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Abstract: Semantic segmentation using machine learning and computer vision techniques is one
of the most popular topics in autonomous driving-related research. With the revolution of deep
learning, the need for more efficient and accurate segmentation systems has increased. This paper
presents a detailed review of deep learning-based frameworks used for semantic segmentation of
road scenes, highlighting their architectures and tasks. It also discusses well-known standard datasets
that evaluate semantic segmentation systems in addition to new datasets in the field. To overcome
a lack of enough data required for the training process, data augmentation techniques and their
experimental results are reviewed. Moreover, domain adaptation methods that have been deployed
to transfer knowledge between different domains in order to reduce the domain gap are presented.
Finally, this paper provides quantitative analysis and performance evaluation and discusses the
results of different frameworks on the reviewed datasets and highlights future research directions in
the field of semantic segmentation using deep learning.
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1. Introduction

Semantic segmentation is one of the most challenging tasks in the field of computer
vision and is not an isolated task. Semantic segmentation means a complete scene under-
standing and is applied to images, videos, and 3D data. The basic idea behind semantic
segmentation techniques is to segment an image into pixels and to assign a label to each
pixel. The importance of scene understanding has increased due to the increased number
of applications that depend on it. Examples of these applications are human-machine
interaction [1], images search engines [2], and autonomous driving [3-5]. Any autonomous
driving system must detect objects, segment the road, and recognize traffic signs.

The task of semantic segmentation is to generate inference from a coarse level to a
fine level. Semantic segmentation uses classification techniques to predict each pixel of the
entire input, then getting fine-grained inference by detection or localization in which the
class labels and their spatial location information are provided. Semantic segmentation aims
to have dense predictions that derive class labels for each pixel. As a result, every pixel will
be labeled with its enclosing object’s class. All of the instances of the same class are further
separated and that is known as instance segmentation [6]. Moreover, the combination of
semantic segmentation and instance segmentation is called panoptic segmentation, which
means each pixel is assigned a class label and an instance label [7]. Figure 1 shows the
evolution of semantic segmentation, instance segmentation, and panoptic segmentation.

Prior to 2000, multiple segmentation methods were proposed based on image pro-
cessing such as clustering, texture features, region segmentation, and threshold segmen-
tation [9,10]. In the past two decades, segmentation algorithms were categorized into
four groups: classification [11], clustering [12], a combination of clustering and classifi-
cation [13], and graph theory [14]. Since 2010, neural network models have improved,

Electronics 2022, 11, 1884. https://doi.org/10.3390/ electronics11121884

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics11121884
https://doi.org/10.3390/electronics11121884
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0559-7283
https://doi.org/10.3390/electronics11121884
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11121884?type=check_update&version=2

Electronics 2022, 11, 1884

2 of 30

(a) Image

and deep learning models based on segmentation algorithms have been developed [15].
Today, with the revolution of deep learning, most problems related to computer vision are
addressed by using deep learning architectures. The most popular architecture is known as
Convolutional Neural Network (CNN). CNN shows better efficiency and accuracy when
compared to classical architectures. Examples of the early proposed CNN architectures
based on segmentation algorithms include: a trained convolutional network for detecting,
segmenting, and locating cells and nuclei in microscopic images [16], an approach that
automatically segments the neural structures depicted in stacks of electron microscopy
(EM) images [17], a method that uses a multiscale convolutional network trained from raw
pixels for extracting dense feature vectors to encode multiple sizes centered regions on
each pixel [18], a novel CNN architecture for simultaneous detection and segmentation
(SDS) that detects all instances of an object in an image and marks the pixels that belong to
each instance [19], and a geocentric embedding for learning feature representations with
CNNs, in addition to a decision forest approach that classifies pixels as foreground or
background [20].

(b) Semantic Segmentation  (c) Instance Segmentation  (d) Panoptic Segmentation

Figure 1. The results of semantic segmentation, instance segmentation, and panoptic segmentation
by Panoptic-Deeplab [8] on Cityscapes images [5].

However, the most used Deep Convolutional Neural Networks (DCNNs) by the deep
learning community for the task of semantic segmentation are Fully Convolutional Net-
works (FCNs) [21]. The pipeline of FCN extends the basic CNN architecture. Furthermore,
FCN only has convolutional and pooling layers, which can predict any arbitrary-sized
input image, unlike CNN, which has fixed fully connected layers that predict labels only for
particular sizes of the input images. Generally, the FCN prediction results have low resolu-
tion due to the downsampled feature maps through multiple alternated convolutional and
pooling layers. To deal with this problem, various architectures have been proposed such
as SegNet [22], which has a decoder that upsamples its lower resolution input feature maps,
and UNet [23], which has a massive number of feature channels in the upsampling part that
propagate context information to higher resolution layers. However, different deep network
architectures have been used over the past several years and have become widely known
standards for semantic segmentation. Examples include VGG-16 [24], GoogLeNet [25],
ResNet [26], DenseNet [27], AlexNet [28], and HANet [29]. Moreover, some of these archi-
tectures are in use as backbone networks for the recently proposed deep networks. Today,
new architectures have been proposed to address not only semantic segmentation problems
but also 3D semantic segmentation and real-time semantic segmentation problems.

The rest of this paper is organized as follows. Section 2 describes well-known and new
datasets in the field that are used for semantic segmentation. Generally, data provided are
not enough for semantic segmentation, Section 3 discusses data augmentation techniques
used to increase data, the disadvantages of those techniques, and experimental results.
Furthermore, Section 4 presents domain adaptation methods that have been deployed
to transfer knowledge between different domains in order to reduce the domain gap.
Section 5 provides a comprehensive overview of state-of-the-art semantic segmentation
frameworks, organized in chronological order. Those frameworks were selected based on
their promised performance. Then, Section 6 discusses some popular evaluation metrics
used for measuring the performance of semantic segmentation systems along with the
numeric results of the reviewed frameworks on some standard datasets mentioned in
Section 2. The results are divided into three groups based on the task of the frameworks:
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semantic segmentation, 3D semantic segmentation, or real-time semantic segmentation.
Finally, Section 7 highlights some future research directions on the field, while Section 8
concludes the paper.

2. Datasets

Over the past few years, with the improvement of deep learning techniques, numerous
datasets have been created for semantic segmentation tasks. This section describes new
and widely known datasets that are commonly used for semantic segmentation. Table 1
provides some useful information for all of the described datasets, such as their class
number, data format, and training/validation/testing splits. Figure 2 shows sample images
from most of the discussed datasets.

Table 1. An overview of the datasets reviewed in this paper organized in chronological order.

Dataset Name Purpose Ngrll;}s)::s()f Resolution  Real/Synthetic Training  Validation Test
CamVid [30] Urban (Driving) 32 960 x 720 Real 701 N/A N/A
CamVid-Sturgess [31] Urban (Driving) 11 960 x 720 Real 367 100 233
KITTI-Layout [32] Urban/Driving 3 Variable Real 323 N/A N/A
Microsoft COCO [33] Generic >80 Variable Real 82,783 40,504 81,434
PASCAL VOC 2012 [34] Generic 21 Variable Real 1464 1449 Private
KITTI-Ros [35] Urban/Driving 11 Variable Real 170 N/A 46
KITTI-Zhang [36] Urban/Driving 10 1226 x 370 Real 140 N/A 112
Cityscapes [5] (fine) Urban 30 (8) 2048 x 1024 Real 2975 500 1525
Cityscapes [5] (coarse) Urban 30 (8) 2048 x 1024 Real 22,973 500 N/A
SYNTHIA [37] Urban/Driving 13 960 x 720 Synthetic 13,407 N/A N/A
GTAS5 [38] Driving 19 1914 x 1052 Synthetic N/A N/A N/A
Mapillary Vistas [39] Urban 66 High Real 18,000 2000 5000
ADE20K [40] Urban/Indoor 150 High Real 27,574 N/A 2000
SemanticKITTI [41] Driving 28 High Real 23,201 N/A 20,351
nuScenes [42] Driving 23 High Real 700 150 150
Apolloscape [43] Driving 36 3384 x 2710 Real N/A N/A N/A

CamVid "Brostow 2009" COCO "Lin et al. 2014" KITTI "Ros et al. 2015"

Cityscapes "Cordts et al. 2016"
- T [ & J

Mapillary Vistas "Neuhold et al. 2017"

Figure 2. Sample images from some of the reviewed semantic segmentation datasets. Brostow
2009 [30]; Lin et al. 2014 [33]; Ros et al. 2015 [35]; Everingham et al. 2015 [34]; Cordsts et al. 2016 [5];
Ros et al. 2016 [37]; Richter et al. 2016 [38]; Neuhold et al. 2017 [39]; Huang et al. 2020 [43].
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2.1. Cambridge-Driving Labeled Video Database (CamVid)

CamVid (http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/, accessed
16 May 2022) [30,44] is considered to be the first set of videos with object class semantic
labels. Data were captured from a driving car perspective, where a camera was attached to
the dashboard of a car. CamVid provides ground truth labels that associate every pixel with
a class from 32 classes: sky, void, bridge, wall, building, fence, tree, sidewalk, vegetation,
animal, pedestrian, child, bicyclist, cart luggage, traffic, sign, lane markings (driving,
nondriving), traffic light, traffic cone, pole, miscellaneous text, parking block, tunnel, road,
road shoulder, archway, car, train, motorcycle, bus/truck, truck/SUV /pickup, and other
moving objects. However, Sturgess et al. [31] introduced the partition that distributed the
dataset into 367 training images, 100 validation images, and 233 testing images.

