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Abstract: Search engines use significant hardware and energy resources to process billions of user
queries per day, where Boolean query processing for document retrieval is an essential ingredient.
Considering the huge number of users and large scale of the network, traditional query processing
mechanisms may not be applicable since they mostly depend on a centralized retrieval method. To
remedy this issue, this paper proposes a processing technique for aggregated Boolean queries in the
context of edge computing, where each sub-region of the network corresponds to an edge network
regulated by an edge server, and the Boolean queries are evaluated in a distributed fashion on the
edge servers. This decentralized query processing technique has demonstrated its efficiency and
applicability for the document retrieval problem. Experimental results on two real-world datasets
show that this technique achieves high query performance and outperforms the traditional centralized
methods by 2–3 times.

Keywords: aggregated query processing; Boolean query; edge computing; document retrieval

1. Introduction

Large search engines use significant hardware and energy resources to process billions
of document requests per day. This has motivated a large body of research that aims
to reduce the cost of processing queries. Keyword-based Boolean query is the typical
one in search engines, which utilizes the logical and/or expression to represent the set of
keywords contained by the target documents. Generally, search engines use inverted index
structures to quickly obtain the ordered sets (document IDs) for the keywords, then retrieve
the target documents by evaluating the corresponding set expression [1]. For example, the
keyword-based Boolean query “(data or knowledge) and (mining or science)” retrieves
the documents containing at least one of the keywords in {data mining, data science,
knowledge mining, knowledge science}, the set expression (S(data) ∪ S(knowledge)) ∩
(S(mining) ∪ S(science)) is evaluated to identify the target documents, where S(w) is the
ordered set of IDs for the documents containing the keyword w.

With the rapid growth of the number of internet users, traditional centralized doc-
ument retrieval mechanisms may not be an appropriate strategy, when documents are
distributed on the local caching servers and each local caching server corresponds to a
certain sub-region of the network. Instead, document retrieval requests should be processed
in a localized and distributed fashion, while only the intermediate results computed by the
local caching servers should be aggregated to the cloud server. We argue that this decen-
tralized strategy is appropriate in the context of distributed documents, especially when
documents are large in volume. In recent years, edge computing has been widely adopted
in many applications, which aims to decentralize the procedure of query processing and
reduce the system energy consumption [2,3]. To this end, we explore the Boolean query
processing for document retrieval in edge computing in this paper, which aims to improve
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the query efficiency by processing the user queries in a distributed and localized fashion as
much as possible.

Traditional techniques process the Boolean queries for document retrieval in a central-
ized fashion. These methods can be divided into comparison-based and non-comparison-
based algorithms. The comparison based algorithms generally compile the Boolean query
to a parse tree, then utilize the parse tree to guide the comparisons for the elements in the
ordered sets of Q [4–6]. The algorithms introduced in [4,5] obtain a worst-case optimal
complexity on the sizes of ordered document sets in the query, they utilize a bottom-up
fashion to compute the intermediate results for each internal node of the parse tree, and
the final evaluation results are obtained as the intermediate results for the root of parse
tree are computed. An adaptive algorithm is proposed in [6], which preferentially com-
putes the individual evaluation result. Additionally, the comparison-based algorithms
for multi-list intersection can be used for the Boolean query problem by only considering
the intersection [1,7–12]. Bille P. et al. proposed the non-comparison-based techniques on
the Boolean query problem [13]. They adopted the approximate set representation for the
ordered sets by computing the hash function values for the original ordered sets. Although
the non-comparison based algorithm achieves efficient performance on the evaluation time,
it only obtains the approximate results.

To the best of our knowledge, a distributed and localized method has not been investi-
gated to support the Boolean queries for document retrieval. To address this challenge, this
paper proposes an aggregated Boolean query processing technique in edge computing. In
this context, the network is divided into sub-regions, where each sub-region corresponds to
an edge network regulated by an edge server (i.e., the local caching server). Additionally, all
edge servers are connected to a center node (cloud server) of the network. Boolean queries
are initially processed at the cloud server of the network, then the following processing
tasks are assigned to the edge servers, where documents are retrieved locally, and finally
the results of the document retrieval are aggregated at the cloud server. To summarize, we
make the following contributions in this paper.

- Aggregated Boolean query processing in contiguous edge networks. We design a marginal
edge network query mechanism for the document retrieval request, which distributes
the converted user query to the edge servers. This query mechanism computes the
intermediate query results in each edge server with limited data transmission between
edge servers, and the accurate query results are finally aggregated in the cloud server.

- Processing Boolean queries in single edge networks. For the query processing in the single
edge network, we propose the evaluation tree-based plan to compute results for the
document request query in the edge server, which avoids unnecessary checks for the
document sets. We also design optimization techniques for skipping invalid element
comparisons to further accelerate the query evaluation.

The rest of the paper is organized as follows: Section 3 gives the problem definition
and introduces the necessary background. We introduce the marginal edge network query
mechanism in Section 4, and present the query processing method for single-edge networks
in Section 5. Experimental results are presented and analyzed in Section 6. Section 2 surveys
the related work. At last, we conclude this paper in Section 7.

2. Literature Review

The existing work related with our problem can be broadly classified into two streams.
One stream is concerned with the research in edge computing, while the other stream
addresses the problem of Boolean query processing.

2.1. Edge Computing

Along with the popularity of IoT applications, edge computing has been proposed in
recent years as the complement of cloud computing [14–16], which shifts the computational
and storage resources toward the edge of the network. We review the following three
directions in the field of edge computing that relate to our studied problem.
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2.1.1. Decentralized Query Processing in Edge Computing

Query processing as an important ingredient of the IoT applications in edge computing
has been studied recently, where the applications are processed in a decentralized fashion
as much as possible [17–20]. A typical work is presented in [18], which processes the multi-
attribute aggregation query in a decentralized fashion by constructing the energy-aware
IR-tree in single-edge networks. A blockchain-based decentralized platform CoopEdge is
proposed to support cor-operative edge computing [21], where an edge server can safely
publish a computation task for others, and reliable edge servers are selected. In addition,
the research field of serverless-enabled edge computing, which aims to bring computational
resources closer to the data source, can also realize the decentralized query processing
in edge computing [22–25]. A decentralized framework for serverless edge computing
is proposed to minimize the query processing time by dispatching the stateless tasks to
executors of the network [26]. In [27], a simulation tool is designed for the testing and
evaluation for the serverless edge computing applications.

