformatics studies [30–37]. In image data, CNN works
with two-dimensional; however, CNN can also be employed with three-dimensional and
one-dimensional data. In this regard, the 1D (1-dimensional) CNN model in the field of
bioinformatics is effectively applied [24,38–41]. A CNN comprises one input layer, multiple
hidden layers such as pooling layers, ReLU (activation function) layers, convolutional
layers, normalization layers, fully connected layers, and an output layer. In this study,
various optimal hyper-parameters, such as the size of the masks [3, 5, 7, 9, 11, 13, and 15],
the number of masks [4, 6, 8, 10, 12, 14, and 16], and convolution layers [1, 2, and 3] are
used for training CNN model. The dropout probability range was [0.2, 0.25, 0.3, 0.35, 0.4,
0.5, 0.6, 0.7, and 0.75]. The selections of hyper-parameters are performed on the best success
rates in terms of all performance metrics to discriminate N7-methylguanosine sites. The
convolution layer, ReLU layer, and sigmoid function are mathematical as follows:

Conv1D(R)j f = ReLU

(
S−1

∑
s=0

N−1

∑
n=0

W f
snRj+s,n

)
(2)

In Equation (2), R, f, and j stand for the input, filter index, and output index position,
respectively. N shows the number of input channels, and S denotes the size of the window.

Dense layer with dropout: The scalar output score of the dense layer is transformed
from the feature vector z.

f = wd+1 +
d

∑
k=1

wkzk (3)

f = wd+1 +
d

∑
k=1

mkwkzk (4)

http://hgdownload.soe.ucsc.edu
http://hgdownload.soe.ucsc.edu
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In Equations (3) and (4), wd+1 represents the term of additive bias and the previous
layer zk weight is wk. The rectified linear function is denoted by ReLU and mathematically
stated in Equation (5).

ReLU(z) = max(0, z) (5)

As its output is scaled to the [0, 1], the sigmoid function is responsible for predicting
whether a given sequence is an m7G site or not. Equation (6) expresses the sigmoid function
mathematically.

Sigmoid(z) =
1

1 + e−z (6)

2.5. Long Short-Term Memory Layer (LSTM)

The recurrent neural network (RNN) is a type of deep learning that can learn only
from sequential data such as time-series data and textual data [42]. However, it has the
issue of gradient vanishing, and thus the parameters are not updated during the backprop-
agation [36,43–46]. Therefore, LSTM is a type of RNN that may store information regarding
long-distance data dependence and added gating function by addressing the issue of RNN
gradient [30,47,48]. LSTM gating mechanisms enable the network to effectively decide to
keep it remember or ignore it. Furthermore, speech recognition and language translation
also have great contributions [49–51]. Figure 2 illustrates our proposed model, which is
composed of an input layer, two LSTM layers, and followed by a dense layer.
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Figure 2. The proposed m7G-LSTM computational model Schema.

The first LSTM layer has an output channel of size 32, which is fed into the second
LSTM layer, where the second layer has 64 output channels. Moreover, the dropout rate of
35% is applied to the input connection within the LSTM layers. The outcome of the second
LSTM layer is flattened and passes to the dense layer. The dense layer is a fully-connected
layer with x output channels, and it is followed by a sigmoid activation function. Finally,
the sigmoid function generates the outcomes.

The proposed model has been trained as follows. Let xi be a vector demonstrating the
input RNA sequence (Equation (7)). The LSTM computes zi for xi (Equation (9)). Sigmoid
(Equation (10)) changes zi to a vector of values between 0 and 1. The loss is the binary
cross-entropy of the prediction (Equation (10)). It is used for updating the hidden neurons
at the hidden layer utilizing the Adam optimization algorithm, with 0.0005 being set as the
learning rate.

xi = RNA sequence where xi ∈ {A, C, G, U} (7)

yi =

{
0 if xi= non-m7G sites
1 if xi= m7G sites

(8)

zi = lstm(xi) (9)

sigmoid(zi) =
1

1 + e−y (10)
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2.6. Evaluation Parameters

In the literature [15,52–63], the following four equations were employed to measure
the prediction performance of the computational method: specificity (sp), sensitivity (sen),
accuracy (acc), MCC (Matthew’s correlation coefficient), and auROC. In the below equa-
tions ‘FP’ is a false positive, ‘TP’ is a true positive, ‘TN’ is a true negative, and ‘FN’ is a
false negative. 

