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Abstract: In the field of integrated circuits, the computational cost has always been a crucial design
metric. In recent years, with the continuous development in the field of computing, the require-
ments for computation have been growing rapidly. Reducing the computational cost and improving
computational efficiency have become the key issues in the field. There are many error-tolerant appli-
cations in the multimedia field where approximate computing techniques can be applied to improve
computational efficiency and reduce computational costs at the cost of acceptable computational
errors. This paper proposed a piecewise linear Mitchell algorithm based on Mitchell logarithmic
approximation multiplication algorithm. Additionally, the Pwl-Mit multiplier is designed according
to the improved algorithm combined with the data truncation technique. The proposed approximate
multiplier has better statistical performance compared with the state-of-the-art multipliers. The
design is simulated and synthesized at the TSMC 65 nm process, and its reliability is verified using
discrete cosine transform (DCT) transform.

Keywords: approximate computing; multiplier; hardware design

1. Introduction

In the field of integrated circuit design, the computational cost has been one of the
critical design criteria, especially in power-sensitive areas such as embedded systems and
sensors. Rising performance demands will soon outpace the growth of resource budgets [1].
Over-allocation of resources alone will not solve the challenges that await the computing
industry in the near future. Researchers have made great efforts in algorithm and hardware
design to improve computational efficiency and reduce computational costs. Improving
computational efficiency while ensuring circuit performance has become a hot research
topic in academia and industry.

With the prevalence of mobile computing and embedded systems, many applications
that exhibit inherent error tolerance in computing, various studies have shown that some
highly computationally intensive applications (e.g., multimedia processing and machine
learning) are error-tolerant [2,3]. Error-tolerant applications are approximately classified
as follows:

• Due to the limited perceptual ability of humans, there are many error-tolerant scenarios
in fields related to human interaction.

• The input data itself is noisy, such as sensor monitoring data, and the environment
itself has considerable noise interference, so a completely accurate computation process
is unnecessary.

• The problem itself has no precise solution. A typical example is artificial neural
networks, where the boundary function itself has no exact solution. Because deep
neural networks have many parameters, they have considerable error tolerance and
are well suited for optimization using approximate computation techniques.
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Approximate computation techniques aim to reduce the gap between computational
requirements and available processing resources. The term “approximate” means that the
results are not necessarily precise but are within tolerable error and can consume fewer
resources than the exact solution.

Approximate computing of circuit design is an emerging circuit design method that
results in an approximation with errors, which allows circuit structures to be simplified,
thereby improving circuit performance, reducing circuit power consumption, and saving
circuit area. An approximate circuit can be used in many error-tolerant computing sys-
tems where the computation does not require a completely accurate result. However, as
an emerging design paradigm, the approximate circuit is still in the initial stages of its
development. One of the many issues that need to be addressed to bring approximate
computing to the mainstream is the modeling and analysis of accuracy. This is because
over-approximation can produce unacceptable quality loss [4,5].

Approximate circuit design can be performed at multiple levels, including circuit-level,
system-level, and software-level. Among circuit-level designs, the design of approximate
arithmetic operation units has received a lot of attention due to its importance in many
computing applications. Arithmetic units play an important role in most digital systems,
often determining the operating frequency of the whole system and greatly influencing the
system’s power performance. Therefore, one of the keys to the design of approximate com-
putational circuits is approximate arithmetic units. Multiplication is a crucial component,
and by reducing the computational cost of multiplication, the efficiency of the operation
can be greatly improved. Therefore, many designs of approximate multipliers have been
proposed. The main contributions of this paper are as follows.

1. A piecewise linear Mitchell algorithm is proposed to improve the statistical perfor-
mance of the algorithm at the cost of acceptable computational cost.

2. A high-performance approximate multiplier circuit structure is demonstrated.
3. The performance of the proposed multiplier is evaluated by various metrics and

compared with the existing state-of-the-art approximate multipliers for analysis.