Although these techniques propose some solutions for decentralized query processing
in edge computing, the query processing mechanisms cannot be reused for different
types of queries, and these techniques cannot be directly utilized for the Boolean query
processing problem.

2.1.2. Computation Offloading in Edge Computing

Computation offloading is a critical direction in edge computing, in which the compu-
tation tasks are offloaded from the resource-limited edge devices to the powerful network
edges so that the applications obtain low latency [28–31]. Existing computation offloading
techniques can be divided into two categories: traditional heuristic rule-based offloading
schemes and learning-based intelligent offloading schemes. Traditional offloading schemes
utilize heuristic algorithms to solve different optimization objectives, including network
delay and energy consumption [32,33]. Intelligent offloading schemes solve the network
delay and energy consumption problem, using the technique of online learning [34–36].

Computation offloading is a different problem than decentralized Boolean query
processing. Therefore, the techniques for computation offloading cannot be used for our
studied problem.

2.1.3. Privacy Preserving in Edge Computing

Some works have studied the privacy-preserving problem in edge computing [37–40].
The application in edge computing achieves efficient data/query processing by sinking
parts of the cloud server business to the edge of the device and enabling the data/query to
be processed in the edge devices. The security protocols/frameworks are then proposed to
protect the privacy of user data in the edge devices under the edge computing environment.
A security framework for big data analytics in VANETs equipped with edge computing
nodes was proposed in [41]. A method integrating edge computing, cloud computing
and differential privacy was devised to provide efficient privacy preservation for the
location-based data stream processing [42]. Additionally, some techniques solve the data
privacy issue in the edge devices using homomorphic encryption [43–45], which enables
the protection of the data privacy for the edge devices with good computing ability.

In our problem setting, user documents are distributively stored in the edge devices.
Although the data privacy issue also exists in this setting, we only focus on the method of
Boolean query processing in this paper. These techniques protecting data privacy in edge
computing are orthogonal to our proposed method.

2.2. Boolean Query Processing

Traditional techniques have been developed to support Boolean query processing,
which can be divided into comparison-based and non-comparison-based algorithms. The
basic idea of comparison-based algorithms is to compare the elements in the ordered sets
of the query and find the results satisfying the Boolean logic [4–6]. They generally compile
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the query to a parse tree, which can be used to guide the comparison order for the elements.
An algorithm obtaining a worst-case optimal complexity on the sizes of ordered sets is
introduced in [4], it computes the evaluation results using the parse tree in a bottom-up
fashion. For each internal node V of the parse tree, the intermediate evaluation results
for V are computed by applying multiple ordered sets intersection (respectively, union) if
V is an intersection (respectively, union) node. Finally, the evaluation results for the root
node of the parse tree are the evaluation results of the query. An adaptive algorithm was
proposed in [6], which also utilizes the parse tree to compute the evaluation results. Its
basic idea is iteratively checking the picked candidate elements to obtain the evaluation
results. In each iteration, the algorithm first computes a candidate element from the ordered
sets of the query that could be the evaluation result, then checks it by the parse tree. A
non-comparison based algorithm for processing Boolean queries was proposed in [13].
The approximate set representations for the ordered sets are computed through the hash
values of the original ordered sets. In order to store the hash values into a word so that
the word-level parallelism can be used, they also utilized a compressed representation for
the hash values. Afterwards, the evaluation results are computed by performing the set
operations on the mapping compressed hash values, rather than the original ordered sets.

Additionally, the multi-list intersection algorithms can also be used to process the
query that only contains intersection operations [1,7–12]. A straightforward algorithm is
widely used, called SvS, which iteratively applies the two-set intersection in increasing
order by size, i.e., starting with the two smallest ordered sets. Adaptive can be viewed as a
variant of SvS, which selects the candidate element from the set with the least remaining
elements, rather than the initial smallest set [11,12]. If a mismatch occurs before all sets
have been checked, the sets are reordered based on the number of remaining elements
in each set, and the new candidate element is picked from the smallest remaining subset.
Max is proposed in [1], which does not need to reorder the sets when picking a candidate
element. As a mismatch occurs, the element that leads to the previous candidate element
to be mismatched is used to skip the invalid elements on the smallest set, choosing the
successor on the smallest set as the new candidate element.

Discussion: In the context of edge computing, these traditional methods can be
adopted for processing Boolean queries in a centralized fashion, that is, collecting all data
in the cloud server and then evaluating the queries by these methods. Compared to the
traditional centralized methods, our proposed approach improves the query efficiency
from two aspects. At first, we design a decentralized query mechanism for Boolean queries
which assigns the decomposed Boolean queries to the edge servers (Section 4). Another
aspect is that an efficient evaluation algorithm for the decomposed Boolean queries in
single networks is proposed (Section 5).

3. Preliminaries

The inverted index is widely used for document retrieval [1]. For each word w in
the document collections, an ordered set with respect to w is built that records the ID
of documents containing w. An inverted index for document collections consists of the
ordered sets for all words. Given a keyword wi, we can quickly obtain the ordered set Si
for wi through the pre-built inverted index.

In general, users specify a keyword-based expression to retrieval the target docu-
ments. The processing system obtains the document sets of the keywords from the pre-built
inverted index, then performs the corresponding Boolean set expression using these docu-
ment sets.

