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Abstract: The battery charging power electronics interface of an electric vehicle (EV) must be capable
of bidirectional power flow to enable both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operations.
In the presence of a single/three-phase AC supply, the front-end of the EV charger employs a power
factor correction (PFC) rectifier, which should have the bidirectional capability to facilitate V2G mode.
A conventional active rectifier functions in boost mode while performing PFC and voltage regulation.
In most of the currently available EVs, however, the battery nominal voltage is low and, hence, a
downstream high step-down DC-DC converter and high voltage DC bus capacitor are required
in the charging interface. To overcome these issues, this work proposes a bidirectional AC-to-DC
buck rectifier topology that can operate in G2V and V2G modes, both in single- and three-phase
versions. The proposed topology utilizes the switched capacitors principle to achieve self-balancing
of voltages in the capacitors. In addition, it is highly modular in structure. This paper describes the
proposed topology, its working and modulation and its applications. The hardware proto model
is used to validate the proposed power converter and the control approach to achieve PFC and
voltage regulation. In addition, a comparison with other topologies is presented to demonstrate
its competence.

Keywords: buck rectifier; electric vehicle charging; modular; multilevel; power factor correction;
single-phase; three-phase; vehicle-to-grid

1. Introduction

Electric vehicles (EVs) are now considered to be one of the most important break-
throughs in automobile technology. Propelled by the societal concern for environmental
pollution, subsidies offered by various governments and rapidly advancing battery tech-
nology, the penetration of EVs is growing at an exponential rate. As a result, a widespread
energy-efficient charging infrastructure is required to alleviate the range anxiety [1]. An
EV charging system’s power electronics interface typically consists of two stages: a power
factor correction (PFC) rectifier stage and a DC-to-DC converter [2]. Depending on the
power needs, these charging systems are powered by a single-phase or three-phase AC
power supply [3]. For example, a single-phase AC supply is used for a charging power
ranging from 2 kW to 8 kW (usually rated at 32 A) in level-2 on-board EV battery charging,
while a three-phase AC supply is used for a charging power of 19.2 kW (generally rated at
80 A) [3]. A three-phase power supply is also used for the off-board EV charging system,
and it is specifically designed for the charging station. Various charging levels and their
associated powers are summarized in Table 1.
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Table 1. Charging power levels, type and supply interface for EV charging [3].

Power Level Charger Type Input Supply Supply
Interface Power Level

Level-1 On-board
single-phase 120 V RMS Convenience

outlet
1.4 kW (12 A)
2 kW (20 A)

Level-2
On-board

Single/three-
phase

230 V RMS Dedicated
charging point

8 kW (32 A)
19.2 kW (80 A)

Level-3 Off-board
three-phase 415 V RMS Dedicated

charging station 50 kW–200 kW

In modern power systems, EVs offer several advantages, such as peak power regula-
tion, peak load shifting, reduced environmental pollution and so on. EVs can act either as
load or as generator, respectively, in grid-to-vehicle (G2V) charging mode and vehicle-to-
grid (V2G) discharging mode [4,5]. The power converter employed in “G2V-only” systems
is unidirectional in general, which include both normal and fast charging systems. Fast
charging puts a strain on the grid network due to the high-power flow [6]. If the G2V
charger does not use state-of-the-art conversion, grid disturbances such as unwanted peak
loads, harmonics, and low power factor may occur. The V2G system facilitates energy
injection back to the grid. An essential constituent of the V2G interface is the grid-connected
AC-to-DC converter, which enforces a sinusoidal input current with a high-power factor
(close or equal to unity) and enables bidirectional power flow [7].

This work describes the conceptualization, design and validation of a single phase
on-board and three-phase off-board bidirectional EV charger that can perform both the
functions of charging the vehicle battery and providing active power support to the utility
grid [8]. A schematic diagram of the proposed work is shown in Figure 1 and consists of
two stages:

1. A switched capacitors (SC) based bidirectional modular AC-to-DC buck PFC active
rectifier; and

2. A bidirectional DC-to-DC converter.
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Figure 1. A simplified structure of single phase (on-board) and three-phase (off-board) bidirectional
EV charging.

