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Abstract: Interest in hairstyling, which is a means of expressing oneself, has increased, as has the
number of people who are attempting to change their hairstyles. A considerable amount of time is
required for women to change their hair back from a style that does not suit them, or for women to
regrow their long hair after changing their hair to a short hairstyle that they do not like. In this paper,
we propose a model combining Mask R-CNN and a generative adversarial network as a method
of overlaying a new hairstyle on one’s face. Through Mask R-CNN, hairstyles and faces are more
accurately separated, and new hairstyles and faces are synthesized naturally through the use of
a generative adversarial network. Training was performed over a dataset that we constructed,
following which the hairstyle conversion results were extracted. Thus, it is possible to determine
in advance whether the hairstyle matches the face and image combined with the desired hairstyle.
Experiments and evaluations using multiple metrics demonstrated that the proposed method exhibits
superiority, with high-quality results, compared to other hairstyle synthesis models.

Keywords: face and hair segmentation; data analysis; convolutional neural network; generative
adversarial network

1. Introduction

As the development of convolutional neural networks (CNN) and generative adversar-
ial networks (GAN) has rapidly accelerated in the past several years, artificial intelligence
(AI)-based deep learning has been used in various fields, including beauty, which was the
focus of this study. Image recognition and separation are areas of considerable interest
in fields such as automation and smart cities. Owing to the recent COVID-19 epidemic,
the manner in which people express their personalities has been diversifying. An individ-
ual’s personality may be revealed by applying makeup and wearing various accessories.
Hairstyling is one area in which people take an interest, and through which they can best
express themselves to others. Thus, hairstyling is one of the most important aspects of
modern means of self-expression. Hairstyling-related content has increased considerably
on various SNSs such as Instagram and YouTube, and the public expresses strong inter-
est in this content. Moreover, as content that focuses on topics such as on hairstyling
has increased, interest in hair loss treatment has also increased. Thus, the importance of
hairstyling to modern people has increased considerably. When changing one’s hairstyle,
the new style can be chosen based on the usual hairstyle that is recommended subjectively
by a beauty expert, or on one that is trending or has been popularized by celebrities. How-
ever, when a new hairstyle is adopted, the hair may be changed to a trendy style, which may
be something that does not suit the person; alternatively, a style that is recommended by
a beauty expert may not be liked. In particular, if a woman with long hair changes her
hairstyle to short hair, a long time is required to return to the long hairstyle if she does
not like the new style, or if it does not suit her; thus, she should find a hairstyle that suits
her prior to styling [1]. It is almost impossible to attempt all hairstyle options, such as
perms and dyeing, and to find a suitable hairstyle, because substantial time and money
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are required. It is also quite difficult for a person to see the style they wish to adopt in
advance and to decide if it suits them. To ease this difficulty, in recent years, apps have
emerged that display different hairstyles on heads using filters, which makes it possible to
experience different styles. However, these are not detailed or accurate compared to the
proposed method. Applications recognize the head part of selfies and display other pre-
pared hairstyles; therefore, the head may stick out or feel unnatural. In order to overcome
both the disadvantages of new hairstyles that require a lot of time and money, and the
existing methods of showing protruding or unnatural hairstyles, in this paper, we propose
a network that uses deep learning image classification technology, based on AI algorithms,
to recognize the hair and face, and execute hairstyle conversion through classification.
The contributions in this paper are as follows:

• We created a new dataset that divided the hair and face based on facial image data.
• We extracted hair and facial features more effectively using the pyramidal attention

network (PAN), which effectively extracts context from the pyramidal scale for more
accurate segmentation.

• We propose the hairstyle conversion network (HSC-Net), which is a network model
that combines the Mask R-CNN with PAN and GAN, to provide hairstyle conversion.