The rest of this paper is organized as follows: Section 2 discusses the related work and
summarizes the existing approximate multipliers. An improved approximate multiplier
algorithm based on Mitchell’s logarithmic algorithm is proposed in Section 3. The circuit
structure of the approximate multiplier based on the improved algorithm is presented
in Section 4. The proposed approximate multiplier circuit’s performance evaluation and
error analysis will be presented in Section 5. In Section 6, the approximate computational
multiplier is tested for application to verify its usability. Finally, conclusions are presented
in Section 7.

2. Related Work

In this section, related work in approximate computational multipliers will be briefly
introduced.

Ref. [6] proposed a minimization bias approximate multiplier (MBM) based on the
Mitchell multiplier, and the design adds a constant compensation term to the basic Mitchell
algorithm, which solves the problem that the error bias is always negative in the Mitchell
algorithm. In Ref. [7], the researchers proposed three novel approximate 4-2 compressors,
where the number of outputs of the approximate 4-2 compressor is reduced to one and
utilized in an 8-bit multiplier. Additionally, an error correction module (ECM) is proposed
to facilitate the error performance of the approximate multipliers with the proposed 4-2
compressors. Ref. [8] proposed an approximate high radix encoding for generating the par-
tial product in signed multiplication, encoding the most significant bits. The unimportant
bits are approximated by rounding the high radix encoding to its nearest power of 2.

In Ref. [9], the researchers proposed a high-speed and energy-efficient approximate
multiplier. The method involves rounding the operands to the nearest power of 2. This
eliminates the computationally intensive part of multiplication and improves the speed
and energy consumption at the cost of small errors. Ref. [10] proposed an energy-efficient
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approximate multiplier based on Mitchell’s logarithmic multiplication, optimized for infer-
ence on convolutional neural networks (CNNs). The authors truncated the operands in the
Mitchell algorithm to propose Mitchell-w multipliers to create customizable logarithmic
multipliers that further reduce energy consumption. Ref. [11] proposed a novel approxi-
mate multiplier with a dynamic range selection scheme (DRUM). This multiplier combines
leading one detection as well as data truncation techniques for approximation with an
unbiased error distribution. Ref. [12] proposed a novel leading one bit-based approximate
(LoBA) multiplier architecture, which selects k bits from n-bit inputs (k ≤ n/4) based
on leading one bit (LOB) and then computes the approximate product based on these
small inputs. Four 4-2 compressors were proposed in Ref. [13], which can be flexibly
switched between exact and approximate modes of operation. In the approximate mode,
these dual-quality compressors provide higher speed and lower power consumption at the
cost of lower accuracy. Ref. [14] presented a novel design that uses a modification of the
previous approximate 4-2 compressor design and adds an error recovery module. Ref. [15]
investigated the design of approximate redundant binary (RB) multipliers. Two approx-
imate Booth encoders and two RB 4-2 compressors based on RB (full and half addition)
are proposed for RB multipliers. Ref. [16] presented the design of an approximate 15-4
compressor using a 5-3 compressor as the basic module. Four different types of approx-
imate 5-3 compressors were used in the 15-4 compressor to reduce power consumption
and improve throughput. Ref. [17] proposed an approximate multiplier that uses a mixed
radix-4 and logarithmic encoding of the input operands to generate two partial products. It
uses exact radix-4 encoding to generate partial products from the three most significant
bits. A tail-trimmed logarithmic approximation is used to generate partial products from
the remaining least significant bits. Ref. [18] presented an approximate logarithmic multi-
plier with two-stage operand pruning that prioritizes area and energy consumption while
maintaining acceptable accuracy. This multiplier prunes the least significant part of the
input operands in the first stage and prunes the approximation of the obtained operands in
the second stage.