In this paper, a Boolean set expression Q is defined recursively as follows. (i) Q = Si
is a Boolean set expression which represents a document set Si; (ii) Q = Qi ∩ Qj is a
Boolean set expression which denotes a set intersected by the document sets of Qi and
Qj, where Qi and Qj are the Boolean set expressions; and (iii) Q = Qi ∪ Qj is a Boolean
set expression which denotes the union for the document sets of Qi and Qj. Since the
query processing system evaluates the Boolean set expression to retrieve the documents
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describing by an user-specified keyword expression, we consider the Boolean query as a
Boolean set expression directly in the remainder of this paper.

Example 1. For the user-specified keyword expression bigdata∧ ((review∧ (ACM∨ IEEE)) ∨
(MDPI∧paper))∧research, it is used to retrieve the documents, where each result document must
contain a set of keywords (e.g., {bigdata, MDPI, paper, research}) described by the expression.
Let w1, w2, · · · , w7 be the keywords bigdata, review, · · · , research, and S1, S2, · · · , S7 be the
corresponding ordered sets storing the IDs of documents that contain the keywords w1, w2, · · · , w7,
respectively. The user query is answered by evaluating the following ordered set-based Boolean query.

Q = S1 ∩ ((S2 ∩ (S3 ∪ S4)) ∪ (S5 ∩ S6)) ∩ S7

Figure 1 shows the fragments of five document samples, which contain the keywords
in above example. Additionally, this figure shows the ordered sets for the keywords, e.g.,
S1 = {1, 2, 3, · · · } since the keyword w1: bigdata exists in the first three samples. By
evaluating the Boolean query Q, we know that the document with id = 2 is a result for the
user query since this document contains words bigdata, MDPI, paper, research.

… The definition of bigdata is data that contains greater variety,… insights and 
advice about how to review paper from researchers across the spectrum, …

Document ID Fragment of the document

1

… The evolution of research in bigdata and artificial intelligence in recent years 
challenges … invite you to contribute a research paper in journals of MDPI…

… IEEE/ACM International Symposium on Big Data Computing…The creative use 
of bigdata, especially that from the Internet of Things…

… All research articles published by MDPI are made available worldwide under 
an open access license,…ACM Digital Library Recognizing that many …

… Peer review is vital to the quality of published research. IEEE / ACM requires 
all conference paper go through the peer review process before publication.…

2

3

4

5

Word
Building inverted index

w1: bigdata S1: 1, 2, 3,  ……

Ordered set of the document IDs

w2: review S2: 1, 5, ……

w3: ACM S3: 3, 4, 5, ……

w4: IEEE S4: 3, 5, ……

w5: MDPI S5: 2, 4,  ……

w6: paper S6: 1, 2, 5, ……

w7: research S7: 2, 4, 5, ……

……

……

Figure 1. The fragments of sample documents and the inverted index.

In this paper, the region of a network consists of several disjoint edge networks in
edge computing, and each edge network is managed by an edge server which stores the
documents and the corresponding inverted index in this sub-region, i.e., the documents
are distributed and stored on different edge servers. A marginal edge network is formally
defined as follows.
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Definition 1. (Marginal edge network) A marginal edge network is defined as a tuple
G = (CN , sc), where CN is the collection of edge servers contained in marginal edge networks
and all edge servers in CN are connected to each other, and sc is the cloud server connecting to all
edge servers in CN .

Aggregated Boolean Query Processing. The user sends a document request by a
Boolean query Q to the cloud server sc. Then, the request is distributed to all edge servers
by sc, and each edge server in CN processes the document request locally and obtains the
intermediate results. The results of Q are finally aggregated at the cloud server sc by the
intermediate results from edge servers.

4. Marginal Edge Network Query Processing

In this section, we discuss how to process the query in the marginal edge network.
A straightforward method is to process the query in each edge server, then aggregate the
results of the edge servers in the cloud server. Although this method avoids the data
transmission between edge networks, the final results computed in the cloud server may
not be accurate, since each edge server only considers the documents in the related edge
network when processing a query.

In order to compute the accurate results (documents) for the query Q, we can transfer
the ordered sets of all related documents of Q from the edge servers to the cloud server and
process the query on it. However, this way will lead to massive data transmission from
the edge server to the cloud server. In this section, we introduce a method that enables
the intermediate results to be computed in the edge server with limited data transmission
between edge servers, and the accurate result is aggregated in the cloud server by the
intermediate results from edge servers.

4.1. Marginal Edge Network Query Mechanism

Given a query Q, let R be the accurate result set for Q over all documents in the cloud.
Assuming that there are M edge networks, R(i) is the result set computed from the i-th
edge server Ni, where 1 ≤ i ≤ M. Our target is to aggregate the results R(i) in the cloud
server to compose R, that is, R can be computed by R(1) ∪ R(2) . . . R(M), so that only the
results R(i) are transferred from the edge servers to the cloud server, and the results are
computed in a distributed way.

Let Sall
x be the document set containing the keyword kx over the whole edge servers

(named as global set) and S(i)
x be the document set in the edge server Ni (named as local set),

i.e., Sall
x = S(1)

x ∪ S(2)
x . . . S(M)

x . Although Sall
x ∪ Sall

y =
⋃M

i=1(S
(i)
x ∪ S(i)

y ), i.e., the union of sets
can be computed separately in each edge server, the intersection operation does not satisfy
this property since Sall

x ∩ Sall
y 6=

⋃M
i=1(S

(i)
x ∩ S(i)

y ), so R(i) cannot be simply computed in an

edge server by replacing Sall
x with S(i)

x for the query Q. To this end, we develop another
way for the intersection operations so that the set intersections can be performed separately
in each edge server.