2.2. KITTI

KITTI (http:/ /www.cvlibs.net/datasets /kitti/, accessed 16 May 2022) [45] is one of
the most popular datasets being used for autonomous driving. Furthermore, hours of
traffic situations have been recorded in KITTI with different sensor modalities, containing a
3D laser scanner, high-resolution RGB, and grayscale stereo cameras. Unlike other datasets,
KITTI does not include ground truth for semantic segmentation. However, researchers
have made manual annotation on parts of the dataset to suit their needs. Zhang et al. [36]
annotated 140 training images and 112 testing images for 10 classes: car, road, sidewalk,
fence, cyclist, pedestrian, building, sky, pole/sign, and vegetation. Alvarez et al. [32] and
Ros and Alvarez [46] generated the ground truth from the road detection challenge for
323 images with three classes: sky, vertical, and road. Ros et al. [35] labeled 216 images (170
for training and 46 for testing) with 11 classes: road, sign, sidewalk, pole, fence, building,
tree, car, sky, bicyclist, and pedestrian.

2.3. Microsoft Common Objects in Context (COCO)

The COCO (https://cocodataset.org/#home, accessed 16 May 2022) [33] challenge
contains a large-scale dataset of images for recognition, segmentation, and captioning. It
has more than 80 classes and consists of more than 82,783 training images, 40,504 validation
images, and 81,434 testing images. Specifically, the test set is divided into four groups: test-
dev contains 20,000 images for additional validation or debugging, test-standard contains
20,000 images as the default testing set for the challenge and for a comparison between
state-of-the-art techniques, test-challenge contains 20,000 images used in the challenge for
the submitted methods to the evaluation server, and test-reverse contains 20,000 images
used in the challenge for preventing any possible overfitting. The main reason for the
dataset’s popularity is its large-scale.

2.4. Pascal Visual Object Classes (VOC)

The PASCAL VOC (http:/ /host.robots.ox.ac.uk/pascal /VOC/, accessed 16 May 2022) [34]
challenge contains a dataset of ground-truth annotated images and has five contests: classi-
fication, detection, segmentation, action classification, and person layout. The dataset is
grouped into categories such as households, vehicles, animals, and has 21 classes: sofa,
table, chair, potted plant, dining, TV /monitor, bottle, car, train, bus, boat, motorbike,
bicycle, airplane, sheep, horse, dog, cat, bird, cow, and person. Moreover, if the pixel
does not belong to any of the classes, then it is considered as background. However, the
dataset has 1464 training images, 1449 validation images, and a private testing set. PASCAL
VOC is considered to be the most well-known dataset for semantic segmentation tasks. In
literature, almost all of the outstanding methods have been submitted to PASCAL VOC’s
performance evaluation server for validation against the private testing set.

2.5. Cityscapes

Cityscapes (https://www.cityscapes-dataset.com/, accessed 14 April 2022) [5] is a
massive urban scenes dataset that focuses on semantic understanding. The data were


http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
http://www.cvlibs.net/datasets/kitti/
https://cocodataset.org/#home
http://host.robots.ox.ac.uk/pascal/VOC/
https://www.cityscapes-dataset.com/

Electronics 2022, 11, 1884

5 of 30

captured in 50 cities during different months, weather conditions, and times of day. The
data were initially recorded as a video, then the frames were selected manually to collect
features such as scene layout, dynamic objects, and backgrounds. Cityscapes provides an-
notations for 30 classes categorized into 8 groups: sky, nature, vehicle, surface, construction,
human, object, and void. The dataset contains 2000 coarse annotated images and 5000 fine
annotated images.

2.6. SYNTHetic Collection of Imagery and Annotations (SYNTHIA)

SYNTHIA (https://synthia-dataset.net/, accessed 16 May 2022) [37] is a massive
dataset that contains realistic photo renderings of a virtual city. The dataset has 13,407 train-
ing images and is used mostly for scene understanding, especially in autonomous driving
scenarios. Fine-grained, pixel-level annotations were provided by the dataset for 13 classes:
car, road, fence, sidewalk, pole, building, sign, vegetation, sky, misc, land-marking, cyclist,
and pedestrian. The dataset is also grouped by scene’s variety: lighting conditions and
weather, seasons, and dynamic objects.

2.7. Grand Theft Auto 5 (GTA5)

The GTAS (https:/ /download.visinf.tu-darmstadt.de/data/from_games/, accessed
16 May 2022) [38] dataset contains 24,966 semantically labeled synthetic images extracted
from the Grand Theft Auto 5 video game. The images are all from a car perspective in the
roads of American-style virtual cities [38]. The dataset has 19 classes: road, building, sky,
sidewalk, vegetation, car, terrain, wall, truck, pole, fence, bus, person, traffic light, traffic
sign, train, motorcycle, rider, and bicycle.

2.8. Mapillary Vistas

Mapillary Vistas (https:/ /www.mapillary.com/dataset/vistas, accessed 16 May 2022) [39]
is one of the largest-scale, street-level image datasets. It contains 25,000 high-resolution
images divided into 18,000 images for the training set, 2000 for the validation set, and
5000 for the testing set. These images have been annotated into 66 object groups in addition
to instance-specific labels for 37 classes. Moreover, the annotation was performed by using a
polygon for delineating individual objects in a dense and fine-grained style. A comparison
of the total amount of fine annotation for this dataset to the Cityscape dataset shows that it
is five times larger and contains images that have been captured at different times of day
and in different weather and season conditions. The images were taken by experienced
photographers with different imaging devices, such as action cameras, tablets, mobile
phones, and professional capturing rigs. Mapillary Vistas was designed and compiled to
cover a variety of details and geographic extent.

2.9. ADE20K

ADE20K (http:/ /groups.csail.mit.edu/vision/datasets/ ADE20K/, accessed 16 May
2022) [40] is a fully annotated image dataset. All images in the dataset are annotated with
objects, and many objects are annotated with their parts. Moreover, there is additional in-
formation about each object, such as whether it is cropped or occluded. The current version
of ADE20K dataset has 27,574 training images and 2000 testing images. Furthermore, the
validation images are exhaustively annotated with parts, and the parts are not exhaustively
annotated with the training images. Figure 3 shows sample images and annotations.

2.10. SemanticKITTI

SemanticKITTI (http:/ /www.semantic-kitti.org/, accessed 16 May 2022) [41] is a mas-
sive dataset for semantic scene understanding and is based on the KITTI Vision benchmark.
All sequences of the KITTI dataset have been annotated, and automotive Light Detection
and Ranging (LiDAR) has been employed. For the complete 360-degree field of view, dense
pointwise annotations have been provided. The SemanticKITTI dataset contains 28 classes,
including moving and nonmoving traffic objects with distinct classes such as cars, mo-
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torcycles, trucks, bicyclists, and pedestrians. The original split of the 22 sequences from
the KITTI dataset was adopted for the SemanticKITTI dataset, where 00 to 10 sequences
represent the training set, and 11 to 21 sequences represent the test set. Furthermore, 23,201
full 3D scans have been provided for the training set and 20,351 for the testing set.