In two-stage EV charging systems, the input grid power is first converted to a stable
DC output voltage using an AC-to-DC converter [9]. In the case of three-phase boost
rectifiers (e.g., the conventional active rectifier comprising three legs of complementary
power switches) with an input voltage of 415 V RMS, the output voltage ranges from
700 VDC to 800 VDC, which is too high to directly feed the DC-bus of EVs. In the second
stage, a DC-to-DC step-down converter is required to reduce this voltage to a nominal
voltage suitable for EV battery charging [10]. In this configuration, the total standing
voltage (TSV) of the power switches of the rectifier and the DC-DC converter reaches the
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same level as the DC-link voltage [11]. Additionally, a high-voltage DC-bus capacitor is
used in such a configuration. This work, on the other hand, proposes a buck rectifier at the
first stage itself. The schematic of the work, differentiating with the existing topology, is
shown in Figure 2. Because the EV battery voltage ranges from 48 V to 400 V, such power
electronics interfaces can support batteries ranging from 48 V (e-bikes) to 400 V (PHEV) [12],
with the ability to charge the battery in both constant current and constant voltage modes,
depending on the battery’s state-of-charge (SOC). For this reason, the proposed work offers
attractive topological characteristics which are suitable for EV charging applications. The
“buck” operation at the rectifier stage is achieved by using a novel class of multilevel
topologies which the utilize switched capacitors (SCs) principle. The basic idea of the
presented SCs-based multilevel rectifier (MLR) is derived from an SCs-based multi-level
inverter (MLI), which has recently gained huge popularity [13]. As the SCMLI, which
operates with a DC source and an AC load, results in a voltage boost, the SCMLR (operating
with an AC source and DC load) is expected to perform buck operation while providing a
wide output range. The proposed SCs-based MLR topology has been implemented as a
seven-level converter, though it is highly modular and can be easily scaled up. The typical
voltage ranges in the conventional and proposed topologies are also indicated in Figure 2,
considering an input three-phase AC supply with an RMS value of 415 V. It can be seen that
with a step-down factor of 3, the output voltage of the proposed rectifier can be regulated
in the range of 195 V to 587 V.
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conventional and proposed rectifier topologies.

In view of the factors related to nominal voltage of EV batteries, advantages of V2G
operation and number of phases in the AC supply system, the most desirable criteria for
a PFC rectifier topology are: (1) it should accomplish buck operation with a wide output
range; (2) it should allow a bidirectional flow of power; and (3) its structure should be
straightforward to extend for a three-phase AC input.

Now, as far as multilevel rectifiers (MLRs) are concerned, their classification is shown
in Figure 3. The PFC MLRs are broadly classified as single and three-phase topologies.
These rectifiers are further classified as buck and boost rectifiers. Non-multilevel topologies
with buck or boost modes of operation are characterized by discontinuous conduction
mode (DCM) [14], thereby requiring bigger inductive and capacitive filters on the DC and
AC sides, respectively [15]. Furthermore, the high-frequency operation of DCM topologies
significantly increases the switching losses [16]. Another technique to produce a buck DC
voltage is to use a diode bridge and a DC-to-DC buck converter, but such systems show
disadvantages in terms of lower efficiency, larger power losses, and higher production
costs for medium and high-power applications [17]. In another category of single/three-
phase PFC converters, multilevel rectifiers (MLRs) are an emerging class. MLRs allow a
bidirectional power flow and minimize the harmonics of the input voltage. These types
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of converters are advantageous over the two-level converters because they use lower-
voltage-rated power switches, they synthesize higher-quality voltage waveform, they cause
reduced dv/dt stress across the switches and cause much lower THD in the line current [18].
As a result, with the increase in the number of voltage levels, the distortion in input voltage
decreases and a filter of the lower size is required.
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A boosted output voltage is obtained by using conventional MLR topologies such
as cascaded H-bridge (single-phase), neutral point clamped and flying capacitors (single
and three-phase) [9,19,20]. Other emerging topologies of three-phase multilevel PFC
rectifiers [11,21–27] also operate in boost mode. When applied to the EV charging interface,
the main challenges posed by MLRs are: (i) conventional MLRs operate as boost rectifiers;
(ii) a high voltage DC-link capacitor is required in-between; and (iii) the capacitors in the
MLR topologies require complex methodologies for voltage balancing.