The approximate Booth multiplier proposed by Ref. [19] is designed based on the
approximate radix-4 modified Booth encoding (MBE) algorithm and the partial product
array using approximate Wallace trees. Two approximate Booth encoders are proposed
and analyzed for fault-tolerant computations. Ref. [20] proposed a novel approximate
multiplier for high-performance DSP applications with low power consumption and a
short critical path. The multiplier utilizes a newly designed approximate adder to restrict
its carry propagation to the nearest neighbor for fast partial accumulation. Different levels
of accuracy can be achieved by using an OR gate or the proposed approximate adder in
a configurable error recovery circuit. Ref. [21] proposed an energy-efficient approximate
multiplier that combines radix-4 Booth encoding and logarithmic product approximation.
In addition, a datapath pruning technique is proposed and investigated to reduce the
hardware complexity of the multiplier. The researchers in Ref. [22] described a technique
that combines the Mitchell multiplier with a new hardware truncation scheme to form an
iterative multiplier with improved accuracy and reduced area. Ref. [23] proposed a scalable
approximate multiplier, called truncation and rounding-based scalable approximate multi-
plier (TOSAM), which reduces the number of partial products by truncating according to
the leading bits of each input operand. Ref. [24] proposed an energy-efficient approximate
multiplier design obtained by truncating the input operands. In this structure, n-bit multi-
plication operations are transformed into smaller bit-length multiplication operations and
some addition and shift operations. The simple computational core makes this multiplier
a scalable, low-power structure. Ref. [25] proposed a novel energy-efficient approximate
multiplier design using the significance-driven logic compression (SDLC) method. This
approach is based on partial product rows of its asymptotic bit importance and configurable
lossy compression. Subsequently, the resulting product terms are permuted and remapped
to reduce the number of product rows. Ref. [26] proposed an approximating odd multiple
of radix-8 to their nearest power of 2 so that the errors complement each other. In order to



Electronics 2022, 11, 1913 4 of 14

pursue the accuracy-energy balance, two approximate Booth multipliers (HLRBM1 and
HLRBM2) based on hybrid low radix (HLR) are designed.

3. Piecewise Linear Mitchell Algorithm

This design improves the Mitchell fast multiplication method and designs an approxi-
mate multiplication circuit based on it. In this section, the Mitchell multiplication method
and its improved algorithm piecewise linear Mitchell algorithm are introduced.

3.1. Mitchell Algorithm

Mitchell algorithm was proposed by Mitchell in 1962 [27]. It uses logarithmic transfor-
mation for the purpose of fast computation of multiplication and division.

For any binary value N = bk b(k−1) b(k−2) . . . b0 can be presented as Equation (1):

N =
i=k

∑
i=0

2ibi (1)

where bi takes the values 0, 1. Here we assume that the highest bit bk’s value is 1. The
coefficient of the highest bit can be extracted. We can get Equation (2):

N = 2k(1 +
i=k−1

∑
i=0

2i−kbi) (2)

Let:

x =
i=k−1

∑
i=0

2i−kbi (3)

Then we have:
N = 2k(1 + x) (4)

in which 0 ≤ x < 1. Then Mitchell used the approximation as follows:

log2 N = log2 2k(1 + x) = k + log2 (1 + x) ≈ k + x (5)

If we use l̂og2 to represent the approximate logarithmic operation, we have

l̂og2P = l̂og2(N1 · N2) = k1 + k2 + x1 + x2 (6)

where P is the product of N1 and N2. To get P, the approximate inverse transformation will
be taken to the Equation (5). Since the limit 0 ≤ x < 1 in Mitchell approximate logarithmic
operation, it is necessary to discuss x1 + x2 when taking the inverse transformation. The
result is shown in Equation (7).{

l̂og2P = k1 + k2 + x1 + x2 0 ≤ x1 + x2 < 1
l̂og2P = 1 + k1 + k2 + x1 + x2 − 1 1 ≤ x1 + x2 < 2

(7)

Combining Equations (5) and (7) we get Equation (8):{
P = 2k1+k2(x1 + x2 + 1) 0 ≤ x1 + x2 < 1
P = 2k1+k2+1(x1 + x2) 1 ≤ x1 + x2 < 2