Figure 3. Images from ADE20K dataset densely annotated in detail with objects and their parts.
The top row shows sample input images, the middle row shows the annotations of objects, and the
bottom row shows the annotations of objects” parts [40].

2.11. nuScenes

The nuScenes (https://www.nuscenes.org/, accessed 16 May 2022) [42] is a large-scale
dataset developed by Aptiv Autonomous Mobility. nuScenes dataset is publicly available
for supporting research in the computer vision field specifically for autonomous driving.
This dataset is inspired by the KITTI dataset, but compared to KITTI, nuScenes contains
100 times as many images and 7 times as many objects” annotations. The data were collected
in Singapore and Boston, both major cities known for heavy traffic and challenging driving
situations. The dataset also contains 1000 scenes, each 20 s long. It shows a different set
of unexpected behaviors, traffic situations, and driving maneuvers. These scenes are fully
annotated with 3D bounding boxes for 23 classes and 8 attributes. The complexity of the
nuScenes dataset encourages the development of safe driving methods. However, nuScenes
is the first dataset that carries a full autonomous car sensor suite: six cameras, five radars,
and one LiDAR, all with a 360-degree field of view.

2.12. ApolloScape

ApolloScape (http://apolloscape.auto/, accessed 16 May 2022) [43] contains large and
rich labeling that includes landmark labeling, stereo, per-pixel semantic labeling, instance
segmentation, holistic semantic dense point cloud for each location, high accurate site for
each frame in different driving videos from various cities and daytime, and 3D car instance.
ApolloScape dataset has 36 classes and 147,000 images with the corresponding pixel-level
annotation for each image. The dataset includes depth maps and poses information for
a static background. Riegl VMX-1HA, which has a VMX-CS6 camera system, was used
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to capture all of the images in the dataset. Like the Cityscape dataset, ApolloScape has
similar specification classes but also has a tricycle class that includes all types of three-
wheeled vehicles.

3. Data Augmentation

Data augmentation is a process of expanding a dataset by applying various tech-
niques. Wong et al. [47] presented data augmentation as a reliable way to improve the
performance of machine learning algorithms, specifically deep architectures, by generating
more samples to expand the dataset, avoiding overfitting, and increasing generalization
capabilities. Augmentation techniques can be based on image manipulations, such as
geometric transformations, color space transformation, random erasing, and kernel filters,
or can be based on deep learning, such as Generative Adversarial Networks (GANSs) [48]
based augmentation, feature space augmentation, and neural style transfer. This section
explains different augmentation techniques, discusses their disadvantages, and reports
experimental results.

3.1. Data Augmentation Techniques Based on Image Manipulation

Most popular augmentations are based on geometric transformations such as cropping,
rotation, color space, flipping, noise injection, and translation. These augmentations may
or may not preserve the label post-transformation, depending on the applied augmentation
and the data. In some cases, that means the model’s ability to predict the output might be
decreased after the augmentation. To solve such a problem, the labels post-transformation
must be refined [49], which is a computationally expensive process.

Furthermore, geometric transformations are easily implemented and considered to be
good solutions for positional bias problems that might occur in the training data. However,
there are some disadvantages of geometric transformations, such as requiring longer
training time, extra computation costs, and additional memory. Moreover, some of the
geometric transformation techniques, such as random cropping and translation, require
manual observation to be sure that the image label is not altered. In some real-world
applications, such as medical image analysis, there is a need for more complex biases
distancing than translation and positional variances. Therefore, the use of geometric
transformations is relatively limited.

Another transformation based on image manipulation known as color space trans-
formation or photometric transformation is used to alter the color distribution on images.
Moreover, important color information can be discarded by color space transformation. For
various tasks, colors can be major distinctive features. In some situations, this transforma-
tion is considered to be a non-label preserving transformation. However, color biases can
be eliminated when color space transformation is applied. Color space transformation and
geometric transformation have the same disadvantages, which are an increase of training
time, computation costs, and memory. Taylor and Nitschke [50] presented a comparative
study on the effectiveness of color space and geometric transformations. They studied
flipping, —30° to 30° rotations, and cropping as geometric transformations, in addition to
color jittering, edge enhancement, and Fancy Principal Component Analysis (PCA) as color
space transformations. Taylor and Nitschke [50] implemented those augmentations on the
Caltech101 [51] dataset filtered to 8421 images of size 256 x 256. Their results are shown in
Table 2. Cropping geometric transformation has the most accurate classifier, based on the
results of Taylor and Nitschke [50].

Random erasing [52] is another data augmentation technique that is based on image
manipulation. The technique was inspired by dropout regularization mechanisms. Particu-
larly, random erasing was designed for compacting image recognition challenges because
of occlusion. Occlusion means when some of an object’s parts in an image are unclear.
To overcome occlusion, the random erasing technique forces the model to learn more
descriptive features about the image. In this way, the model will prevent overfitting to a
particular feature of the image. The random erasing technique can guarantee that a network
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is paying attention to the entire image, not just to a part of it. Zhong et al. [52] evaluated
random erasing on medium-scale and large-scale datasets. Their results showed that the
models trained with random erasing have remarkable improvement. Table 3 reports their
results on ImageNet-2012 [53] validation set with three different architectures, which are
ResNet-34, ResNet-50, and ResNet-101. A disadvantage to this technique, however, is that
it is not usually considered as a label-preserving transformation.

Table 2. Taylor and Nitschke’s experiments’ results on Caltech 101 dataset [50].

Top-1 Accuracy Top-5 Accuracy
Baseline 48.13 £ 0.42% 64.50 £ 0.65%
Flipping 49.73 +1.13% 67.36 & 1.38%
Rotating 50.80 £ 0.63% 69.41 £ 0.48%
Cropping 61.95 + 1.01% 79.10 + 0.80%
Color Jittering 49.57 £ 0.53% 67.18 £+ 0.42%
Edge Enhancement 49.29 +1.16% 66.49 £ 0.84%
Fancy PCA 49.41 & 0.84% 67.54 + 1.01%

The bold values indicate high performance.

Table 3. Test error (%) on ImageNet-2012 validation set [52].

Model Baseline Random Erasing
Top-1 Top-5 Top-1 Top-5
ResNet-34 25.22 8.01 24.89 7.71
ResNet-50 23.39 6.89 22.75 6.69
ResNet-101 20.98 5.73 20.43 5.30

Kernel filters are another popular data augmentation technique. Some classical ways
to apply kernel filters are by sharpening and blurring images. Those filters work by
sliding an n X n matrix across an image with either a high contrast horizontal or vertical
edge filter to get a sharper image or using a Gaussian blur filter to get a blurrier image.
Sharpening an image might encapsulate additional details about important objects in the
image. Additionally, blurring an image might increase the motion blur resistance during
testing. Kang et al. [54] presented a unique kernel filter technique known as PatchShuffle
regularization. It randomly swaps the pixels value into an n x n sliding window. The
efficiency of Kang et al.’s [54] technique has been proven through their experiments on
Canadian Institute for Advanced Research 10 classes (CIFAR-10) dataset [55], where a 5.66%
error rate was achieved with the use of PatchShuffle regularization technique, compared
to a 6.33% error rate when the technique was not used. However, a disadvantage of
kernel filters is that they are very similar to the internal mechanisms of CNNSs. Specifically,
parameter kernels in CNNs learn the best way of representing images layer by layer. Hence,
kernel filters can be implemented in a better way as a layer of the CNN instead of as a data
augmentation technique applied to the dataset.