2. Related Work

Mask-RCNN was designed to deal with object segmentation by adjusting the network
parameters, and it outperformed existing models in all parts of the 2016 COCO challenge
(object recognition and segmentation) [2,3]. This network, which can be used to separate
the hair and face, is useful in beauty as well as in other fields. In the biomedical and medical
fields, it is applied to separation algorithms that are used to segment automatic nuclear
instances in the predicted boundary boxes by determining the boundary boxes for objects,
thereby allowing researchers to manually replace separation with automation systems.
From a mechanical perspective, this method is sometimes used to deal quickly with traffic
accident compensation problems through a car damage detection network, by extracting
a dataset label from a damaged car photograph. Moreover, Mask R-CNN models are used
to obtain the location and size of photovoltaic generators based on satellite datasets [4–6].
In this study, the training and testing data were constructed using a cut image, in which
the hair and face were separated using Mask R-CNN.

With the recent development of AI technology, GAN [7] has been used in various
fields. Since the advent of GAN, high-quality image generation studies have increased
considerably, and the quality of the generated images has improved dramatically. Owing to
the fairly high quality of the generated image, it is difficult to distinguish it from the actual
image. Many fake faces without copyright have been developed using image creation.
Although writing these images without copyright represents a fairly strong advantage,
GAN is also used in neural network-based fake face detectors to prevent them from
being used maliciously, without being detected through image detection algorithms [8].
GAN plays a significant role in image generation and restoration. The reconstructed image
is extracted by reconstructing the details and background of the image using the GAN
model, in instances where the resolution is low or the image is damaged owing to noise,
blur, etc. [9]. In this study, the image of a new hairstyle was extracted by training the GAN
model based on a dataset that was composed using Mask R-CNN.

3. Method
3.1. HSC-Net

GAN models include latent optimization of hairstyles via orthogonalization (LOHO) [10],
segmentation, using networks such as the Graphonomy segmentation network [11], and 2D-
FAN [12]. The model proposed in this study segmented hair and face more accurately using
Mask R-CNN with PAN, which extracts context from pyramid scale in order to extract
context more effectively. Typical Mask R-CNNs use ResNet and a feature pyramid network
as the backbone networks. However, HSC-Net uses PAN as the backbone network of Mask
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R-CNN for stronger feature expression capabilities. Hairstyle conversion is performed
using GAN with the mask extracted from Mask R-CNN (Figure 1).
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Figure 1. Overview of the structure of our proposed model, HSC-Net: (a) recognition and separation
of hair and face in input image through Mask R-CNN, and (b) hairstyle conversion using GAN.

3.2. Mask R-CNN

The Mask R-CNN consists of a structure in which Faster R-CNN and the mask branch
are incorporated. The region of interest (RoI) pooling that is used in Faster R-CNN under-
mines the information on the adjacent pixel spaces because it forcibly ignores decimal places
or lower values by rounding operations if the size includes decimal points, while perform-
ing a pooling operation to generate the RoI bin. Therefore, in this study, image classification
was performed using RoIAlign rather than Faster R-CNN, in order to perform image
segmentation more effectively. The Mask R-CNN framework is depicted in Figure 2.
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Among the networks that recognize and classify images, ResNet [13,14] learns in the
direction of minimizing H(x) − x, such that the output value of the network becomes x,
where H(x) − x is referred to as a residual, and it indicates the network where this residual
has been learned. Regardless of the depth of the layer, the residual has a value of 1 or more,
thereby solving the gradient vanishing problem. In ResNext [15], the bottleneck in ResNet
was changed. The input value of 256 channels is 128 channels through 1 × 1 conv, and the
channels are divided into 32 groups to form four channels per group. By connecting four
feature maps that are formed in 32 groups, 129 channels are created, and 256 channels are
again formed through 1 × 1 conv. Increasing the cardinality is more effective and provides
excellent performance compared to increasing the depth, such as in ResNet; therefore, it is
applied in various computer vision fields. Figure 3 presents the frameworks of ResNet
and ResNext.
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For the loss of Mask R-CNN (Lt), Lc is the classification loss, Lb is the bounding box
loss, and Lm is the binary cross-entropy loss for the mask loss. The Mask R-CNN Lt is
expressed as follows:

Lt = Lc + Lb + Lm. (1)

The mask branch generates an output value of N × M × M for each RoI. N is the
number of classes, and M is the size of the mask, which is the mask branch that calculates
the output value for each N class; only the mask with the class output from the class branch
calculates the loss.