(8)

3.2. Piecewise Linear Mitchell Algorithm

In Mitchell’s algorithm, the key approximation techniques used are as in Equation (9):

log2 (1 + x) ≈ x (9)
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This approximation is simple and straightforward. It reduces the computational com-
plexity to a great extent but also loses considerable computational accuracy. If a suitable
approximation function can be chosen, better computational performance can be obtained
at a small computational cost. According to the above view. We make a piecewise linear
approximation to log2 (1 + x).

Consider the general case, for the function f (x) assuming the existence of segmented
linear functions:

y =


b0x + a0 u0 ≤ x ≤ u1
b1x + a1 u1 ≤ x ≤ u2
. . .
bnx + an un ≤ x ≤ un+1

(10)

We can construct the cost function:

F(a0, a1, · · · , an, b0, b1, · · · , bn, u0, u1, · · · , un+1) =
n

∑
i=0

∫ ui+1

ui

( f (x)− ai − bix)
2dx (11)

When the minimum value of F is obtained, the corresponding parameter is the approxima-
tion function we need. To simplify the problem. We assume that u is a series of fixed value.
Find the partial derivatives for a, b respectively:

∂F
∂ai

= −2
∫ ui+1

ui

f (x)dx + 2ai(ui+1 − ui) + bi

(
u2

i+1 − u2
i

)
= 0 (12)

∂F
∂bi

= −2
∫ ui+1

ui

x f (x)dx + ai

(
u2

i+1 − u2
i

)
+

2
3

bi

(
u3

i+1 − u3
i

)
= 0 (13)

where i = 0, 1, 2, 3, · · · , n. Then we get the solution:

ai =
3

(ui+1 − ui)3 {
4
3
(u2

i+1 + ui+1ui + u2
i )I(ui+1, ui)− 2(ui+1 + ui)J(ui+1, ui)} (14)

bi =
6

(ui+1 − ui)
3 {2J(ui+1, ui)− (ui+1 + ui)I(ui+1, ui)} (15)

in which:
I(ui+1, ui) =

∫ ui+1
ui

f (x)dx

J(ui+1, ui) =
∫ ui+1

ui
x f (x)dx

(16)

To simplify the partition condition. We take the values of u as {0, 0.5, 1}. Combining the
above equation, we can solve the approximate function of f (x) = log2(1 + x) as:

p(x) =
{

0.02 + 1.16x 0 ≤ x < 0.5
0.18 + 0.83x 0.5 ≤ x < 1

(17)

Similarly for the inverse transformation g(x) = 2x − 1, the corresponding approximate
linear function can be solved as follows.

q(x) =
{ −0.01 + 0.83x 0 ≤ x < 0.5
−0.19 + 1.17x 0.5 ≤ x < 1

(18)

Considering the hardware computational cost. We make a second approximation to
the equations.

p(x) =
{

1.25x 0 ≤ x < 0.5
0.25 + 0.75x 0.5 ≤ x < 1

(19)
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q(x) =
{

0.75x 0 ≤ x < 0.5
−0.25 + 1.25x 0.5 ≤ x < 1

(20)

Figure 1 shows a comparison of the proposed approximation function with the Mitchell
approximation. The solid line in the figure represents the exact logarithmic and anti-
logarithmic transformation function, while the dashed line represents the approximation
function in Mitchell’s original method (red) and the piecewise linear approximation func-
tion proposed above.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 y = log2 (1 + x)

p(x)

y = x

y = 2x − 1

q(x)

Figure 1. Logarithmic function and its different approximations.