3.2. Data Augmentation Techniques Based on Deep Learning

The augmentation techniques discussed previously, which are based on image ma-
nipulation, are applied to images in the input space, unlike neural networks, which are
extremely powerful at mapping high-dimensional inputs into lower-dimensional represen-
tations. Furthermore, neural networks have a sequential process, which can be manipulated
to separate the intermediate representations from the network. In a fully connected layers
network, the lower-dimensional representations of images can be extracted and isolated.
The lower-dimensional representations found in high-level layers of a CNN are known as
the feature space. DeVries and Taylor [56] discussed using the feature space technique for
data augmentation. They also proposed adding noise, extrapolating, and interpolating as
general forms of feature space augmentation.
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To perform feature space augmentation on images, the use of autoencoders is beneficial.
Autoencoders work by dividing the network into halves, where the first half is the encoder
and the second half is the decoder. The encoder maps images into low-dimensional
vector representations in a way in which the decoder can reconstruct the vectors back
into the original images. For feature space augmentation, the encoded representation is
used. If necessary, feature space augmentation can be implemented with autoencoders
to reconstruct the new vectors back into input space. It is also possible to isolate vector
representations from a CNN to implement only feature space augmentation. Furthermore,
to generate new samples, DeVries and Taylor [56] applied interpolating or extrapolating in
their classification experiments. They found that the classification accuracy is improved
when datasets are augmented by extrapolating within a learned feature space, compared to
no data augmentation. Their results on MNIST [57] and CIFAR-10 datasets averaged over
10 runs are shown in Table 4. However, the disadvantage of feature space augmentation is
the difficulty of interpreting the vector data. Using autoencoders to recover the new vectors
requires copying the entire encoding part of the CNN being trained. DCNNSs require
massive autoencoders, which are very difficult and consume time for training. Finally,
Wong et al. [47] discovered that if transforming images in the data space is possible, data
space augmentation will surpass feature space augmentation.

Table 4. Test error (%) on MNIST and CIFAR-10 datasets [56].

Model MNIST CIFAR-10
Baseline 1.093 £ 0.057 30.65 £ 0.27
Baseline + input space affine transformation 1.477 £ 0.068 -
Baseline + input space extrapolation 1.010 £ 0.065 -
Baseline + feature space extrapolation 0.950 £ 0.036 29.24 £ 0.27

Another great data augmentation tool based on deep learning is known as a neural
style transfer [58]. The basic idea of neural style transfer is manipulating the sequential
representations of images across a CNN, where the style of an image can be changed to
a different one while keeping its original content. Moreover, choosing specific styles to
transfer images into for some applications, such as autonomous driving, can be obvious.
For example, the training images can be transferred into rainy-to-sunny, winter-to-summer,
or night-to-day scale. On the other hand, in some applications, it might be difficult to
choose the styles into which to transfer images. However, the effort required to select styles
to transfer into is considered a disadvantage of neural style transfer augmentation. Another
disadvantage is that the problem of biases could be introduced into the dataset if the size of
the style set is too small. The original technique [58] is not practical for data augmentation
since its running time is very slow. An improvement to the original neural style transfer
technique known as fast style transfer has been proposed by Johnson et al. [59]. The
improvement includes extending the loss function from a per-pixel loss to a perceptual loss
and uses a feed-forward network to stylize images. This improvement allows style transfer
to run in a much faster way, but this limits transfer to a set of styles that is pretrained.

In deep learning applications, most datasets have a common problem: some classes
contain a higher number of samples in the training set than other classes. For example,
when building a model that detects rare samples, the number of images of rare samples
will be very small compared to the other sample images. This difference in the dataset
is known as a class imbalance. Generally, the learning algorithms are biased toward the
majority classes with imbalanced datasets. As a result, for the minority class, there is a
high misclassification. Furthermore, there are various methods that can reduce the gap in
imbalanced datasets by generating synthetic data. For example, Deep Convolutional Gen-
erative Adversarial Networks (DCGANSs) [60] can improve the classification performance
by generating synthetic samples for a minority class. Tanaka and Aranha [61] proposed
using GAN s for data augmentation, where GANs have been used to generate synthetic
data for a binary classification task of cancer detection. In addition, a decision tree classifier
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remarkably achieved better performance when trained on the newly generated synthetic
dataset than when trained on the original dataset. In some cases, class information must
be included in the GAN model. This can be done by using conditional GAN, where the
class information is fed to the generator. Three of the most popular conditional GAN
architectures in the past couple of years are discussed as follows.

Auxiliary Classifier GAN (ACGAN) [62]: In ACGAN, the discriminator classifies and
discriminates between real and synthetic generated data, where a binary cross-entropy
is included in the loss function for classification. In this way, the generator learns
representative class samples and learns to generate more-realistic data. ACGAN
methods are used to improve the training process of GANs.

Data Augmentation GAN (DAGAN) [63]: DAGAN uses a lower-dimensional repre-
sentation of real images to learn how to generate synthetic images. Figure 4 shows
its architecture. The generator of DAGAN is composed of an encoder that takes a
true image from class as input, then projects it down to a lower-dimensional man-
ifold (bottleneck). Then, by transforming and concatenating a random vector with
the bottleneck vector, these two vectors are passed to the decoder for generating an
augmented image. Furthermore, the discriminator of DAGAN has been trained to
discriminate between real images from the class and fake images that have been gen-
erated by the generator. However, the training process drives the network to generate
new images from the existing ones that appear to be in the same class, whatever the
class is, although the generated images look different enough to be different samples.

Data Provider
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True Image xil

z; (Gaussian)
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Projection V

E:ake Distr. (x;, xg) E{eal Distr. (x;, xj)]

) A

Projected z | Iri Low Dim Repr, I

Discriminator
Decoder
(Generator)

Gen Image x4

#

Real/Fake

Generator Network Discriminator Network

Figure 4. DAGAN architecture [63].

Balancing GAN (BAGAN) [64]: It is an augmentation tool that restores balancing data
in imbalanced datasets. Doing this was a challenge, considering the few minority class
images that might not be enough for training a GAN. This problem was solved by
including all available images of minority and majority classes during the training
process. Figure 5 shows the three steps of the BAGAN training approach: autoencoder
training, GAN initialization, and adversarial training. In this way, the model learns
useful features from the majority classes and then uses these features to generate
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images for minority classes. Additionally, to drive the generation process toward a
target class, class conditioning has been applied in the latent space. An autoencoder is
used for the generator, which helped in learning an accurate class conditioning in the
latent space.

GAN
GAN / cl Generator \
Generator Y ‘ S

mstances \ Class, conditional

p—__ Latent, Fake |abels|latent vector

Autoencoder r- E Class. | vector |mage ¢ | generator

Encoder Decode conditional
La1ent latent vector iscrimi Rea
vecm Original generator ge 7
Original \ Reconstructed dala Original \\
data 1, loss optimization data msm,—.ces data  Sparse categorical cross-entropy optimization
(a) Autoencoder training. (b) GAN initialization. (c) GAN training.

Figure 5. The three training steps of the BAGAN method [64].

However, comparing BAGAN with ACGAN, both were trained on the target datasets
by using minority and majority classes. Furthermore, rather than transforming the existing
data like in DAGAN, BAGAN generates new images of higher quality when trained with
imbalanced datasets.

Most of the research papers that applied GANSs to data augmentation were carried
out in biomedical image analysis [65]. The results in these papers showed improvement
in the classification boundaries derived from training with both real and generated data
from GANs. Even though using GANs for data augmentation has great potential, it
has disadvantages. For example, getting high-resolution outputs from the cutting-edge
architecture of GAN is very difficult. Furthermore, increasing the output size of the images
that the generator in a GAN produced can cause training instability. Another disadvantage
of GAN s is that a huge amount of data is required for training, which means GANs might
not be a practical solution when the dataset is limited.

3.3. Comparing Data Augmentation Techniques

Data augmentation has multiple possibilities that can improve the performance of deep
learning models. However, few comparative studies have been done on these augmentation
techniques to try to show their performance differences. A study by Shijie et al. [66] explored
the impact of various data augmentation techniques on image classification tasks with
DCNN . Shijie et al. [66] selected ImageNet and a subset of CIFAR-10 as the original
dataset. The data augmentation techniques used on the experiment were GAN, Wasserstein
GAN (WGAN), flipping, shifting, cropping, rotation, noise, color jittering, PCA jittering,
and some combinations. The comparative study showed that on small-scale datasets
under the same multiple increasing conditions, the performance evaluation was more
obvious. Generally, cropping, flipping, WGAN, and rotation performed better than other
techniques. Some combinations, such as flipping + cropping and flipping + WGAN, were
the best overall and improved the classification performance on CIFAR-10 dataset by 3%
and 3.5%, respectively.