Lm = −∑n
i=1[yi log ŷi + (1− yi) log(1− ŷi)], (2)

where yi represents the prediction probability that is calculated from the sigmoid function
per pixel, and ŷi refers to the true class label.

PAN

PAN consists of two modules: feature pyramid attention (FPA) and global attention
upsample (GAU) [16–18]. The FPA (Figure 4) uses 3 × 3, 5 × 5, and 7 × 7 convolutions
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to extract the context from other pyramid scales effectively. The pyramid structure can
integrate the adjacent scale of the context function more accurately by integrating different
information sizes, step by step. The three feature maps are reduced by a 1 × 1 convolution
layer after being connected and multiplied by pixels through 1 × 1 convolution again.
The extracted features add a global pooling branch to obtain an improved FPA. GAU
(Figure 5) performs 3 × 3 convolution on the low-level features to reduce the feature map
channels of the CNN. The global context that is created by the high level of functionality is
multiplied by the low level of functionality that is generated through the 1 × 1 convolution,
including batch normalization and ReLU nonlinearity. A high-level feature is added to the
weighted low-level feature to be upsampled to generate a GAU feature.
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3.3. GAN

GAN has a structure in which two networks compete to produce better outcomes,
and various GAN models are available. For example, CycleGAN [19] overcomes the need
for pairs of training data, which is a limitation of pix2pix [20] that succeeded in improving
the performance using an objective function combined with the GAN loss. StarGAN [21],
which is a new and scalable approach, has difficulty in adjusting the attributes of images
that are synthesized through generators, because different models can overcome the lim-
itations that are created independently for each image domain pair, and one model can
be used to perform image-to-image translation. Multi-input conditioned hair image GAN
(MichiGAN) [22] consists of a conditional hair image transfer and generation method based
on StyleGAN [23], and LOHO is an approach for transferring hairstyles by optimizing the
noise space to the faces of other people. In this study, we proposed a model that connects
Mask R-CNN and GAN. The architecture is depicted in Figure 6.
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Adaptive instance normalization (AdaIN) [24] was performed by transferring the style
conversion from the feature space to the feature statistics. We used the following loss:

L = Lcontent + λLstyle, (3)

Lcontent = || f (G(m))−m ||2, (4)

where Lcontent represents the content loss, λ represents the style loss weight, and Lstyle
represents the style loss. Instead of using the feature response of the commonly used
content image, we set the AdaIN output m, which is the target feature map, as the content
target, where G represents the randomized initialized decoder.
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4. Results
4.1. Implementation Details
Datasets

We trained the model using 30,000 high-resolution (1024 × 1024) images from open-
source CelebA-HQ [25] (Large-scale CelebFaces attributes) and performed a comparison
with other models. Because our proposed model executes the GAN through Mask R-CNN,
we generated 512× 512 label datasets, as shown in Figure 7, using Labelme [26] to generate
a dataset to train the Mask R-CNN. The generated dataset formed a 512 × 512 mask dataset
through Mask R-CNN, as illustrated in Figure 8, and, on this basis, hairstyle transformation
was performed using the GAN network. The configuration parameters of the proposed
model are presented in Table 1.

Electronics 2022, 11, 1887 8 of 15 
 

 

4. Results 
4.1. Implementation Details 
Datasets 

We trained the model using 30,000 high-resolution (1024 × 1024) images from open-
source CelebA-HQ [25] (Large-scale CelebFaces attributes) and performed a comparison 
with other models. Because our proposed model executes the GAN through Mask R-
CNN, we generated 512 × 512 label datasets, as shown in Figure 7, using Labelme [26] to 
generate a dataset to train the Mask R-CNN. The generated dataset formed a 512 × 512 
mask dataset through Mask R-CNN, as illustrated in Figure 8, and, on this basis, hairstyle 
transformation was performed using the GAN network. The configuration parameters of 
the proposed model are presented in Table 1. 