We have compared the error metrics of the Pwl-Mit algorithm with the Mitchell algo-
rithm, and the results are presented in Figure 2. Figure 2a compares the error distance of
the two algorithms. Due to the symmetry of the logarithmic and anti-logarithmic trans-
formations about the line y = x in the standard Mitchell algorithm, the two processes
have exactly the same error distance distribution, which is indicated by the red line in
Figure 2a. The result shows that the Pwl-Mit algorithm has a better error distance distribu-
tion. Figure 2b compares the MSE (mean squared error) of the two approximation schemes.
Similarly, the standard Mitchell algorithm has exactly the same MSE in both processes, and
the comparison results show that the MSE of the proposed algorithm is only 6.09% of the
standard Mitchell algorithm in the logarithmic transformation and 5.20% of the standard
Mitchell algorithm in the anti-logarithmic transformation.
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0.00
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Figure 2. Error metrics comparison of Pwl-Mit and standard Mitchell algorithm. (a) Error distance
distribution comparison. (b) Mean squared error comparison.
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Obviously, the new approximation function can fit the logarithmic function better.
More accurate computational results are obtained. The piecewise linear Mitchell approxi-
mation algorithm is as Equation (21).

P =

{
2k1+k2{q(p(x1) + p(x2)) + 1} 0 ≤ p(x1) + p(x2) < 1
2k1+k2+1{q(p(x1) + p(x2)− 1) + 1} 1 ≤ p(x1) + p(x2) < 2

(21)

4. Pwl-Mit Multiplier Structure

This section describes the computational flow and hardware structure of the Pwl-Mit
approximate multiplier. The computational flow of the Pwl-Mit multiplier can be divided
into the following steps as shown in Figure 3.

1. The leading one bit is detected for the two input data. And the shift operation is
performed so that the highest bit is the highest weighted 1 in the input data. Two
registers are also used to store the shift count k.

2. To further reduce the computational cost, we use data truncation here to cut the input
data, and send the truncated data to the linear transformation module.

3. The value after the shift counter and the result of linear transformation p(x) are
spliced to obtain an approximate logarithmic code. Perform the same operation on
the second operand to obtain the approximate logarithm code as well.

4. Take out the sum result and linearly transform it by q(x), send the result to the
logarithmic decoder, and perform the shift operation to obtain the final result.

Figure 3. Pwl-Mit algorithm approximate logarithm code generation.

Figure 4a shows the structure of p(x). Firstly, the input data is shifted to obtain
0.25 times of input, and then it is transferred to the adder and subtracter to obtain 1.25
and 0.75 times the value, respectively. Since the highest bit weight of the data is fixed,
the summation of the constant 0.25(2’b0.01) in the algorithm can be calculated using only
the highest 2 bits of the data. the addition result is obtained by splicing the calculated
result with the tail. The final result is determined by whether the input data is greater than
0.5. The structure of q(x) is similar to that of p(x). Only the adder and subtractor need to
be swapped.
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(a) (b)
Figure 4. Piecewise linear function modules of Pwl-Mit approximate multiplier. (a) Module of linear
function p(x). (b) Module of linear function q(x).

Figure 5 shows the hardware structure of the linear Mitchell logarithmic multiplier.
The input data op1 and op2 first enter the leading detection circuit and are shifted according
to the result. Then the truncated value is fed into the linear transform module. The
approximate logarithmic encoding is obtained after splicing with the shifted count. The two
encodings are summed and the result is input into the logarithmic linear approximation
module. Finally, the decoder deals with the input data to obtain the final calculation result.

Figure 5. Pwl-Mit algorithm approximate multiplier top level hardware structure.
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5. Simulation and Analysis

To verify the performance of the proposed linear approximate Mitchell multiplier.
The error characteristics of the proposed linear approximate multiplier are compared with
several state-of-the-art approximate multipliers. These multipliers include MBM, Mitch-w,
and standard Mitchell multipliers. 8-bit and 16-bit versions of these approximate unsigned
multipliers are implemented in Verilog HDL.

Model construction and simulation were developed using python language. For the
8-bit design, full coverage tests were used, and for the 16-bit design, we used 100,000 sets
of random data for testing. In this section, the error performance and the synthesis results
of the design are shown and analyzed.