4. Domain Adaptation

Training deep learning models relies on a large amount of pixel-level labeled data. Gen-
erally, data labeling is done manually, which is considered a difficult and time-consuming
process. For the Cityscapes dataset, high-quality semantic labeling needs about 90 min
per image [5]. Another way for training deep learning models is to use synthetic data
(source-domain) adapted to real images (target-domain). Various studies have proposed
domain adaptation methods to reduce the domain gap between labeled source-domain
and unlabeled target-domain. Furthermore, domain adaptation can be divided into three
categories based on the availability of labeled data in the target-domain, which are su-
pervised, unsupervised, and semi-supervised. Tzeng et al. [67] addressed the supervised
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domain adaptation by proposing a new CNN architecture which contains an adaptation
layer and an additional domain confusion loss to learn a representation that is both domain-
invariant and semantically meaningful. However, if the labeled data is not available in
the target-domain, this is known as unsupervised domain adaptation. To deal with this
situation, Tzeng et al. [68] proposed a framework that uses adversarial learning to improve
the model’s generalization ability. Further, when both labeled and unlabeled data are
available in the target-domain, this is referred to as semi-supervised domain adaptation.
Long et al. [69] introduced a deep adaptation network to address the semi-supervised
domain adaptation. The hidden representations of all task-specific layers are embedded
in a reproducing kernel Hilbert space, where the mean embedding of various domain
distribution can be easily matched [69].

Most of the existing domain adaptation methods are proposed to address image
classification tasks. There have been multiple methods introduced to address the semantic
segmentation task [67-69]. Hoffman et al. [70] took this research area into another level with
global and category specific adaptation methods that use pixel-level adversarial training.
However, the discussed domain adaptation methods reduced the domain gap by mainly
using adversarial training. Recently, some newly proposed methods have been considered
the first attempts to introduce new models to domain adaptation for semantic segmentation.
Some of these methods are discussed as follows.

e  Self-Ensembling Attention Networks [71] is the first self-ensembling model introduced
to domain adaptation. This model aims to improve the learning of domain-invariant
features. Moreover, an attention mechanism is introduced into the proposed model to
generate attention-aware features. This mechanism is used to calculate consistency loss
in the target-domain. Moreover, the self-ensembling model has two major components:
a student network that represents base networks and a teacher network that represents
ensemble networks. The student network learns from the teacher network with the
help of the consistency loss. As a result, the student network becomes more accurate
and the teacher network gets closer to the correct labels in the target-domain. Hence,
domain-invariant features can be learned correspondingly.

e Semantic-Edge Domain Adaptation [72] is the first attempt to use low-level edge
information that can be easily adapted to guide the transfer of high-level semantic
information. The semantic-edge domain adaptation model uses an edge stream for
processing edge information to produce high-quality semantic boundaries over the
target-domain. Moreover, an edge consistency loss is proposed to align the target
semantic predictions with the generated semantic boundaries in addition to two
entropy reweighting methods for enhancing the adaptation performance of the model.

e  Self-Ensembling GAN (SE-GAN) [73] is a novel self-ensembling GAN for domain
adaptation. SE-GAN adopted a self-ensembling model as the generator in the adver-
sarial network to improve the adversarial training performance. SE-GAN has three
major components: a student network, a teacher network, and a discriminator. Both
the student and the teacher networks form a self-ensembling model that generates
domain-invariant features. On the other hand, the discriminator determines whether
the segmentation maps come from the source-domain or the target-domain. How-
ever, the teacher network in SE-GAN produces pseudo labels for the target-domain
images and conducts self-training on the target-domain for the student network.
Since SE-GAN combines two promising methods, which are self-ensembling and
adversarial training, it gets the advantages from both methods and addresses their
respective weaknesses.

All the three discussed domain adaptation methods used SYNTHIA and GTA5 datasets
as the labeled source-domain and used Cityscapes dataset as the unlabeled target-domain.
The qualitative results on the GTA5—Cityscapes are shown in Figure 6. The quantitative
results are presented in Tables 5 and 6. The baseline segmentation models that are directly
trained on the source-domain without domain adaptation are presented as “NoAdapt”.
As noted, the results of domain adaptation methods are better than the results of the
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models without domain adaptation. The semantic-edge domain adaptation method has
the best MIoU results, which are 55.9% and 52.8% on the SYNTHIA —Cityscapes and the
GTA5—Cityscapes, respectively. Generally, the results of all the three methods show great
effectiveness of domain adaptation methods in learning domain-invariant representations
for semantic segmentation.

Self-Ensembling Attention Networks

Semantic-Edge Domain Adaptation

(b) (© (d)

Figure 6. Qualitative results from GTAS5 to Cityscapes datasets. (a) Input images from Cityscapes.
(b) Segmentation results without domain adaptation. (c) Segmentation results with domain adapta-
tion. (d) Ground truth.

Table 5. Evaluation results of semantic segmentation by adapting from SYNTHIA to Cityscapes.

SYNTHIA — Cityscapes

MIoU
Method Backb
ene ackbone NoAdapt Adapt
Self-Ensembling Attention
Networks [71] VGG-16 17.4 37.5
Semantic-Edge Domain
Adaptation [72] ResNet-101 37.8 55.9
SE-GAN [73] ResNet-101 33.3 48.9

Table 6. Evaluation results of semantic segmentation by adapting from GTA5 to Cityscapes.

GTAS5 — Cityscapes

MloU
Method Backb
e ackbone NoAdapt Adapt
Self-Ensembling Attention
Networks [71] VGG-16 21.2 35.7
Semantic-Edge Domain ResNet-101 365 52.8

Adaptation [72]
SE-GAN [73] ResNet-101 37.2 50.1
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(a) Image

(a) Input Image

5. Frameworks

Recently, researchers have been motivated to explore the capabilities of deep network
architectures by proposing new frameworks for semantic segmentation. Some frameworks
are based on FCNs and others on CNNSs. This section overviews some state-of-the-art
frameworks for the segmentation task. Table 7 provides some useful information about the
reviewed frameworks, such as the framework tasks and evaluation results.

5.1. ParseNet

ParseNet [74] is a deep convolutional network. Figure 7 shows the contexture module
overview. The basic idea of this framework is to use the average feature for a layer to
augment the features at each location. In addition, multiple studies such as FCN [21] have
increased the performance of baseline networks. Moreover, the global feature, along with a
technique for learning normalization parameters, has also been proposed by Liu et al. [74]
to increase the accuracy, to clarify the local confusion, and to smooth segmentation even
over their improved versions of the baselines. With small additional computational cost
over baselines, ParseNet achieved state-of-the-art performance on PASCAL-Context [75]
and SiftFlow [76] datasets.

@ (3)
Global feature 1.2 Norm UnPool
(1
Global \
Pooling
(2)

Feature map L2 Norm Combined feature

(b) Truth (c) FCN (d) ParseNet (e) ParseNet contexture module overview.

Figure 7. ParseNet framework [74].

5.2. Pyramid Scene Parsing Network (PSPNet)

PSPNet [77] is a framework for pixel-level prediction tasks, as shown in Figure 8. The
capability of context information by different-region-based aggression has been exploited
through the pyramid pooling module along with the proposed PSPNet. State-of-the-
art performance has been achieved by PSPNet on different datasets. It was the first in
Cityscapes benchmark, PASCAL VOC 2012 benchmark, and ImageNet scene parsing
challenge 2016. Moreover, PSPNet yielded a record of 85.4% Mean Intersection over Union
(MIoU) accuracy on PASCAL VOC 2012 and 80.2% accuracy on Cityscapes.
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(b) Feature Map (¢) Pyramid Pooling Module (d) Final Prediction

Figure 8. PSPNet framework [77].
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Table 7. Information about the reviewed semantic segmentation frameworks in chronological order.