There is limited literature available for the multilevel buck rectifier category, and all
can operate in single-phase mode [28–30]. These rectifiers’ continuous-conduction mode
(CCM) generate a multilevel voltage waveform at the input. Commonly utilized AC-side
capacitive and DC-side inductive filters are eliminated due to CCM functioning. The buck
rectifier proposed in [28] is based on the cascaded H-bridge (CHB) architecture and has
several DC outputs. On the AC side, each module in the CHB structure must interact with
the others to produce an almost sinusoidal current in phase with the grid voltage. Each
capacitor’s voltage must be controlled and regulated on the DC side. Multiple sensors
and a complicated control method are required to balance the capacitor output voltage.
Topologies [29,30] have been implemented as multioutput and bidirectional five-level and
nine-level buck rectifiers, respectively. The three-phase version of these topologies cannot
be directly obtained by extending the basic structure of single-phase versions. Additionally,
multiple sensors are required to construct a control mechanism to regulate the DC bus
capacitors’ output voltage. Additionally, to the best of authors’ knowledge, no published
literature is available on three-phase multilevel buck rectification.

In this work, a novel switched-capacitors-based MLR topology is presented to alleviate
the aforesaid limitations. The proposed topology for PFC rectification offers the following
characteristics:

• The proposed topology can be easily structured for both the single-phase version (for
on-board EV charging) and the three-phase version (for off-board EV charging);

• It operates in both V2G and G2V modes;
• It synthesizes seven levels at the line voltage, thereby considerably improving the

harmonic profile. If needed, the modularity of the proposed structure allows further
extension of the number of levels;

• Without using any complex control methods, only the output voltage needs to be
balanced, and all other capacitors’ voltages are automatically balanced;

• It works in buck mode, with a wide output range; and
• It operates in continuous conduction mode, thereby eliminating the need for large filters.

The operation of the proposed topology, voltage and current controllers and level-
shifted pulse-width modulation (LSPWM) technique for generating the gate pulses are



Electronics 2022, 11, 1891 5 of 19

explained in the subsequent sections. Experimental testing is carried out for steady-state
and dynamic circumstances to verify the proposed work and the results are presented in
this article.

2. Circuit Topology

The proposed three-phase switched-capacitor-based buck rectifier (SCMBR) is shown
in Figure 4. All three phases have a similar power circuit configuration, and an AC line
voltage source powers them. The DC-bus capacitor, Co supply to the load where the
capacitor voltage is to be balanced at VDC. Each phase of the proposed rectifier has two SC
units inserted. The SC units consist of eight switches and two capacitors.
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At the input terminals of the rectifier, the proposed structure generates four levels as
the pole voltage, and it synthesizes seven levels in the line voltages. In each phase, three
pairs of complementary power switches and one pair required the same gate pulse, which
is to say, if “1” refers to ON state of a switch and ‘0’ refers to the OFF state, the switching
functions {where x ∈ a, b, c} are:

Sx2= 1− Sx1

Sx4= 1− Sx3

Sx7= 1− Sx6

Sx5= Sx8

Each phase thus generates four levels in the voltage Vxn {x ∈ a, b, c}: 0, +VDC, +2 VDC
and +3 VDC. The switching states of the proposed rectifier are shown in Table 2. Where the
switch ON and OFF represents 1 and 0. Capacitors Cx1, Cx2 and Co are to be maintained at a
voltage equal to VDC. At the point of the input terminal, the voltage Vxn can be expressed as:

Vxn = (Sx1 + Sx4 + Sx7)VDC (1)
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Table 2. Switching states of the proposed three-phase rectifier.

States
Switches Capacitors Pole Voltage

Sx1 Sx3 Sx5 Sx6 Cx1 Cx2 Co Vxn

1 0 1 1 1 Charging Charging Discharging 0

2 1 1 1 1 Discharging Discharging Charging +VDC

3 1 0 0 1 Charging Neutral Charging +2 VDC

4 1 0 0 0 Charging Charging Charging +3 VDC

Various switching states for the proposed rectifier are described herewith:

1. State 1 (Vxn = 0): During this state, the switches Sx2, Sx3, Sx5, Sx6 and Sx8 are turned
ON, so as to achieve two simultaneous conduction paths, as shown in Figure 5a. In
the path shown with red, it can be seen that all capacitors are bypassed, such that the
voltage Vxn = 0. Additionally, for the path shown in green, the capacitors Cx1, Cx2 and
Co are in parallel and maintain capacitor voltage to VDC.