The error performance is very critical in the approximation calculation and determines
the reliability of the approximate design. The error performance of the proposed design will
be illustrated by comparing it with similar methods such as MBM and Mitch-w multiplier. A
variety of error metrics will be used in this paper to test and evaluate the error performance
of the design. These include acceptable rate (AR), mean relative error distance (MRED),
normalized mean error distance (NMED), and peak error (PE).

The error rate (ER) is a very basic metric for approximate adders. In combination with
other metrics, the stability of the overall design can be assessed, among which the widely
used one is the acceptability rate. AR indicates the tolerance to error, i.e., any result with
a relative error distance less than a certain value can be considered as the correct result.
Table 1 shows the AR under different thresholds for the 8-bit data set test.

Table 1. Acceptable probability comparison

≤1% ≤2% ≤5% ≤10% ≤15% ≤20%

Mitchell 22.42 36.09 66.95 97.45 100 100
MBM 20.91 45.76 84.61 100 100 100

Pwl-Mit4 6.57 13.18 37.84 80.85 97.69 100
Pwl-Mit6 43.26 71.83 97.79 100 100 100
Mitch-w4 1.67 2.89 12.00 46.85 84.54 99.06
Mitch-w6 8.73 20.83 56.68 93.10 100 100

In the table, the Pwl-Mit multiplier and Mitch-w multiplier are tested for parameters
4 and 6, respectively. It is clear that the proposed Pwl-Mit multiplier has the best AR
performance and the Mitchell multiplier has the second best performance while the Mitch-
w multiplier has the worst AP performance.

Figure 6 shows the RED performance for the 8-bit data exhaustive test, where we set
the computational parameters of both Pwl-Mit and Mitch-w multipliers to 6. It is obvious to
see that Figure 6a–c have similar RED error distributions because Mitchell-w and MBM are
both improved multipliers based on the original Mitchell multiplier. MBM adds a bias term
to the Mitchell multiplier, so the lower half of the image is inverted. The Mitch-w multiplier
takes a truncation operation to the original Mitchell multiplier so error performance is
inferior. The comparison result shows that the Pwl-Mit multiplier proposed in the paper
has the best RED error distribution.

Figure 7 shows the peak error comparison of several multipliers with the 8-bit data set,
where the MBM multiplier has the smallest peak error with a small parameter w. As the
parameter w becomes larger, the peak error of the proposed multiplier gradually decreases,
and when w = 7, Pwl-Mit has the best peak error performance.

MED stands for mean error distance and is the average of the absolute values of the
differences between the approximate and true results. This is a very intuitive and basic
metric. However, since its value does not correlate greatly with the width of the input data,
there is no way to truly reflect the accuracy performance of the computational performance.
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Therefore, in this paper, NMED and MRED are used as the main error metrics. If we use D
to denote the maximum error distance (ED), then NMED is calculated as follows.

NMED =
MED

D
=

1
n

n

∑
i=0

|EDi|
D

(22)

The mean relative error distance (MRED) is the average of the relative errors, which
better reflects the confidence level of the measurement. If we use S to represent the standard
result, it is calculated as follows.

MRED =
1
n

n

∑
i=0

|EDi|
Si

(23)

To evaluate the actual circuit consumption, we synthesized the design using Synposys’
design complier tool at the TSMC 65 nm process. The performance comparison is shown
in Table 2.

(a) (b)

(c) (d)
Figure 6. RED distribution comparison. (a) Original Mitchell multiplier RED distribution. (b) MBM
RED distribution. (c) Mitchell-w6 multiplier RED distribution. (d) Pwl-Mit multiplier RED distribution.

From the table, we can see that our design has the best statistical performance including
MRED and NMED. Mitch-w is the simplest and therefore occupies the least circuit area and
power consumption. MBM has no adjustable parameters, but its statistical performance is
significantly better than that of Mitch-w but weaker than that of the proposed design.
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Figure 7. Peak error comparison.