Since Sall
x = S(1)

x ∪ S(2)
x . . . S(M)

x , we can obtain Sall
x ∩ Sall

y = (S(1)
x ∪ S(2)

x . . . S(M)
x ) ∩ Sall

y .
According to the distributive law of set operations, this equation can be expanded to
Sall

x ∩ Sall
y = (S(1)

x ∩ Sall
y ) ∪ (S(2)

x ∩ Sall
y ) · · · ∪ (S(M)

x ∩ Sall
y ). Therefore, when S(i)

x ∩ Sall
y is

computed in the edge server Ni, the results of Sall
x ∩ Sall

y can be obtained in the cloud server

by union of the intermediate results sent from the edge servers. S(i)
x is the set of documents

stored in Ni and can be accessed directly, while Sall
y is the global document set over all

edge networks. In order to access Sall
y in an edge server, we need to broadcast S(i)

y to other
edge servers for each Ni. Although this operation leads to the data transmission between
edge servers, the transferred data size is limited, and the query can be processed in a
distributed fashion.
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The above property gives the opportunity of processing the query Q in edge servers.
Next, we introduce how to decompose Q to Q(i) for an edge server Ni. Since Q is recursively
defined and consists of two cases, we separately discuss them. (i) Q = Q1 ∪ Q2, where
Q1, Q2 represent the set expression (sub-query) or the set of document. In this case, Q(i)

is easily obtained by Q(i)
1 ∪ Q(i)

2 . (ii) Q = Q1 ∩ Q2. According to the above introduced
method, either Q1 or Q2 is converted to the local set, and another one is still the global
set, then Q(i) is computed by Q(i)

1 ∩ Qall
2 or Qall

1 ∩ Q(i)
2 . In this way, for any edge server

Ni, the corresponding query Q(i) can be computed by recursively applying the above two
conversions on Q.

Theorem 1. Give a Boolean query Q for document sets, R is the result of Q over all edge networks.
Q(i) is the decomposed query from Q for the edge server Ni, R(i) is the result of Q(i) computed in
Ni. R can be computed by R(1) ∪ R(2) . . . R(M), where M is the number of edge networks.

4.2. Query Processing

The procedure of query processing is presented at Algorithm 1. In each edge server
Ni, Q(i) is computed from Q by the aforementioned method. Then, all global sets in Q(i)

are broadcast between the edge servers so that each edge server Ni has the corresponding
document sets for processing Q(i) locally. Next, Q(i) is processed in Ni (line 6), and the
query processing in single edge networks is detailed in Section 5. At last, the intermediate
results R(i) computed by edge servers are aggregated in the cloud server, and the final
result R is obtained by taking union for these intermediate results R(i).

Algorithm 1: MarginalBoolQuery

Input : A Boolean query Q for document sets, the collection CN of edge servers.
Output : The evaluation results R.

1 R← ∅;
2 for each edge server Ni in CN do
3 Convert Q to Q(i);
4 for each global set Sy in Q(i) do
5 Broadcast Sy between edge servers;

6 R(i) ← Ni.TreePlanMatch(Q(i));

7 Wait all results R(i) are sent from edge servers;
8 R← R(1) ∪ R(2) · · · ∪ R(M);
9 return R

When computing Q(i) from Q, one of the operands for the set intersection operation
should be selected as the global set, e.g., Q1 or Q2 should be the global set for the set
intersection Q1 ∩ Q2. Since the global sets are needed to be broadcast between the edge
servers, the selected global sets affect the size of the transferred data. In order to minimize
the broadcast data, we need to select the document sets with a smaller size as the global
sets. To this end, we store the size of all document sets in the cloud server and utilize
this size information to determine the global sets of Q in the cloud server, so each edge
server can directly apply the same strategy to select global sets when computing Q(i) in the
edge server.

Considering the set intersection Q1 ∩Q2 and letting |S1| and |S2| be the size of result
sets S1 and S2 for Q1 and Q2, the size of Q1 ∩Q2 is estimated by min(|S1|, |S2|) since the
result set size is bounded by the minimum of |S1| and |S2|. On the contrary, the size of
Q1 ∪Q2 is estimated by the size upper bound |S1|+ |S2|. For the recursively defined query
Q, we can use these two rules to estimate the result size for the operands of set intersection,
then select the one with a smaller size as the global set to minimize the transferred data.

For example, consider the running example, suppose that the size of document sets
S1, S2, · · · , S7 is recorded in the cloud server and |S1| < |S2| < |S3| < |S4| < |S7| < |S5| <
|S6|. At first, consider the set intersection between S1 and ((S2 ∩ (S3 ∪ S4))∪ (S5 ∩ S6))∩ S7;
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S1 is selected as the global set since it has the smaller size. Then, the query conversion
is applied to the later sub-query. The size of ((S2 ∩ (S3 ∪ S4)) ∪ (S5 ∩ S6)) is estimated
by min(|S2|, |S3|+ |S4|) + min(|S5|, |S6|), which is greater than |S7|; S7 is selected as the
next global set of the sub-query, and the query conversion is applied to ((S2 ∩ (S3 ∪ S4)) ∪
(S5 ∩ S6)). Because both of the operands for the set union should be applied to the query
conversion, we can obtain the converted sub-query ((Sall

2 ∩ (S(i)
3 ∪ S(i)

4 )) ∪ (Sall
5 ∩ S(i)

6 )) by

using the above rules. Eventually, Q(i) = Sall
1 ∩ ((Sall

2 ∩ (S
(i)
3 ∪ S(i)

4 )) ∪ (Sall
5 ∩ S(i)

6 )) ∩ Sall
7 is

computed for the edge server Ni in which S(i)
3 , S(i)

4 and S(i)
5 represent the local document sets

in Ni. In the cloud server, the result R of Q is computed by performing R(1) ∪ R(2) . . . R(M).

5. Single Edge Network Query Processing

In this section, we introduce the method of processing the decomposed Boolean query
in the single edge network. In this scenario, the edge server contains all necessary ordered
sets of documents for the decomposed query. At first, we parse the Boolean query into
a graph structure in Section 5.1. The method of Boolean query processing in the single-
edge network is presented in Section 5.2, which computes an execution plan from the
parsed graph.