Framework Tasks Evaluation Results
ParseNet [74] Sernantic Segmentation Ranked #46 on semantic segmentation on PASCAL VOC
2012 test
Semantic Segmentation
Real-Time Semantic Segmentation
PSPNet [77] Video Semantic Segmentation Ranked #3 on video semantic segmentation on Cityscapes val

Lesion Segmentation
Scene Parsing
Image Classification

BiSeNet [78]

Semantic Segmentation
Real-Time Semantic Segmentation

Ranked #4 on semantic segmentation on SkyScapes-Dense

DeepLabv3+ [79]

Semantic Segmentation
Lesion Segmentation
Image Classification

Ranked #1 on lesion segmentation on ATLAS

Mask R-CNN [80]

Semantic Segmentation
Instance Segmentation
3D Instance Segmentation
Human Part Segmentation
Nuclear Segmentation
Panoptic Segmentation
Object Detection
Real-Time Object Detection
Key Point Detection
Multi-Human Parsing
Pose Estimation

Ranked #1 on real-time object detection on COCO minival
(MAP metric)

Semantic Segmentation

DANet [81] . Ranked #8 on semantic segmentation on COCO-Stuff test
Scene Segmentation
Semantic Segmentation
HTC [82] Instance Segmentation Ranked #27 on instance segmentation on COCO test-dev
Object Detection
FastFCN [83] Semantic Segmentation Ranked #29 on semantic segmentation on PASCAL Context
GSCNN [84] Semantic Segmentation Ranked #16 on semantic segmentation on Cityscapes test
Semantic Segmentation
ShelfNet [85] Real-Time Semantic Segmentation Ranked #11 on real-time semantic segmentation on

Scene Understanding
Autonomous Driving

Cityscapes test

3D-MiniNet [86]

Semantic Segmentation
Real-Time Semantic Segmentation
3D Semantic Segmentation
Real-Time 3D Semantic Segmentation
LiDAR Semantic Segmentation
Autonomous Driving
Autonomous Vehicles

Ranked #1 on real-time 3D semantic segmentation
on SemanticKITTI

Semantic Segmentation

BlendMask [87] Instance Segmentation Ranked #6 on real-time instance segmentation on COCO
Real-Time Instance Segmentation
Semantic Segmentation
Instance Segmentation . .
HIRNet [88] Object Detection Ranked #1 on object detection COCO test-dev (Hardware
. . Burden metric)
Pose Estimation
Representation Learning
SANet [89] Semantic Segmentation Ranked #14 on semantic segmentation on PASCAL VOC 2012

test (using extra training data)
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5.3. Bilateral Segmentation Network (BiSeNet)

BiSeNet [78] is a novel framework. Figure 9 shows its architecture. This framework
addresses the problem of compromising spatial resolution to achieve real-time inference
speed, which leads to poor performance. Moreover, Yu et al. [78] designed a spatial path
with a small stride to preserve the spatial information and to generate high-resolution
features. Additionally, a context path with a fast down-sampling strategy is employed
to obtain sufficient receptive field. Furthermore, Yu et al. [78] introduced a new feature
fusion module, which combines features efficiently on top of the spatial and context paths.
However, the BiSeNet framework balances between the segmentation performance and
speed on CamVid, Cityscapes, and COCO-Stuff [90] datasets. Particularly, on a Cityscapes
test set, the proposed framework [78] achieved 68.4% MIoU accuracy with a speed of 105
frame per second (fps) on one NVIDIA Titan XP card for a 2047 x 1024 input.
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Figure 9. BiSeNet framework [78].

5.4. DeepLabv3+

DeepLabv3+ [79] model combines two methods: the former networks and the latter
networks. The former networks encode multiscale contextual information by probing the
incoming features with filters or by pooling operations at multiple-effective fields-of-view
and multiple rates. The latter networks capture sharper object boundaries by gradually
recovering the spatial information. However, the proposed DeepLabv3+ [79] extends
DeepLabv3, where an effective decoder module has been added to refine the segmentation
results specifically along object boundaries, as shown in Figure 10. Chen et al. [79] explored
the Xception model and applied depthwise separable convolution to decoder modules and
atrous spatial pyramid pooling, where the result was a stronger and faster encoder-decoder
network. On PASCAL VOC 2012 and Cityscapes datasets, DeepLabv3+ achieved 89.0%
test set performance and 82.1% without postprocessing, respectively.
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Figure 10. DeepLabv3+ framework [79].

5.5. Mask R-CNN

Mask R-CNN [80] is an approach for object instance segmentation and is shown in
Figure 11. Mask R-CNN extends Faster R-CNN [91], where a branch that predicts an
object mask was added in parallel with the existing branch for bounding box recognition.
The Mask R-CNN framework detects objects in an image and simultaneously generates a
high-quality segmentation for each instance. Furthermore, this framework is easy to train
and can be generalized to other tasks. The results showed outstanding performance in the
COCO challenges in all three tracks: bounding-box object detection, instance segmentation,
and person key-point detection. Including the winners of the COCO 2016 challenge, Mask
R-CNN surpasses all existing single-model entries on all tasks.
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Figure 11. Mask R-CNN framework for instance segmentation [80].

5.6. Dual Attention Network (DANet)

DANet [81] is unlike other frameworks that capture contexts by multiscale feature
fusion. Fu et al. [81] captured rich contextual dependencies to address the segmentation task
based on the self-attention mechanism. DANet integrates local features with their global
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convolution layer
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dependencies. Figure 12 shows the framework overview, where two types of attention
modules have been appended on top of a dilated FCN. These two modules model the
segmentation interdependencies in spatial and channel dimensions. Moreover, at each
position, the position attention module selectively aggregates the feature by a weighted sum
of all of the features at all positions. Similar features are related to each other, regardless
of their distances. On the other hand, the channel attention module integrates associated
features among all channel maps in order to selectively emphasize interdependent channel
maps. Furthermore, the outputs of the two attention modules are summed for improving
feature representation to produce augmentation results that are more accurate. State-of-
the-art performance has been achieved by DANet on PASCAL-Context, Cityscapes, and
COCO-Stuff datasets. On a Cityscapes test set, DANet achieved 81.5% MloU without using
coarse data.

Position Attention Module
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Figure 12. DANet framework [81].

5.7. Hybrid Task Cascade (HTC)

HTC [82] is a new cascade framework for instance segmentation. Chen et al. [82] found
that fully leveraging the complementary relationship between detection and segmentation
can lead to a successful instance segmentation cascade. Comparing this framework to
other existing frameworks, it has differences in multiple aspects. First, instead of executing
bounding box regression and mask prediction in parallel, they are interleaved. Second, a
direct path is incorporated to reinforce the information flow between mask branches by
feeding the mask feature of the previous stage to the current stage. Third, an additional
semantic segmentation branch is added and fused with box and mask branches to explore
information that is more contextual. As a result of these changes to the architecture of
the framework, the information flow improved across stages and between tasks. Overall,
the proposed HTC framework achieved a 1.5% improvement on the COCO dataset over a
strong Cascade Mask R-CNN baseline.

5.8. FastFCN

FastFCN [83] is a Joint Pyramid Upsampling (JPU) module. It replaced the dilated
convolutions that consume time and memory. Moreover, as a joint upsampling problem,
the module formulates a function for extracting high-resolution maps. Figure 13 shows
the framework overview. Experimental results showed that JPU is considered superior to
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other upsampling modules and it can be plugged into existing techniques to improve the
performance and to reduce the computation complexity. State-of-the-art performance has
been achieved in the PASCAL-Context and ADE20K datasets.

Encoding/PSP/ASPP
Head

Figure 13. FastFCN framework [83].

5.9. Gated Shape CNN (GSCNN)

GSCNN [84] is a two-stream CNN framework for semantic segmentation; it is shown
in Figure 14. GSCNN wires shape information as a separate processing stream, where the
shape stream processes information in parallel to the classical stream. This is unlike most
state-of-the-art image segmentation methods, which form a dense image representation in
which the shape, color, and texture information are processed together inside a deep CNN.
Moreover, Takikawa et al. [84] proposed a new gating mechanism that connects all of the
intermediate layers of two streams. Specifically, in the classical stream, the higher-level
activations are used for gating the lower-level activations in the shape stream. As a result,
the noise is removed, and the shape stream is focused only on processing the related
boundary information. The Takikawa et al. [84] experiments also showed that with the
gating mechanism, it is possible to use a very shallow architecture for the shape stream,
which operates on the image-level resolution. This leads to a very effective architecture
that generates sharper predictions around object boundaries and remarkably increases
performance on smaller and thinner objects. GSCNN framework achieved state-of-the-art
performance on Cityscapes dataset, improving accuracy and boundary quality over strong
baselines by 2% MIoU and 4% F-score, respectively.