2. State 2 (Vxn = +VDC): During this state, the switches Sx1, Sx3, Sx5, Sx6 and Sx8 are
turned ON, so as to achieve two simultaneous conduction paths, as shown in Figure 5b.
In the path shown with red, it can be seen that the capacitor Co is in the path with
terminal “x” and “n”, such that the voltage Vxn = +VDC. Additionally, for the path
shown in green, the capacitors Cx1, Cx1 and Co are in parallel and balance the voltage
of the capacitor to VDC.

3. State 3 (Vxn = +2 VDC): During this state, the switches Sx1, Sx4, and Sx6 are turned ON,
so to achieve conduction paths, as shown in Figure 5c. In the path shown with red, it
can be seen that the capacitors Cx1 and Co are in the path with terminal “x” and “n”,
such that the voltage Vxn = +2 VDC.

4. State 4 (Vxn = +3 VDC): During this state, the switches Sx1, Sx4, and Sx7 are turned ON,
so as to achieve conduction paths, as shown in Figure 5d. In the path shown with
red, it can be seen that the capacitors Cx1, Cx2 and Co are series, such that the voltage
Vxn = +3 VDC.
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Figure 5. Switching states of the proposed topology.
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Due to the simple structure, the proposed topology can be presented in a modular
approach to increase the number of levels and reduce the gain. Figure 6 shows the n-module
where each module consists of 3 switches and one capacitor, and the output voltage gain is
1/(n + 1).
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The modulation procedure to generate the gate pulses for the switches is discussed in
the next section.

3. Modulation Scheme and Controller
3.1. Pulse Width Modulation (PWM) Scheme

To regulate the output voltage of the proposed MLR, several modulation schemes
such as multicarrier PWM and space vector PWM can be used. The level shifted-PWM
(LSPWM) method is used in this work to demonstrate the operation of the proposed MLR
and is shown in Figure 7. Each phase uses three high-frequency level-shifted carrier signals
and one sinusoidal reference signal [31].
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For the three-phase operation, there is a need to shift carrier signals 120◦ for phase-
b and 240◦ for phase-c [32]. The general representation of shifted carrier signals with
modulating signals is shown in Figure 8.

The proposed topology can operate in buck as well as boost modes depending upon
the modulation signal (mx). For the proposed topology, the modulation index depends
upon the grid voltage (vx

g), output DC voltage (VDC) and the gain of the rectifier (1/β)
(where β is 3 in this topology) and can be defined as:

mx =
vg

3VDC
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The proposed topology operates as buck as well as boost mode, depending upon the
value of mx as described herewith:

For the seven-level buck mode of operation:

1/3 vmax
g < VDC < 1/2vmax

g

i.e., 2/3 < mx < 1 (2)

For the five-level buck mode of operation:

1/2 vmax
g < VDC < vmax

g

i.e., 1/3 < mx < 2/3 (3)

For the three-level boost mode of operation:

VDC > vmax
g

i.e., mx < 1/3 (4)

Output voltage variation in terms of modulating signal (mx) is shown in Figure 9, for
input RMS AC voltage of 170 V (i.e., the peak value of 240 V).
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4. Comparative Analysis with Existing PFC Rectifiers 

The proposed topology is capable of single/three-phase buck AC-to-DC conversion. 

A comparative analysis of multilevel PFC rectifier topologies classified as: 

1. Single-phase PFC rectifier with buck and boost mode of operation (summarized in 

Table 3); 

2. Three-phase PFC rectifier (summarized in Table 4). 

Figure 9. Variation in the output DC voltage with respect to the modulation index for the proposed
multilevel rectifier.
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3.2. Controller Design

Figure 10 depicts the principle of the control system employed for the proposed
rectifier so as to achieve PFC and regulation of the output DC voltage. This control diagram
has two feedback loops: one that is based on the output voltage and is compared to the
reference value (V∗DC) imposed by the load’s operating circumstances [23]; and second, a
feedback loop which takes over the real-time phase currents and synthesizes the output
signals corresponding to the two axes currents viz. id and iq.
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The instantaneous angle (wt) value that determines the rotating reference d-q position,
as shown in Figure 10, is used by the axis transformation block. The id and iq values of
instantaneous signals are compared to the reference values i∗d and i∗q [33]. For the power
factor to be near unity, the necessary condition would be iq = 0. The PI controllers receive
the signals generated by the comparators. In addition, reverse transformation is used to
convert the two-phase quantities into three-phase quantities. At this state, the sinusoidal
signals are the modulating signals (mx, x ∈ {a, b, c}) for the PWM pulse generator.