Sp = TN
TN+FP × 100

Sen = TP
TP+FN × 100

Acc = TN+TP
FN+TP+TN+FP × 100

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

× 100

(11)

Accuracy: assesses the precision of a computational algorithm for distinguishing m7G
sites and non-m7G sites. Sensitivity and specificity are the true positive (TP) and true
negative (TN) rates of a test. MCC reveals the correlation between target classes in the case
of the imbalanced dataset; here, the ratio of both classes is the same. The area under the
ROC curve (auROC) is another measurement metric that shows the predicted outcomes of
the model. The auROC indicates the quality of the model. In the above equation, FN and
FP denote false negative and false positive, respectively.

3. Results and Discussion

An intelligent computational method, namely m7G-LSTM, is designed based on
a natural language processing approach, i.e., word2vec, in combination with the deep
learning algorithm LSTM. The efficiency is reported on the basis of various measuring
metrics, which are mentioned above. The proposed m7G-LSTM model has an accuracy of
95.95%, specificity of 95.97%, the sensitivity of 95.94%, MCC of 0.919, and auROC of 0.980
on the LSTM model, whereas the CNN model achieved 94.94% accuracy, 93.28% specificity,
96.62% sensitivity, 0.899 MCC, and 0.979 auROC. Table 2 shows the detailed projected
outcomes of the proposed predictor on LSTM and CNN.

Table 2. Performance of CNN and LSTM models using cross-validation.

Models Sensitivity Specificity Accuracy MCC

LSTM 95.94 95.97 95.95 0.919
CNN 96.62 93.28 94.94 0.899

Figures 3 and 4 show the auROC as well as a graphical illustration of the confusion
matrix.
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We compared our proposed m7G-LSTM model to the state-of-the-art models, such as
m7GFinder, m7G-IFL, and iRNA-m7G, to calculate its predictive performance. In this study,
we develop two various deep learning-based approaches i.e., LSTM and CNN approach to
present the proposed m7G-LSTM model. As a result, we compared the highest-performing
model of the m7G-LSTM to the most recent m7G-IFL model. To achieve a valid comparison,
we execute and evaluate the proposed model on the same benchmark dataset as existing
models. Table 3 summarizes the prediction performance. Our computational model, as can
be shown, outperforms the other three models, with an accuracy of 95.95%, the sensitivity
of 95.94%, specificity of 95.97%, and MCC of 0.919, respectively. Our proposed m7G-LSTM
computational model outperformed the existing latest m7G-IFL predictor by 3.54% in
specificity, 3.37% in sensitivity, 3.45% in accuracy, and 0.069 in MCC. We observe that our
predictor outperforms other models, with an AUROC of 0.980. Our m7G-LSTM model
improves upon state-of-the-art prediction models for predicting m7G site modification,
based on the results.

Table 3. Model comparison between the proposed m7G-LSTM and current models.

Models Accuracy Sensitivity Specificity MCC

m7G-LSTM 95.95 95.94 95.97 0.919
m7G-IFL [18] 92.5 92.4 92.6 0.850

m7GFinder [14] 89.9 90.8 89.1 0.799
iRNA-m7G [15] 89.9 89.1 90.7 0.798

m7GPredictor [9] 85.70 83.2 88.2 0.715

The graphical depiction of the execution outcomes is demonstrated in Figure 5 in which
the m7G-LSTM method achieved remarkable results compared to the current prediction
models. This shows the significance of our proposed model.
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4. Conclusions

The proposed m7G-LSTM method is a reliable and novel deep learning-based pre-
diction model for m7G sites. The proposed model utilized the distributed feature repre-
sentations that are exploited by the LSTM model. Two-feature encoding schemes were
used, i.e., word2vec and one-hot encoding. The input of RNA sequence is divided into
3-mers or words in feature representation, and each word is mapped to its correspond-
ing feature representation using the NLP method, i.e., word2vec. The one-hot encoding
converts categorical data to binary data that can be processed by computational models
efficiently. Then, the LSTM and CNN models were applied to identify N7-methylguanosine
sites, but the LSTM model produced better performance than the CNN model. In terms of
all performance measures for discriminating N7-methylguanosine sites, the m7G-LSTM
model highly outperforms state-of-the-art models, according to the prediction results. The
predicted outcome demonstrates that the proposed m7G-LSTM computational system is
efficient and reliable and that it might be useful in drug-related applications and academics.
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