Semantic Prediction

Shape
Stream

S

Boundaries

Dual Task Regularizer

Figure 14. GSCNN framework [84].
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5.10. ShelfNet

ShelfNet [85] is a novel, shelf-shaped framework for accurate fast-semantic segmen-
tation. Figure 15 shows the structure of ShelfNet, which has various encoder—decoder
branch pairs with skip connections at each spatial level that look like a shelf with different
columns. The unique shelf-shaped structure can be viewed as a group of different deep and
shallow paths. Zhuang et al. [85] reduced the channel number to reduce the computation
complexity and achieved high accuracy with their unique structure. Moreover, a shared-
weight strategy has been proposed by Zhuang et al. [85] in the residual block to reduce the
parameter number without sacrificing the performance. Compared with PSPNet, ShelfNet
achieved inference speed four times faster with similar accuracy on PASCAL VOC dataset.
Compared with BiSeNet, which is a real-time segmentation model, at a comparable speed,
ShelfNet achieved higher accuracy on Cityscapes dataset. Particularly, ShelfNet with a
ResNet-34 backbone achieved 79% MloU on Cityscapes dataset, surpassing BiSeNet with
large ResNet-101 backbone. Experiments by Zhuang et al. [85] proved the outstanding
performance of ShelfNet in some applications, such as understanding the street scenes for
autonomous driving, which requires speed.
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Figure 15. The structure of ShelfNet. Rows A-D represent different spatial levels. Columns 1-4
represent different branches: 3 is encoder branch, 2 and 4 are decoder branches, and 1 reduces the
number of channels [85].

5.11. 3D-MiniNet

3D-MiniNet [86] is a novel framework for LIDAR semantic segmentation. 3D-MiniNet
is a combination of 2D and 3D learning layers. Figure 16 shows the framework overview.
From the 3D data, a novel projection extracts global and local information and then from
the raw points, the framework learns a 2D representation. After that, the representation
is fed to an efficient 2D Fully Convolutional Neural Network (FCNN) that produces a
2D semantic segmentation. Finally, a postprocessing module enhances and reprojects the
produced 2D semantic labels back to the 3D space. The projection learning module is the
main novelty in this framework. 3D-MiniNet achieved state-of-the-art results on KITTI and
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SemanticKITTI datasets. Compared with the existing methods, 3D-MiniNet is faster and
more parameter efficient.

Input Point Cloud
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Figure 16. 3D-MiniNet framework [86].

5.12. BlendMask

BlendMask [87] is an improved mask prediction for instance segmentation. It combines
instance-level information that has semantic information with lower-level fine-granularity.
Figure 17 shows the BlendMask pipeline, which is built upon the state-of-the-art Fully Con-
volutional One-Stage (FCOS) object detection [92] with minimal changes. Moreover, with
few channels, BlendMask predicts dense per-pixel position-sensitive instance features and
learns attention maps with simply one convolutional layer for each instance. BlendMask is
20% faster compared to two-stage Mask R-CNN under the same training schedule and can
be integrated with state-of-the-art, one-stage detection frameworks. BlendMask is an effi-
cient and simple framework that can be used as a baseline for instance segmentation tasks.
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Figure 17. BlendMask pipeline [87].

5.13. High-Resolution Network (HRNet)

HRNet [88] has been proposed for maintaining high-resolution representations for
critical computer vision problems such as object detection and semantic segmentation. Most
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of the existing state-of-the-art frameworks encode the input images as a low-resolution
representation by connecting high-to-low resolution convolutions in series through a sub-
network such as VGG and ResNet. Then, from the encoded low-resolution representation,
the high-resolution representation is recovered. HRNet has two main characteristics: (a) the
high-to-low resolution convolution streams are connected in parallel, (b) the informa-
tion across resolution is exchanged frequently. As a result, the representation of HRNet
compared to other existing frameworks is spatially more precise and semantically richer.
Wang et al. [88] showed the superiority of the proposed HRNet in various applications and
suggested that HRNet is a strong backbone for computer vision problems.

5.14. Squeeze-and-Attention Network (SANet)

SANet [89], shown in Figure 18, has been proposed to leverage an effective Squeeze-
and-Attention (SA) module. This module accounts for two unique segmentation features:
pixel-group attention and pixel-wise prediction. Moreover, the proposed SA module
introduced an “attention” convolutional channel for imposing pixel-group attention on
convolutional convolution, thus considering spatial-channel interdependencies in an effi-
cient way. Zhong et al. [89] produced the final segmentation results by combining outputs
from four hierarchical stages of a SANet for integrating multiscale contexts to obtain an
enhanced pixel-wise prediction. Their empirical experiments improved the effectiveness of
the SANet framework, where it achieved state-of-the-art performance on PASCAL-Context
with 54.4% MIoU and achieved 83.2% MIoU on PASCAL VOC without COCO pretraining.
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Figure 18. SANet framework [89].

6. Discussion

When reviewing any framework, it is important to take quantitative results into
account. This section discusses some of the most popular evaluation metrics used for
measuring semantic segmentation systems’ performance, in addition to providing the
results of the reviewed frameworks on some standard datasets using one of the described
evaluation metrics. At last, the results are summarized and concluded.

6.1. Evaluation Metrics

The evaluation of semantic segmentation systems must be performed using popular
and standard evaluation metrics which enable fair comparisons with different architectures
and frameworks. Moreover, various important aspects, such as execution time, accuracy,
and memory footprint, must be evaluated for asserting the usefulness and validity of
a system [6]. Based on the context or the purpose of a system, some metrics might be
more important than others. For example, in real-world applications, the accuracy can be
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expendable up to a certain point in favor of execution time. However, for any proposed
architecture or framework, it is important to provide all of the possible metrics.

6.1.1. Execution Time

Most systems should meet specific requirements, especially on the time they spent on
inference pass. That is why execution time is a valuable metric. In some situations, knowing
the time needed for training a system might be useful, but generally, it is not important.
Moreover, knowing the exact timings for any proposed architecture or framework can
be meaningless because timings are dependent on the backend implementation and the
hardware. Providing timings with a thorough description of the hardware on which the
system was executed, along with the benchmark conditions, is very helpful for fellow
researchers. In this way, others can estimate if the architecture or the framework is useful
for their application. Fair comparisons can be made only under the same conditions for
checking which is the fastest.

6.1.2. Accuracy

For assessing the accuracy of any semantic segmentation technique, multiple evalu-
ation criteria have been proposed and used in the literature. For semantic segmentation,
currently, there are some well-known metrics for measuring per-pixel labeling techniques.
These metrics are discussed in Table 8. For the explanation, the notation details are as
follows: assuming a total of k + 1 classes from L to Ly, including background or a void
class, and the amount of pixels is P;; of class i, which belongs to class j. The number of true
positives is represented by Pj;, false positives is represented by Pj;, and false negatives is
represented by Pj;, even though the sum of both false positives and false negatives can be
either of them [6].

Table 8. The most popular semantic segmentation accuracy metrics.

Metrics Formula Evaluation Focus
. This metric computes the ratio between the
Pixel Accuracy (PA) PA = _XizoPi amount of correctly classified pixels and the
Lizo X0 Pi total number of pixels.

Mean Pixel Accuracy (MPA)

This metric computes the ratio of correct
pixels in a per-class basis and the averages
over the total number of classes. It is an
improved PA.

k
MPA = L £
k+1 Eo Z;'(:o Pij

This metric computes a ratio between the
intersection and the union of two sets, which
are the ground truth and the predicted
segmentation. Reformulating the ratio is

Mean Intersection over k ) ; ..
Union (MIoU) MIolU = k}Tl ) S Pii — possible as the nurr.ft?er of true positives over
20 Lj—o Pij+Yj—0 Pji—Pii the sum of true positives, false negatives, and
false positives which represents Intersection
over Union (IoU). The IoU is computed on a
per-class basis and then averaged.
Frequency.Welghted k K o This metric weighs every class importance
Intersection over FWlol = 1k Y o Lo F:]p” based on their appearance fre
Union (FWIoU) Yico Xj=o0 Pij j— Lj=o Pij+Lj=o Pji—Pii pp quency.

Table 8 discusses four metrics, where the MIoU metric stands out because of its sim-
plicity and representativeness, which make it the most used metric in many competitions
and by many researchers for reporting their results.

6.1.3. Memory Footprint

For segmentation techniques, memory usage is an important aspect. Unlike execution
time, memory capacity is scalable, and it can be a limiting element. In certain cases,
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memory can be insufficient, such as onboard chips for robotic systems compared to a
high-performance server. Furthermore, for accelerating deep networks, high-end Graphics
Processing Units (GPUs) [93] are used. Considering the same aspects for implementation-
dependent as with execution time, and documenting the average and the peak memory
footprint of a technique with the description of the complete execution conditions can be
extremely helpful for other researchers.