4. Comparative Analysis with Existing PFC Rectifiers

The proposed topology is capable of single/three-phase buck AC-to-DC conversion.
A comparative analysis of multilevel PFC rectifier topologies classified as:

1. Single-phase PFC rectifier with buck and boost mode of operation (summarized in
Table 3);

2. Three-phase PFC rectifier (summarized in Table 4).

Table 3. Comparison of proposed work with single phase buck and boost rectifier topology.

Parameters
Boost Topologies Buck Topologies

H-Bridge
[9]

NPC
[19]

FC
[20]

CHB
[28] [29] [30] Proposed

NL 3 5 5 5 5 9 7

Ns 4 8 8 8 6 8 16

ND 0 4 0 0 0 0 0

NC 1 2 3 2 2 3 5

PIV 1 1 1 1 2 4 1

Gain (1/β) 1 1 1 0.5 0.5 0.25 1/3

NVS 2 2 2 3 3 4 2

NCS 1 1 1 1 1 4 1

NL: Number of levels, Ns: Number of switches, ND: Number of diodes, NC: Number of capacitors, PIV: Peak
inverse voltage, Nvs: Number of voltage sensors, Ncs: Number of current sensors.
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Table 4. Comparative analysis with existing three-phase PFC rectifier topologies.

References NL NS ND NC
Gain
(1/β)

Bidirectional
Capability

Output
Voltage

[21] 5 18 0 2 1 Yes Boost

[11] 5 12 0 2 2 Yes Boost

[22] 5 12 0 4 1 Yes Boost

[23] 5 6 24 12 1 No Boost

[24] 9 12 24 8 1 No Boost

[25] 9 12 12 8 1 No Boost

[27] 9 24 0 4 1 Yes Boost

[26] 13 54 0 2 1 Yes Boost

Proposed 7 24 0 7 1/3 Yes Buck

NL: Number of levels, Ns: Number of switches, ND: Number of diodes, NC: Number of capacitors.

The proposed switched-capacitor-based multilevel rectifier offers a buck output volt-
age, which is most suitable for an EV charging application. It is a novel approach to
achieving buck output voltage in multilevel topologies. Table 3 compares the proposed
topology to conventional single-phase multilevel rectifiers such the H-bridge (HB) [9], neu-
tral point clamped (NPC) [19], and flying capacitors (FC) [20]. These topologies have fewer
components, but they have a unity voltage gain, making them boost rectifiers. Existing
multilevel buck rectifiers proposed in [28–30] are compared to the proposed single-phase
topology. These topologies are buck rectifiers with multiple output voltages. Different
characteristics are compared, such as the number of levels (NL), switches (Ns), diodes (ND),
capacitors (Nc), peak inverse voltage (PIV), voltage sensors (NVS), current sensors (NCS)
and voltage gain. Power switches with PIV equal to double the output DC voltage are
required in the [29] topology, as are additional voltage sensors. Similarly, topology in [30]
necessitates power switches with PIV equivalent to four times the output DC voltage, as
well as a large number of voltage and current sensors. These topologies have comparable
drawbacks, such as difficulties balancing capacitor voltages, which is only attainable under
balanced load conditions. Table 4 shows the comparison of the proposed topology with
a three-phase conventional rectifier, i.e., NPC, T-type and FC based. These PFC rectifiers
yield high voltage gain and achieve a boosted output voltage. The proposed work is also
compared with existing multilevel three-phase topologies. This study is also based on
the NL, NS, ND, NC, Gain (1/β) and the possibility of bidirectional power flow, which is
possible to operate as a V2G mode and a buck or boost output voltage.