5.1. Parsing Boolean Set Expression

To evaluate the Boolean set expression, a naive way is to perform pair-wise set in-
tersection (or union) starting from the inner set operations. However, this way leads to
inefficient query processing since the irrelative elements in ordered sets are compared and
the intermediate results are recomputed [1]. For the multi-set intersection problem (which
is a simple case for the set expression), it is shown that a holistic element comparison
outperforms the pair-wise set comparison; this motivates us to design a holistic element
comparison method to compute the results for the set expression.

Example 2. The query Q(i) = Sall
1 ∩ ((Sall

2 ∩ (S(i)
3 ∪ S(i)

4 )) ∪ (Sall
5 ∩ S(i)

6 )) ∩ Sall
7 is used as the

example (decomposed query) to illustrate query processing in single-edge networks. For simpli-
fication, we use Q = S1∩ ((S2 ∩ (S3 ∪ S4)) ∪ (S5 ∩ S6)) ∩ S7 to represent Q(i) in this section,
where S1, S2, S5 and S7 represent Sall

1 , Sall
2 , Sall

5 and Sall
7 ; S3, S4, and S6 represent S(i)

3 , S(i)
4 and S(i)

6 ,
respectively. The example of sets in the edge server Ni are shown in Table 1, and the result of Q on
these sets is {10, 39}.

Table 1. An example of ordered sets in the edge server Ni, where bold elements are the results for the
running example.

Ordered Sets The Set of Document IDs

S1(Sall
1 ) 3, 10, 14, 39, 54, 69, 81, 88, 95

S2(Sall
2 ) 3, 10, 81, 95

S3(S
(i)
3 ) 7, 15, 44, 64, 99

S4(S
(i)
4 ) 5, 10, 41, 56, 72, 97

S5(Sall
5 ) 1, 10, 21, 39, 56, 65 ,77

S6(S
(i)
6 ) 10, 39, 56, 65

S7(Sall
7 ) 5, 10, 17, 25, 39, 44, 65, 78, 81, 93

In order to evaluate the query Q, we design a graph structure to parse Q, named the
union-intersection graph, as follows.

Definition 2. (Union-intersection Graph) A union-intersection graph (UIGraph) G = (SV , SE, I, F)
is an undirected graph which represents a set expression Q, where SV is a set of nodes, among which one is the
initial node I and one is the final node F. SE is a set of edges which are the sets from Q.
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For the UIGraph, the conjunctive and disjunctive structures are used to represent the
intersection and union of ordered sets, respectively. Figure 2 shows the two basic structure
for Si ∩ Sj and Si ∪ Sj. Hence, a query Q can be represented by an UIGraph G with nested
conjunctive and disjunctive structures.

V1 Si V2 Sj V3 V1

Si

V2

Sj

(a) Conjunctive structure for Si∩Sj (b) Disjunctive structure for Si∪Sj

Figure 2. Two basic structures of UIGraph for the set query.

We can compute the UIGraph G for the query Q by constructing conjunctive and
disjunctive structures for intersection and union operations, respectively. Figure 3 shows
the built UIGraph G for the running example.

V6V1 V2

V3

V4

V5

Figure 3. The UIGraph for the query Q.

For a graph, a path P starting from the initial node and ending at the final node is
called a simple path if all of its nodes are distinct [46]. The UIGraph also contains the simple
paths, e.g., there are three simple paths for the UIGraph in Figure 3 that are S1-S2-S3-S7,
S1-S2-S4-S7 and S1-S5-S6-S7.

Theorem 2. For each simple path P in a UIGraph G, if and only if there is an element e such that e
exists in all the order sets of P, then e is an evaluation result of the query Q.

For example, 39 is contained by sets S1, S5, S6 and S7 which are the ordered sets of a
simple path, so 39 is an evaluation result of Q. We omit the detailed proof for Theorem 2; it
can be easily proved based on the fact that the element exists in the sets of a simple path of
G must satisfy the logical requirements of Q.

5.2. Boolean Query Processing in Single Edge Networks
5.2.1. Evaluation Tree

According to Theorem 2, we know that for any result e of Q, e must be contained by
the ordered sets in a simple path of G. In order to obtain all results, we use the elements in
a s-t cut [46] of G as candidate elements, which may be the final results.

Definition 3. (s-t cut) A s-t cut is a collection of edges (ordered sets) of UIGraph G which
partitions the nodes of G into two disjoint subsets, and the initial and final nodes belong to different
subsets [46].

We use Se to denote a s-t cut of G. For any simple path P on G, P contains at least a set
Si in a s-t cut of G. Accordingly, any evaluation result of Q must be contained by the sets in
a s-t cut. Given a s-t cut Se of G, we call Se candidate sets and use the elements in the sets of
Se as candidate elements. For example, {S1} and {S2, S6} are two different s-t cuts of G,
which can be used as the candidate sets separately.

For a candidate element eb from a candidate set Sb ∈ Se, the verification for eb is to
check if there exists a simple path P such that all order sets of P contain eb, which can be
represented by a Boolean expression, B(eb, Sb). However, not all simple paths of G can
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produce an evaluation result eb. Since eb ∈ Sb, in order to verify eb, we only need to consider
the ordered sets in the simple paths which contain Sb. The Boolean expression B(eb, Sb)
consists of a set of variables R(eb ∈ Si) on such ordered sets, which indicate whether an
element eb exists in an ordered set Si.

Example 3. Consider the running example, assume that Se = {S2, S6} is the set of candidate
document sets. The corresponding Boolean expressions of S2 and S6 are shown as below. Consider
the candidate element eb = 10 from S6, since B(10, S6) is true, we can obtain that 10 is a result
of Q.