 
Figure 7. Label datasets created after separating hair and face using Labelme. 

 
Figure 8. Mask datasets: test results of Mask R-CNN trained with label datasets. 

  

Figure 7. Label datasets created after separating hair and face using Labelme.

Electronics 2022, 11, 1887 8 of 15 
 

 

4. Results 
4.1. Implementation Details 
Datasets 

We trained the model using 30,000 high-resolution (1024 × 1024) images from open-
source CelebA-HQ [25] (Large-scale CelebFaces attributes) and performed a comparison 
with other models. Because our proposed model executes the GAN through Mask R-
CNN, we generated 512 × 512 label datasets, as shown in Figure 7, using Labelme [26] to 
generate a dataset to train the Mask R-CNN. The generated dataset formed a 512 × 512 
mask dataset through Mask R-CNN, as illustrated in Figure 8, and, on this basis, hairstyle 
transformation was performed using the GAN network. The configuration parameters of 
the proposed model are presented in Table 1. 

 
Figure 7. Label datasets created after separating hair and face using Labelme. 

 
Figure 8. Mask datasets: test results of Mask R-CNN trained with label datasets. 

  

Figure 8. Mask datasets: test results of Mask R-CNN trained with label datasets.



Electronics 2022, 11, 1887 8 of 13

Table 1. Configuration parameters of HSC-Net.

Stage Output Size Attention

Conv 1 112 × 112 7 × 7, 64, stride 2

Conv 2 56 × 56
3 × 3 max pool, stride 21× 1, 128
3× 3, 128 C = 32
1× 3, 256

× 3

Conv 3 28 × 28
1× 1, 256

3× 3, 256 C = 32
1× 3, 512

× 4

Conv 4 14 × 14
 1× 1, 512

3× 3, 512 C = 32
1× 3, 1024

× 6

Conv5 7 × 7
1× 1, 1024

3× 3, 1024 C = 32
1× 3, 2048

× 3

Global average pool 1 × 1 softmax

4.2. Comparison

We differentiated between two GAN algorithms, MichiGAN and LOHO, resulting
in a more natural composite image, because they segmented the hair and face through
Mask R-CNN and synthesized the separated hair and face mask images through GAN.
We evaluated the model by comparing it with MichiGAN and LOHO. For a fair comparison,
the same dataset was used for training, and all hyperparameters and configuration options
were set to the default values. The results for the sampled 512 × 512 resolution images
are displayed in Table 1. As indicated in the table, the results when using various metrics,
including the learned perceptual image patch similarity (LPIPS) [27], Fréchet inception
distance (FID) [28], the peak signal-to-noise ratio (PSNR) [29], and the structural similarity
index map (SSIM) [30], were far superior to those of the other models. Table 2 presents
the LPIPS and FID results, for which lower values indicate better performance, and PSNR
and SSIM, for which higher values indicate better performance. It can be observed that the
metrics outperformed both the baseline and the other models, MichiGAN and LOHO.

Table 2. Our method performed the best in all metrics, including LPIPS, FID, PSNR, and SSIM.