Table 2. Design metrics comparison for proposed Pwl-Mit multiplier

MRED
(%)

NMED
(%)

Area
(µm2)

Power
(µW) Delay (ns)

Mitch-w
w = 5 7.90 18.18 976.0 95.32 2.61
w = 6 5.89 16.83 1018.6 103.66 2.73
w = 7 4.87 16.46 1043.2 112.52 2.85

Pwl-Mit
w = 5 4.00 15.67 1052.8 109.70 2.84
w = 6 2.12 14.43 1228.4 156.02 3.06
w = 7 1.39 11.23 1131.6 190.89 3.20

Mitchell N/A 3.85 14.75 1463.2 193.35 3.23
MBM N/A 2.58 13.89 1631.6 208.75 3.35

6. Application Performance Test

To verify the practical working performance of the approximate multiplier proposed
in this paper. We choose the discrete cosine transform as the verification. The evaluation
metric used is the peak signal-to-noise ratio.

PSNR = 10 log10
Max2

I
MSE

= 20 log10 MaxI − 10 log10 MSE (24)

In order to verify the usability of the proposed multiplier, classical images from image
processing were chosen as the test dataset. To reduce the computational cost and improve
the computational efficiency, we divide the input image into 8*8 sub-blocks. We use a DCT
transform followed by an iDCT transform to get the target result. The final transformed
results are compared with the original images. The results are shown in Table 3.

Figure 8 takes one of the images of a cameraman as an example to show the results
of the transformation of several multipliers. Among them, the MBM multiplier has the
worst PSNR performance as the image brightness changes significantly, and the Mitch-w
multiplier has the most obvious block edge. The Pwl-Mit multiplier proposed in this paper
has the best visual effect as well as PSNR.
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Table 3. Peak signal-to-noise ratio comparison result

Figure Mitchell MBM Mitch-w8 Pwl-Mit8

cameraman 29.91 17.70 26.64 30.93
house 29.42 18.33 28.67 33.51

jetplane 26.38 15.62 23.88 28.90
lake 28.36 17.69 25.49 29.97
lena 30.28 17.55 26.04 30.90

livingroom 31.31 17.81 26.44 31.20
mandril 29.26 16.48 24.89 29.70
peppers 29.12 17.06 25.19 29.92
Average 29.26 17.28 25.91 30.63

(a) (b) (c)

(d) (e)

Figure 8. DCT and iDCT PSNR comparison. (a) Original. (b) Mitchell, PSNR = 29.91. (c) MBM,
PSNR = 17.70. (d) Mitch-w8, PSNR = 26.64. (e) Pwl-Mit, PSNR = 30.74.

7. Conclusions

In this paper, we propose the piecewise linear Mitchell algorithm. It is based on the
Mitchell approximate multiplication algorithm and improves the computational accuracy
of the original algorithm at the cost of a higher computational cost. Based on the improved
algorithm, we further propose the Pwl-Mit multiplier structure. The proposed multiplier
structure has a tunable parameter w to adjust the balance between area/power and statisti-
cal performance. The entire design was simulated and synthesized using the TSMC 65 nm
process. With the same parameters, the proposed structure achieves a 70% MRED and 30%
NMED performance improvement at an 8% area cost compared to the Mitch-w, and a 65%
MRED performance improvement and 25% NMED improvement compared to the standard
Mitchell multiplier, while also reducing the circuit area by 23%. In comparison with the
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MBM multiplier, the proposed design achieves 47% MRED performance advantage and
20% NMED performance improvement, while occupying only 69% of the area of the MBM.
The proposed design also has the best AR performance and the smallest peak error among
the four multipliers. Finally, the reliability of the design is verified using the DCT and iDCT
transform. Compared with the other three multipliers, the Pwl-Mit transformed image has
the highest PSNR and the best visual effect.
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