B(eb, S2) =R(eb ∈ S1) ∧ R(eb ∈ S5) ∧ R(eb ∈ S6) ∧ R(eb ∈ S7)

B(eb, S6) =R(eb ∈ S1) ∧ R(eb ∈ S2) ∧ (R(eb ∈ S3) ∨ R(eb ∈ S4)) ∧ R(eb ∈ S7)

So far, to verify a candidate element eb ∈ Sb, we only need to evaluate the correspond-
ing Boolean expression B(eb, Sb). Borrowing the idea of evaluating a Boolean expression by
using the binary decision tree [47], we define an evaluation tree to guide the checks for the
ordered sets in a Boolean expression B(eb, Sb).

Definition 4. (Evaluation Tree) An evaluation tree Te is a rooted binary tree used to verify a
candidate element eb, in which each internal node indicates the result of checking if an ordered set Si
contains eb, and leaf nodes are the verification results.

There are two types of leaf nodes, called 1-leaf and 0-leaf, which represent the true
and false results of verifying eb. Each internal node is a variable in B(eb, Sb), i.e., R(eb ∈ Si),
abbreviated as R(Si). If R(Si) is true, then there is an element eb existing in the set Si.

The expected matching cost of the evaluation tree indicates the expected number of
checked ordered sets to verify a candidate element eb. In order to minimize the matching
cost, we compute the evaluation tree with minimal expected cost for each Boolean expres-
sion B(eb, Sb) where Sbi

∈ Se. The dynamic programming algorithm introduced in [48] is
employed in this paper to compute the evaluation tree with minimal expected cost, which
has the time complexity O(N2(r + 1)N), where r is the number of sets, and N is the number
of set operations in Q.

5.2.2. Performing Evaluation Tree-Based Plan

An execution plan P consists of the candidate sets Se and the collection STe of the
corresponding evaluation trees which are used to verify the candidate elements in Se. We
next show how to compute the evaluation results using P . The procedure is described in
Algorithm 2. There are two issues that need to be solved when performing an execution
plan: (1) the scheme of verifying candidate elements in candidate sets; and (2) how to verify
a candidate element using evaluation tree.

For the first issue, a basic scheme is to individually verify each candidate set in Se.
However, this way loses the chance to skip some invalid candidate elements. We observe
that if the candidate elements are verified in the ascending order, then some candidate
elements that cannot be the evaluation results can be quickly skipped using the intermediate
obtained results (we give the details in Section 5.2.3). To achieve this goal, we build a heap H
for the top elements of ordered sets in Se which costs timeO(|Se|) to obtain an element [49].
For example, as shown in Figure 4, a heap is built for S2 and S6, and the candidate elements
are verified in the order {3, 10, 10, 39, 56, 65, 81, 95}.
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Algorithm 2: TreePlanMatch

Input : An execution plan P which contains the candidate sets Se and corresponding
evaluation trees.

Output : The evaluation results A.
1 Build a heap H for the top elements of ordered sets in Se;
2 while H is not empty do
3 eb ← H.pop();
4 if eb is checked and eb is the evaluation result then
5 continue; /* avoid duplicate verification */;

6 Te ← the corresponding evaluation tree of Sb that provides eb in Se;
7 Let pr be the pointer on the root of Te;
8 while pr is not leaf node do
9 Let Si be the set pointed by pr;

10 R(Si)← Search(Si, eb); /* gallop search */;
11 if R(Si) is true then
12 pr ← pr.left;

13 else
14 pr ← pr.right;

15 if pr is a 1-leaf node then
16 Add eb to A;

17 Adjust H;

18 return A

ebfor each 
base element

verify base element

eb∈S2

3
10
81
95

H

10
39
56
65

3
10

S2 S6

eb∈S6

R(S1)

R(S7)

R(S4)

R(S3)

0

0

1

1 0

R(S5)

R(S1)

R(S7)

0

0

1 0

base sets

e1T   : e2T   :

Figure 4. An example of evaluation-tree-based execution plan.

For the second issue, for each candidate element eb obtained from H, it is verified
by the corresponding evaluation tree Te. The algorithm checks the internal nodes of Te
starting from the root until a leaf node is reached (lines 8–14). In each internal node R(Si),
the result is checking if Si contains the candidate element eb. In this work, we employ
the gallop search [50] to search an element from Si, which has time complexity O(logK),
where K is the largest size of the ordered sets in Q. If a 1-leaf node is reached, then eb is
an evaluation result of Q (lines 15–16). Note that the candidate elements obtained from H
could be repeated, e.g., 10 is repeated in the running example, for the repeated element eb,
if eb is already turned out to be an evaluation result, then it is unnecessary to verify it again
(lines 4–5).

Let L be the number of ordered sets in Q, and let Nb be the number of candidate
elements in Se. The algorithm spends time O(LlogK) to verify a candidate element. To
obtain candidate elements in the ascending order, time O(L) is used to adjust the heap
H after a candidate element is popped. Hence, the time complexity of TreePlanMatch is
O(NbL2logK).
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Example 4. For the execution plan shown in Figure 4, the procedure of computing evaluation
results by the execution plan is shown in Figure 5. TreePlanMatch verifies 7 candidate elements
and only checks the ordered sets 18 times in total, in which elements 10 and 39 are turned out to be
the results since 1-leaf nodes are reached when verifying them.

eb=3
R(S1)

R(S7)

0

eb=10
R(S1)

R(S7)

R(S4)

1

eb=39
R(S5)

R(S1)

R(S7)

1

eb=56
R(S5)

R(S1)

0

eb=65
R(S5)

R(S1)

0

eb=81
R(S1)

R(S7)

R(S4)

R(S3)

0

eb=95
R(S1)

R(S7)

0

Figure 5. The procedure of computing evaluation results.

5.2.3. Optimizing Execution Plan by Skipping Invalid Candidate Elements

In the previous example, all candidate elements are verified. We observe that some
candidate elements that cannot be the evaluation results (called invalid candidate elements)
can be safely skipped without verification using the obtained verification results. In this
section, we present the technique to skip the invalid candidate elements.