All compared items aforementioned are listed in Table 4. It indicates that the proposed
seven-level buck rectifier has the advantages of simple structure and buck mode capability.
Overall, it is a competitive circuit to implement EV charging infrastructure, mainly on
account of the buck mode of operation and capability of bidirectional power flow. The
conventional PFC rectifiers implemented in [11,21,22] are all specified for five-level boost
operation with bidirectional power flow. To increase the levels in these converters, the
number of power devices increases significantly. In the topology proposed in [23], the
number of switches is low, but the number of power diodes is very high. It is useful for
high voltage applications with unidirectional power flow only. The topologies discussed
in [24,25] are conceptualized for a nine-level boost operation. As evident from Table 4, the
number of switches is low but requires a large number of diodes. Moreover, these are not
applicable for a bidirectional power flow. Both the structures presented in [26,27] operate
with boost mode and offer a possibility of bidirectional power flow. The topology presented
in [26] is modular and is implemented for a higher number of levels with the parallel use
of active neutral point clamped (ANPC) modules. However, in this case, the number of
devices is very high, increasing the rectifier controller complexity. Hence, it can be safely
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concluded that the topology proposed in this work is highly competent with considerations
of three-phase seven-level buck operation with bidirectional power flow.

5. Experimental Results

To evaluate the proposed three-phase buck rectifier and its closed-loop control, a labo-
ratory setup was created utilizing discrete power switches MOSFETs (SiHG47N6) and an
appropriate gate driver IC (Si82071AB-IS). A hall-effect-based voltage sensor (LEM LV25-P)
and current sensor (HE025T01) with suitable power conditioning were used to sense the
output voltage and input current. OPAL-RT OP4510, which connects with the hardware
via MATLAB/Simulink on the host computer and generates the MOSFET gate pulses was
used as a real-time controller. A photograph of the laboratory setup for validation of the
proposed three-phase rectifier is shown in Figure 11. The controller and switching mecha-
nism were developed using a 10 µs sampling period. A three-phase 170 V RMS was used as
an AC input, with the output DC voltages being 100 V (in buck mode). Table 5 summarizes
the parameters used in the experiment. Sudden changes in the DC load and the output
reference voltage were used to assess the system’s performance in both steady-state and
dynamic scenarios.
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Table 5. Parameters for experimental verification of the proposed multilevel rectifier.

Parameters Value Unit

Input voltage 170 V for three-phase and 230
V for single-phase V (RMS)

Input grid frequency 50 Hz

Filter inductor 4 mH

Capacitors
(ALF80C162DF200) 1600 µF

Switching frequency 10 kHz

DC load 10, 20, 30 Ω

Output DC voltage 100 V for three-phase and 120
V for single-phase V

Battery 48 V, 30 AH Lithium-ion ferrous phosphate

Semiconductor switches SiHG47N6

Gate driver IC Si82071AB-IS

Hall effect voltage sensor LEM LV25-P

Current sensor HE025T01

Experimental results are taken with two scenarios, with a resistive load and another
with an EV battery charging for a single/three-phase. When the rectifier converts 240 V
three-phase peak AC (170 VRMS) to 100 VDC (in buck mode) and feeds it to the resistive
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load (Ro = 10 Ω) with a 10 A load current, the steady-state results are achieved, as shown
in Figure 12. Because the input current (ixg) is sinusoidal and in phase with the input grid
voltage (vx

g), the input power factor is maintained at unity.
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As previously described, the proposed topology can also work in boost mode. Figure 13
shows the steady-state operation where the output voltage is regulated at 280 V (in boost
mode with a wide output range) and feeds it to the resistive load (Ro = 30 Ω) with a 3 A load
current. In this mode of operation, the grid voltages (vx

g) and grid currents (ixg) are in phase.
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The proposed multilevel rectifier operates in buck mode of operation. In the input,
terminals of the rectifier generate four-level as a pole voltage (Vxn) with levels of 0, +VDC,
+2 VDC, +3 VDC. Moreover, seven-level is generated as a line voltage (Vab, Vbc, Vca) with
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levels of +3 VDC, +2 VDC, +VDC, 0, −VDC, −2 VDC and −3 VDC which improves the
harmonic profile of the grid current and reduces the filler size. Three-phase pole voltages
and line voltages are shown in Figure 14.
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Figure 14. Experimental waveforms show four-level pole voltages and seven-level line voltages.

An experiment was carried out to validate the proposed rectifier’s dynamic perfor-
mance. With a sudden 50% reduction in the load resistance (Ro), raising the load current
by a factor of two, the load voltage instantly stabilizes at 100 V. In addition, as indicated
in Figure 15, the rectifier maintains a unity power factor. In another case, the output DC
reference voltage increases. As seen in Figure 16, the reference voltage varies by 30%,
causing VDC and io to fluctuate abruptly. The load voltage stayed constant at 130 V, and
the rectifier operated at a unity power factor.
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Figure 16. Experimental results during 30% rise in the DC voltage reference.