6.2. Results

When reporting the results, remarking the heterogeneity of the papers is very impor-
tant. Most of the reviewed papers evaluated their frameworks’ results on standard datasets
and provided enough information to reproduce their results. However, some papers failed
to express their results in popular metrics, which made it difficult to make fair compar-
isons. Moreover, many papers do not provide any information about the execution time
or memory footprint. In certain situations, that information is included, but not enough
information is provided to reproduce the results, which makes it impossible to know the
setups for producing their results, and thus, the information is of no use.

Twelve datasets were selected in this paper: CamVid, KITTI, COCO, PASCAL VOC,
Cityscapes, SYNTHIA, GTAS5, Mapillary Vistas, ADE20K, SemanticKITTI, nuScenes, and
ApolloScape. Some of those datasets cover a wide range of cases and targets, and some
are considered new in the field. The accuracy results of the reviewed frameworks are
divided into three groups, based on the task of the frameworks: semantic segmentation,
3D semantic segmentation, or real-time semantic segmentation. Table 9 shows seman-
tic segmentation and 3D semantic segmentation results, while Table 10 shows real-time
semantic segmentation results. Both tables report the accuracy results of the reviewed
frameworks, ordered from the highest to lowest scorer for each dataset. All of the reported
results are taken from the frameworks’ original papers, where the MIoU metric has been
used for evaluation.

Table 9. Semantic segmentation and 3D semantic segmentation accuracy results of the reviewed
frameworks ordered from highest to lowest scorer for each dataset.

Dataset Framework Backbone MloU

Semantic Segmentation

. PSPNet 69.1
CamVid [30] BiSeNet ResNet-18 68.7
DeepLabv3+ Xception-JFT 89
SANet * ResNet-101 86.1
PSPNet * ResNet-101 85.4
PASCAL VOC 2012 ShelfNet * ResNet-101 84.2
[34] SANet ResNet-101 83.2
DANet ResNet-101 82.6
ShelfNet ResNet-101 81.1
ParseNet 69.8
GSCNN 82.8
DeepLabv3+ (coarse) 82.1
Cityscapes test [5] DANet ResNet-101 81.5
PSPNet (fine and coarse) ResNet-101 80.2
ShelfNet ResNet-34 79
BiSeNet ResNet-101 78.9
PSPNet ResNet-269 4494
ADE20K [40] FastFCN ResNet-101 4434

3D Semantic Segmentation

SemanticKITTI [41] 3D-MiniNet 55.8
* Pretrained on COCO.
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Table 10. Real-time semantic segmentation accuracy results of the reviewed frameworks, ordered
from highest to lowest scorer for each dataset.

Dataset 2D\3D Framework Backbone Parameters MIoU Time Frame
Cityscapes test [5] 2D ShelfNet ResNet-18 235 M 74.8 16.9 ms 59.2 fps
yscap 2D BiSeNet ResNet-18 190 M 747 152ms 655 fps
SemanticKITTI [41] 3D 3D-MiniNet 3.97M 55.8 28 fps

6.2.1. Semantic Segmentation

The first dataset is CamVid, which is considered one of the most important urban
scenes datasets. The reviewed frameworks that provided accuracy metrics for the CamVid
dataset were PSPNet and BiSeNet. The top scorer was PSPNet with a 69.1% MIoU. PSPNet
is an effective network for complex scene understanding.

The second dataset is PASCAL VOC 2012, a general-purpose dataset that has been
used to evaluate many deep learning techniques. The results showed a great improvement
from the ParseNet framework to the top scorer, which was DeepLabv3+ (Xception-JFT) with
an 89% MIoU. DeepLabv3+ achieved state-of-the-art performance on PASCAL VOC 2012.

The third dataset is Cityscapes, which is one of the most in use and challenging
datasets. The top framework on this dataset was GSCNN with an 82.8% MIoU. GSCNN
was not trained on coarse data and outperformed very strong frameworks trained on extra
coarse data such as DeepLabv3+ and PSPNet.

Finally, the results of the top scorer on ADE20K, which is one of the largest available
datasets, was PSPNet with a 44.94% MIoU. The deep network of ResNet-269 used as a
backbone helps to increase the performance of PSPNet.

6.2.2. 3D Semantic Segmentation

The only reviewed framework used for the 3D semantic segmentation task was 3D-
MiniNet. It achieved 55.8% MloU on the SemanticKITTI dataset. 3D-MiniNet is efficient
and fast for 3D LIDAR semantic segmentation.

6.2.3. Real-Time Semantic Segmentation

For Cityscapes dataset, ShelfNet and BiSeNet frameworks were used for the real-time
semantic segmentation task. Both frameworks scored similar results, 74.8% and 74.7%
MloU, respectively. ShelfNet achieved a comparable inference speed as when compared
to BiSeNet.

Similar to 3D semantic segmentation, the only reviewed framework used for the 3D
real-time semantic segmentation task was 3D-MiniNet. It achieved 55.8% MIoU on the
SemanticKITTI dataset and showed state-of-the-art performance using few parameters
(3.97 M).

6.3. Summary

In considering the results, the most important conclusion is relevant to reproducibility.
As reviewed in this paper, some frameworks have not been tested on standard datasets.
For that reason, it is impossible to make fair comparisons. Moreover, some papers do
not include descriptions for their experiments’ setups, which significantly hurt the re-
producibility. All proposed frameworks must use standard datasets for reporting their
results and publicly share exhaustive descriptions and weights to enable reproducibility
and further progress.

Furthermore, regarding metrics such as memory footprint and execution time, there is
a lack of information about them in almost all reviewed papers. The reason for that is most
papers focused on the accuracy of their proposed frameworks and did not consider time or
memory. It is important to know where those frameworks are applied. Most of them ran
on embedded devices, such as robots [94,95], drones, and autonomous cars, which usually
have limited memory and computational power.
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Based on the results, PSPNet was the most tested framework. It has been tested on
four standard datasets and outperformed other frameworks on two datasets. In addition,
DeepLabv3+ is a solid framework that scored high results on the two datasets it has been
tested on. Regarding the new frameworks that have been proposed recently, such as SANet,
ShelfNet, and GSCNN, they all achieved great accuracy results and significantly improved
over strong baselines. However, for the 3D semantic segmentation and real-time semantic
segmentation, a lot of work is needed for future research on preprocessing, dealing with
3D data, and remaking frameworks with higher power and flexibility.

7. Future Directions

Depending on the reviewed papers that present state-of-the-art on the field, some
future research directions are highlighted in this section.

e Memory: For segmentation networks, significant amounts of memory are needed
for execution. Some devices have limited memory, where the networks must be
simplified to fit in them. Network simplification is made by reducing complexity,
which decreases accuracy. One of the most promising research directions is simplifying
a network by reducing its weight and keeping the accuracy of the original network
architecture [96-98].

e 3D Datasets: There is an urgent need for large-scale 3D datasets, due to the evaluation
of new segmentation techniques that depend on 3D data. Even though there are
some promising works, a need remains for varied and better data. It is important
to create a 3D dataset from real data because most of the existing 3D datasets are
synthetic [99-101].

e Real-Time Segmentation: Most segmentation implementations are far from the com-
mon camera framerate, which is at least 25 fps. Currently, many of the existing
frameworks take between 100 ms to 500 ms to process low-resolution images. For
that reason, there is a need for new works that focus on real-time segmentation while
finding a trade-off between runtime and accuracy [102-104].

8. Conclusions

This paper focused on semantic segmentation using deep learning, particularly for
autonomous driving. It covered well-known and some recent work on the field in addition
to the basic background knowledge about deep learning for semantic segmentation tasks.
It compared 14 frameworks, 12 datasets, and different data augmentation and domain
adaptation techniques. Furthermore, frameworks were reviewed, and their tasks were
stated. Datasets, along with their characteristics and purposes, were described. The
benefits of data augmentation and domain adaptation techniques and their experimental
results were discussed. Additionally, the results of the frameworks and datasets were
presented in tabular form. Finally, a discussion about the results was provided and future
research directions in the field were suggested. In conclusion, there are many successful
implementations for semantic segmentation, but it is still a problem that needs additional
improved solutions that can be applied to real-world critical applications. Moreover, deep
learning is a powerful tool to tackle semantic segmentation problems. Many techniques
and innovations for autonomous driving systems are expected to be proposed in the
coming years.
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