Recall the procedure of verifying a candidate element eb; in order to obtain the result of
each internal node R(Si) in a root-to-leaf path of Te, we search eb on Si and return the first
element e′i such that e′i ≥ eb. If the returned element e′i > eb, then R(Si) is false. Actually, in
this case, because the candidate elements are processed in ascending order, the returned
failed element e′i indicates that the next candidate element should be no less than e′i if
Si contains the next evaluation result. Based on this property, if the result of verifying
eb is false (i.e., a 0-leaf node is reached), then a lower bound L(eb) for the next candidate
element can be computed through the obtained failed elements in the internal nodes of the
root-to-leaf path.

For a candidate element eb, let Pi be the root-to-leaf path (i.e., with 0-leaf node) when
verifying eb, and F(e) be the set of failed elements returned by the ordered sets in Pi, then
L(eb) is computed as follows.

L(eb) = min
e′i∈F(e)

{e′i} (1)

Apparently, the next evaluation result should be no less than L(eb). Hence, the
candidate elements which are less than L(eb) can be safely skipped. When verifying a
candidate element eb, the failed elements can be recorded by the matching algorithm (line 11
in Algorithm 2), that is, the minimum L(eb) of the failed elements can be computed in
the time complexity O(1). Therefore, skipping invalid candidate elements has the time
complexity O(1).

Example 5. Consider the example shown in Figure 5; when checking eb = 56, the failed element
e′1 = 69 is returned by S1. Since only R(S1) is false in the root-to-leaf path, we can compute
L(eb) = 69. Then, the next candidate element eb = 65 can be skipped since 65 < L(eb). In the
next, a 0-leaf node is reached when verifying eb = 81 and two failed elements e′4 = 97 and e′3 = 99
are obtained, so we obtain L(eb) = 97. The following candidate element eb = 95 is skipped by the
lower bound L(eb) = 97. After skipping the invalid candidate elements, only 5 candidate elements
are verified and the ordered sets are checked 14 times.

6. Experiments

In this section, we present the experimental results of our proposed algorithms with
traditional algorithms on two real-world datasets.
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6.1. Experimental Setup

In order to simulate the context of edge computing, we built a network with 10 nodes
in which 9 nodes represent the edge servers and 1 node represents the cloud server of
the network. In edge computing, each edge server is used to manage the sub-region
(edge network) of the network, that is, each edge server caches the documents for the
corresponding sub-region for our studied problem. Therefore, documents are distributed
to the edge server nodes in this setting. We used two datasets (documents) with different
data sizes in the following experiments, and each dataset is divided into 9 subsets with a
random percentage and stored in edge server nodes.

The details of the datasets are shown as follows.

• Source Files is a set of source code files that extracted from Github, including Python,
Ruby, JavaScript, Java, C and C++ files; it contains 697,485 text files in 3.69 GB of text.

• Medline is a bibliographic database of life sciences and biomedical information. We
used a late-2008 snapshot of Medline, which consists of 17,104,854 citation entries with
abstracts.

In each edge server node, the inverted lists for each word in the subset of dataset
are built. The inverted lists are ordered sets that contain the IDs of files. For the source
file dataset, we collected the real Boolean queries from the online library and forums
(http://www.regexlib.com, accessed on 27 December 2021), which aim to find files that
contain certain keywords. Among the collected real queries, we used 80 queries whose
evaluation results are not empty in this dataset. For the Medline dataset, we used a full-
day’s query log of PubMed that was obtained from the NLM FTP site (refer to [51] to access
the query log). These queries were issued by 626,554 distinct users, in which we also chose
80 queries that contain and/or operators as Boolean queries.

In order to study the impact of the complexity of queries on query efficiency, we
further classified the Boolean queries into six categories using the number of keywords
contained by each query, as shows in Table 2.

Table 2. Categories for the Boolean queries.

Categories C1 C2 C3 C4 C5 C6

# of keywords 1–3 4–5 6–7 8–9 9–10 ≥11

As far as we know, existing algorithms for document retrieval can only process the
Boolean queries in a centralized fashion. We compared our proposed method with these
centralized algorithms on the query efficiency. We selected the following algorithms as the
representatives of existing algorithms for the Boolean query evaluation.

• WstOpt utilizes the parse tree to recursively compute the evaluation results and obtains
the guarantee of the optimal worst case [4].

• Adapt is also a parse-tree-based algorithm proposed in [6] that adopts the adaptive
strategy to iteratively compute the evaluation results.

• Max is the representative algorithm that uses the technique of multiple sets intersec-
tion [1]. For a Boolean query Q, we first convert Q to the form of union on several
multiple sets intersections, then use Max to compute the result of each multiple sets
intersection, finally using their union to obtain the evaluation results of Q.

• TreePlan is our proposed algorithm which processes the Boolean query in a distributed
fashion, and it utilizes the tree-based execution plan to find evaluation results in each
edge server; all optimizations are applied in TreePlan by default.

For the first three comparative algorithms, they process the Boolean queries in a
centralized fashion, that is, all inverted lists for the relative documents of the query are
collected to the cloud server node, then the query is evaluated in the cloud server node.

The experiments were carried out on a PC with an Intel i7-6700 3.4 GHz processor and
8 GB RAM, running Ubuntu 14.04.3. The algorithms were implemented in C++.

http://www.regexlib.com


Electronics 2022, 11, 1908 14 of 18

6.2. Comparison with Traditional Centralized Algorithms

The first experiment compares the running time of our proposed algorithm TreePlan
and the comparative algorithms. WstOpt, Adapt and Max are the above introduced compar-
ative algorithms. We also tested our proposed algorithm in the centralized mode (labeled by
TreePlan-cent), i.e., collecting all inverted lists of related documents to the cloud server node
and using the algorithm in Section 5.2 to process the Boolean query. For the centralized
algorithms, we separately recorded the time of data transmission and the elapsed time of
algorithms, where the time of data transmission is labeled by network-time. Since TreePlan
processes the queries in the edge server nodes, the running time of TreePlan includes the
data transmission time and the intermediate results aggregation time.