Model LPIPS↓ FID↓ PSNR↑ SSIM↑
Baseline 0.20 44.10 24.12 0.85

MichiGAN 0.13 28.23 28.15 0.89
LOHO 0.19 42.45 24.49 0.85

HSC-Net (ours) 0.09 23.55 29.79 0.91

Furthermore, Table 3 presents the results of the dataset that was trained and tested
using human facial image data that differed from Flicker-Faces-HQ (FFHQ), which also
differed from CelebA-HQ, which we used. It can be observed that the proposed model
exhibited superior results in all GAN evaluation metrics compared to MichiGAN and
LOHO, and the results were consistent, without significant differences in performance,
even when the data were changed. Assuming that the FID value, which is the most-used
metric for evaluating GAN, was 100%, and the baseline value was 44.10, our proposed HSC-
Net yielded a difference rate of 0.68%, and the next smallest model, MichiGAN, produced
a difference rate of 1.36%. On this basis, our proposed HSC-Net exhibited approximately
twice the performance difference. Figure 9 depicts the components that are required by our
model when generating composite images. It displays the results of combining different
styles and colors in terms of identity. Figure 10 presents a graph comparing the FID values.
Because a lower FID indicates a better model, it can be observed that the FID was lower
when using CelebA-HQ and FFHQ compared to the other models. As it was approximately
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two times lower than the baseline, which was the basis of comparison, our proposed model
exhibited significantly better performance. Figure 11 presents a comparison of LOHO and
the composite images that were output using our model. The testing of our model using
hair mask images that were separated using Mask R-CNN demonstrated that the images
were more natural and similar to the hair color of the referenced image than the results of
LOHO. Although the proposed model did not exhibit good performance on certain images,
it produced images of the same natural and high quality in various hairstyles and different
hair colors, as illustrated in Figure 12.

Table 3. Comparison of CelebA-HQ and FFHQ data with other models using GAN performance
evaluation metrics, including LPIPS, FID, PSNR, and SSIM.

Model
CelebA-HQ FFHQ

LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑
MichiGAN 0.13 28.23 28.15 0.89 0.12 28.17 28.30 0.90

LOHO 0.19 42.45 24.49 0.85 0.17 40.97 25.02 0.88
HSC-Net (ours) 0.09 23.55 29.79 0.91 0.09 23.52 29.94 0.93
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5. Discussion

We focused on how people tend to convert their hairstyles, regardless of gender or
age, because men may want to convert to long hair styles, or women may want to convert
to short hair styles. We have created an artificial intelligence convolutional neural network
system that detects and segments hairstyles and faces of all ages. It is helpful for the beauty
industry and can be utilized in the fields of image classification and segmentation and
image generation. Using low-quality images to create datasets resulted in an inaccurate
hairstyle conversion, unnatural and inaccurate results, and a complete hairstyle conversion
was not achieved. Therefore, the dataset was created using high-quality images of men and
women of all ages. Through future research, it can be used not only for hairstyle conversion
but also for hairstyle recommendation algorithms.

6. Conclusions

In this paper, we create a hairstyle conversion system based on a generative adversarial
network, focusing on how to segment hair and faces more accurately and reliably. It can
be used in various situations, such as style change in daily life and style preview in the
beauty industry. The dataset consists of men and women of various ages, which helps
to train models without age- or gender-based exceptions. The network was trained and
verified using various hairstyles, such as long hairstyles, short hairstyles, perm hairstyles,
and straight hairstyles, and various facial types, such as heart-shaped, long, oval, round,
and square. We primarily generated our own label dataset from a large amount of data,
using Labelme to train Mask R-CNN. We focused on how natural-looking the results of
the hairstyle conversion were. In addition, we proposed a new network that adds a mask
R-CNN to the GAN with a pyramid attrition network; experiments show that our network
model is effective in generating more accurate images through better segmentation. In this
paper, only hairstyle conversion was discussed, but in future studies, we will analyze the
matter of hairstyle recommendations based on face shape and the location of facial features.
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Abbreviations

Abbreviation Meaning
CNN convolutional neural networks
GAN generative adversarial networks
PAN pyramidal attention networks
HSC-Net hairstyle conversion network
LOHO latent optimization of hairstyles via orthogonalization
FAN feature attention network
RoI region of interest
FPA feature pyramid attention
GAU global attention upsample
ReLU rectified linear unit
MichiGAN multi input conditioned hair image GAN
AdaIN adaptive instance normalization
Conv convolution layer
CelebA-HQ CelebFaces attributes-HQ
LPIPS learned perceptual image patch similarity
FID Fréchet inception distance
PSNR peak signal-to-noise ratio
SSIM structural similarity index map
FFHQ Flicker-Faces-HQ
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