A power electronics interface consisting of the proposed PFC rectifier and a typical
buck–boost DC-DC converter is constructed to illustrate application in three-phase charging.
The ratings are based on a three-phase input voltage of 170 VRMS at 50 Hz and a rectifier
output DC voltage of 100 V. The voltage and current of the battery are 48 V and 16 A,
respectively. Figure 17 depicts the battery charging, where the waveforms indicate that
the grid voltage and current are in phase. The rectifier’s output voltage is controlled to
100 VDC and further regulated to battery voltage 48 V using a DC-DC converter.
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Figure 17. Experimental waveforms for three-phase battery charging.

The V2G mode allows the injection of battery energy back into the grid. Grid-to-
vehicle (G2V) charging and vehicle-to-grid (V2G) discharging modes are available for EVs.
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The interface must be capable of bidirectional power flow in order to use V2G mode. The
proposed topology supports charging as well as discharging in its three-phase variants.
Figure 18 depicts experiments in both modes of operation (G2V and V2G). When an abrupt
change in the flow of the battery current is directed, the battery current is seen to be
reversed. In this case, the grid current is 180◦ out of phase with the grid voltage.
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In single-phase, Figures 19 and 20 show the EV battery charging and bidirectional
operation. A power electronics interface consisting of the proposed single-phase PFC
rectifier and a standard buck-boost DC-DC converter is created to demonstrate application
in single-phase EV charging. The voltage and current of the battery are 48 V and 25 A,
respectively. The waveforms of the battery charging are shown in Figure 19, which indicates
that the grid voltage and current are in phase and achieve a unity power factor. The
rectifier’s output voltage is set to 120 volts DC and then regulated to 48 volts using a
DC-DC converter. The V2G mode allows injecting battery energy back into the grid. In the
single-phase operation, EVs may charge and discharge using grid-to-vehicle (G2V) and
vehicle-to-grid (V2G) modes. The experimental results of both modes of operation (G2V
and V2G) are illustrated in Figure 20.

A total harmonic distortion (THD) and input power factor (IPF) are estimated for the
proposed seven-level rectifier, and comparisons are performed with the conventional boost
rectifier. The following parameters were used for the THD and IPF calculations: carrier
frequency of 10 kHz, input AC voltage of 325, output DC voltage of 400 V for conventional
topologies, and 120 V for the proposed topology. When the proposed topology is compared
to the others in terms of THD (vs. load) (Figure 21) and Input Power Factor (IPF) (vs. load)
(Figure 22), the proposed topology has a low THD due to the seven-level topology and
achieves a high IPF value. Figure 23 depicts the distribution of power losses for the
proposed IPF rectifier using the single-phase parameters listed in Table 5. With an overall
efficiency of 95.46%, the total loss (switching loss and conduction loss) in power switches is
46 W. Modeling the single-phase converters and their control in Plexim PLECS software
gives the proposed topology’s power loss distribution.
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Figure 22. Comparison of IPF vs. load with conventional rectifier.
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Figure 23. Distribution of power loss for 1015 W input power, power loss 46 W and efficiency is 95.46%.

6. Conclusions

This paper offers a new multilevel single/three-phase buck PFC rectifier based on SCs
suitable for EV charging and V2G operation. The voltage is balanced using LSPWM and a
voltage and current controller. The performance of the three-phase AC input of 170 V RMS
and DC output of 100 V for various dynamic situations has been tested using a proto-model
implementation. The following findings have been reached:

• It synthesizes input into four levels as a pole voltage and seven levels as a line voltage,
enhancing the waveform’s harmonic profile.

• It has a wide output voltage range and can work in buck and boost mode, making it
suitable for many applications.

• The proposed rectifier is suitable for EV battery charging due to its buck mode
of operation.

• It operates in continuous conduction mode (CCM), which eliminates the need for
large filters.

• It has an inbuilt self-voltage balancing capability that does not require extra circuitry.
• It is capable of bidirectional power flow.
• It achieves an efficiency of 95.46%, low THD and high IPF compared to the conven-

tional multilevel rectifier.
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