For each query category Ci, we averaged the running time of queries in Ci. We plot
the average running time of different algorithms for the two real datasets in Figure 6. We
can see that TreePlan obtains a great advantage on the query time over the centralized
algorithms on both datasets. For example, for the queries C6 in the source codes dataset,
the running time spent by TreePlan is only 429 ms, while the running spent by other
algorithms is more than 2× to the running time of TreePlan. The main reason is that the
data transmission time for TreePlan is far less than the time for the centralized algorithms.
Additionally, from the view of centralized algorithms, our proposed algorithm is also more
efficient than the comparative algorithms. TreePlan-cent has the same data transmission
time as WstOpt, Adapt and Max, while it spends less time on the phase of query evaluation.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

C1 C2 C3 C4 C5 C6

R
u
n
n
i
n
g
 
t
i
m
e
(
m
s
)

Queries

WstOpt
Adapt

network-time

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

C1 C2 C3 C4 C5 C6

R
u
n
n
i
n
g
 
t
i
m
e
(
m
s
)

Queries

Max
TreePlan-cent

TreePlan

(a)

 300

 600

 900

 1200

 1800

C1 C2 C3 C4 C5 C6

R
u
n
n
i
n
g
 
t
i
m
e
(
m
s
)

Queries

WstOpt
Adapt

network-time

 300

 600

 900

 1200

  150015

 1800

C1 C2 C3 C4 C5 C6

R
u
n
n
i
n
g
 
t
i
m
e
(
m
s
)

Queries

Max
TreePlan-cent

TreePlan

(b)

Figure 6. Performance comparison of different algorithms. (a) Source Codes. (b) Medline.

6.3. Evaluating Tree-Based Query Plan

In this experiment, we tested the tree-based query plan proposed in Section 5.2. To
evaluate the algorithm performance accurately, we collected all documents in the cloud
server node and queries are processed locally on it, i.e., the running time indicates the
elapsed time of the algorithm.

6.3.1. Cost Analysis for Tree-Based Query Plan

In Section 5.2, we computed the optimal execution plan with the minimal matching
cost for our proposed algorithm. An alternative way is computing the execution plan using
the heuristic rule that utilizes the min-cut [46] of an UIGraph as the candidate sets. We
used HeuPlan and OptPlan to represent the algorithms that utilize heuristic and optimal
evaluation plan, respectively. Both of HeuPlan and OptPlan are our proposed algorithms
which employ different execution plan computing strategies. We separately tested the time
of the computing evaluation plan and using plan to find the evaluation results, which are
annotated with the suffixes build and run in Figure 7.

As we can see from Figure 7, OptPlan achieves better performance than HeuPlan for the
different datasets and queries. OptPlan needs more time to build the evaluation plan than
HeuPlan, but OptPlan spends less time than HeuPlan in the phase of plan execution. For
example, for the queries C5 in source code dataset, HeuPlan spends only 2.23 ms to build the
evaluation plan, versus 6.8 ms used by OptPlan. However, OptPlan only spends 44.22 ms
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to performing evaluation plan, which is less than the time used by HeuPlan. Meanwhile,
we can find that, regardless of the datasets, the evaluation plan can be efficiently built, and
the time of building an evaluation plan for any category of queries is less than 10 ms.
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Figure 7. Cost analysis for tree-based execution plan. (a) Source Codes. (b) Medline.

6.3.2. Effect of Skipping Invalid Candidate Elements

In this experiment, we tested the effect of an optimization technique that skips the
invalid candidate elements which cannot be the final evaluation results (see Section 5.2.3).
We used TreePlan-skip and TreePlan-raw to respectively represent our proposed algorithms
that employ the optimization technique and without optimization. The results are shown
in Figure 8. In different dataset and queries, TreePlan-skip always spends less running
time than TreePlan-raw since TreePlan-skip checks fewer candidate elements. The gap of the
running time between the two algorithms is most obvious for the queries in C3 in source
file dataset, i.e., the running times of TreePlan-skip against TreePlan-raw are 40.47 ms and
67.05 ms.
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Figure 8. Effect of skipping invalid candidate elements. (a) Source Codes. (b) Medline.

As for the time cost for skipping invalid candidate elements, we showed that the
time complexity for this optimization is O(1) in Section 5.2.3. Additionally, to analyze the
practical time cost, we tested the algorithm that still computes the minimum L(eb) of the
failed elements for each candidate element, but without skipping the invalid candidates.
The time for this algorithm is almost the same as the time spent by TreePlan-raw, which
means that the cost for skipping invalid candidate elements is minuscule.

7. Conclusions

Considering the large scale of the network and the swift growth of users for search
engines, the traditional centralized methods for document retrieval may not be efficient
and applicable when documents are distributed on the local caching servers, thus edge
computing is employed to facilitate the distributed Boolean query processing for document
retrieval. In this paper, we propose an aggregated Boolean query mechanism in edge
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computing to support efficient document retrieval. Specifically, we design a marginal
edge network boolean query mechanism, which enables the query to be processed in
the edge servers by a decentralized fashion. To achieve this goal, the original Boolean
query is decomposed in the cloud server and assigned to edge servers. The global sets
caused by the intersection operations in decomposed Boolean queries are broadcast among
edge servers so that each boolean query can be processed locally (Section 4), and the
number of intersections positively correlates with the number of global sets. Therefore, our
proposed algorithm has a greater advantage in processing the Boolean queries with fewer
intersections and more unions.

We also propose an evaluation tree-based method to process the queries in single-edge
networks, and design optimization techniques of skipping invalid element comparisons
to accelerate the query evaluation. Extensive experiments on real-world datasets were
conducted, and the results show that our proposed technique outperforms the traditional
centralized methods in query efficiency.
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